
Separating D8t8 and Processing
or

Building Databases for Systems Yet to Come

Matt Ohmes
Cognos Corporation

2301 East Lamar Blud. #416
Rrlington, Teaas 16006

Introduction

This paper had a long and difficult birth.

Like most programmers during the last 10 years, I had been told of the
glories of "normalized" data structures. But also, like most programmers, I
did not really know WHY it was important to normalize. It was simply
accepted as a theoretical maxim that "good" database designs were
normalized. It was also accepted as common sense that "real programmers"
didn't normalize; real programmers optimizedl

There did not seem to be a practical advantage to normalization. It made it
more difficult to program, maintain, and fine tune applications. On the
other hand, if you just made a few adjustments to the database, here and
there; things got so much simpler.

Since I considered myself a "real programmer", I never paid much attention
to all this theoretical talk. After a while though, I began to notice some
problems with my database designs. Oh, they worked all right for the
original application, but the designs caused nothing but problems for
anything new.

Several years and a few minor disasters later, I decided to re-analyze my
approach. Why was the database that was so "perfect" for one application,
"perfectly awfu1" for the next? Finally, the l1ght dawned; "normallzation'"

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-1



I had fine tuned and "tweaked" myself into my a corner for the last time.
From that point on, all my data bases would be perfect paragons of
normalized forml

Several more years and minor disasters later, I realized that normalization
alone, was also not the answer. It was a technique. A set of rules that
tended to yield a desired result. The result is easier to state than achieve:
The "ideal" database is one that allows any number of applications to

effectively and efficiently access and manipulate it. To achieve this
result, the designers and programmers must, as much as is possible and
pract ica1, separate the database from the processes that acts upon it.

This paper addresses many of the pitfalls that I have encountered while
learning the ins and outs of database design. It also lists some rules of
thumb that I use in my data structures. Hopefully it will help you sidestep
some of my "minor disasters".

What is Normalization?

Since this paper is not intended to be a formal discussion of normallzation,
I won't spend much time on the normalization process or theory. But, I will
give a general description of 1st, 2nd, and 3rd "normal form" structures.

The initial requirement for any level of normalization states that all
records (or "tuples" if your relational) must be uniquely identified. This
unique identifier is commonly called the "primary key" and can be either a
single field or combination of fields. Note that Image Detail sets cannot
have a unique key item, but each record can still be different from others in
the set; through a combination of fields.

First Normal Form stipulates no repeating groups. Simply stated, this
means getting rid of all arrays. This applles to both explicit arrays (eg.
Item MONTH occurs 12) and lmpllclt arrays (eg. Item JAN, Item FEB, etc.>.

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-2



Actually" First Normal Form prohibits a variable number of repeatlng flelds
in a record" but this restriction is generally expanded to include any arrays.
Arrays are usually eliminated by creating a new file in which each record
would take the place of a single" occupied array occurrence.

Second Normal Form must satisfy First Normal Form, plus all items must
be functionally dependent on the primary key alone. In other words,
eliminate data redundancy. "Customer Address" should only be in the
Customer file. It should not also appear in the Invoice file just because
Invoices are sent to Customers. The Customer must be related to the
Invoice file in some manner" but that relationsh·ip should be via the primary
key of the Customer record. The goal is minimum redundancy.

Third Normal Form requires Second Normal Form, plus the elimination all
transitive dependencies. Simply stated again, this means don't put vital
information where all references to it might be eliminated by normal
processing. For example, if all Invoice records are deleted from your
system after they're paid, make sure that the Invoice flle is not the ONLY
place you store your customer's addresses. If a customer pays his bills
promptly, you certainly don't want to lose track of him'

There is also a Fourth and Fifth Normal Form in relational theory. In
practice" however.. Third Normal Form is the generally accepted standard
for most data processing shops. Third Normal Form is what I refer to as a
"normalized" database in this paper. If you want a more thorough
discussion of the normalization theory or process.. there are many papers
avallable. Three I have referenced in the writing of this paper are:

A SIMPLE GUIDE TO FIVE NORMAL FORMS IN RELATIONAL DATABASE THEORY
William Kent
Communications of the ACM
February 1983

and

Sepal"ating Data and Processing or
Designing Databases for Systems Yet to Come

0005-3



SIX STEPS TO A NORMALIZED DATABASE
Paul Bass
Supergroup Magazine
May/June 1985

and

HOW TO DESIGN FOR THE FOURTH GENERATION
Leigh Solland
Baltimore/Washington RUG - Interex 1985
Paper 3013

There are literally hundreds of others available. Any that explain the
process clearly are worth reading.

Why aren-t most data bases normalized?

Let us assume that the average programmer or analyst can understand
enough relational theory to describe a normallzed data structure. Why then,
aren't more data bases normalized?

The primary reason is, there is no perceived advantage to normalization.
Most traditional programming languages do not readily lend themselves to
normalized data structures. A Third Normal Form database does not
necessarily make for more work for the average programmer, but certainly
does not make for lessl

Normalized data bases tend to have more flles with each flle havlng shorter
records. Those files all must have separate open, read, check for end of
flle, and close routines. It is simply easier for the average programmer to
have fewer files. Fewer files mean a lot less code in most programming
languages.

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-4



It is also easier to build on familiar techniques. Even if those techniques
aren't necessarny as relevant for present day computers. For example,
many systems have been designed to minimize reads and writes at all
costs, even though almost all systems can utilize Multi-record reads and
disc caching with I1ttle or no programmer intervention. This doesn't mean
that disc I/O should not be minimized. But it is not the hobgobl1n it once
was.

It should be noted however, that normalization does tend to penalize record
retrieval. Data that might be on one file in a traditional structure might
have to be read from two or more files in a normalized structure.

Why should data bases be normalized?

If it 1S so much trouble to use normalized data bases, then why on earth
should we even bother? The answer is simple; normalization yields data
structures that are stable, accessible, and flexible. The design minimizes
data redundancy and maximizes consistency. If the database is designed
properly, any subsequent application should be able to access and
manipulate the data as well as the first.

This is the major problem with most. "unfriendly" data bases out there
today. Most were designed around a single application. Their structure is
build to get the most out of that application. Unfortunately, most
designers don't reallze that the fundamental data entities and relationships
for a company change very little over time. The systems that process that
data, however, and the specific procedures involved, change more
frequent ly.

This point must be clearly understood, before the advantages of
normalization can be reallzed. A normalized database is inherently
independent of its applications.

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-5



The ·Danger Zones·

If you are in the process of designing a database or building an application,
you may want to run down a mental check list here. There are several
"warning signs" of a non-normallzed database. If these signs are present,
some "rules" have been violated. That does not mean the database design is
"bad". It is simply not perfectly normalized. As we'll see later, there are
sometimes perfectly valid reasons for breaking the rules.

Rrrays

Anyone who ever took a computer programming class in school learned to
manipulate arrays. They are perfect for teaching looping and control break
processing without actually getting into messy concepts Hke files and data
management systems. They are also easy to understand and control, so
most programmers Quickly become quite dexterous with them.
Programmers are people, and people like to stick with what they know, so
arrays tend to crop up in a lot of data bases.

There is nothing wrong with arrays. In fact, they are very handy for certain
things. Arrays are great for "summary" type records. If I have an individual
sales record for each of my 100 products for each week of the year; at the
end of the year, it would be nice to archive that data on 100 records. Each
record would have a 52 occurrence array, and each occurrence would have
the sales for that product in that "\leek. That seems a sensible idea, so why
wait unt11 the end of the year? Why not use the array records for daily
processing?

The most obvious problem is actually the most minor; the problem of
unused occurrences. If we used our example array for dally processing,
over half the array would be wasted space unt 11 the middle of each year.
However, unless each occurrence was Quite large, the actual space "wasted"
would not significant.

Separating Data 8nd Processing or
Designing Databases for Systems Yet to Come

0005-6



The major difficulties with arrays arise when we change our processing
requirements. What jf I decide to record dany sales figures for the 10
most active products.. but only want monthly sales of the bottom 50? My
array made assumptions about my processing that had nothing to do with
the basic data. The data includes product.. total sales, and the period of
time involved. The array forced my period of time to be 7 days. Would your
boss allow you design a database that would permit only 10 products or
only 50 invoices? The principle is the same.

Arrays force processing assumptions on data structures that inevitably
must be revised.. and arrays are notoriously resistant to revision. They also
tend to be exceptionally tenacious. Programmers seem willing to go to
almost any length to keep their arrays (eg. "Well, when the array overflows,
we add another record with the same key.. except we set a flag on the
second record indicating it's a duplicate. Then we increment a counter on
the first record showing how many duplicate records we have ... ).

A normallzed data structure may force more records to be read for a given
report, but it is relatively easy to restructure.. and it is~ processing
independent.

The -Euerything- Record

The next "warning sign" is what I call the "Everything Record". It is
revealed by the presence of very large records in relatively few files. The
general idea seems to suggest that if you put all your data into a single
record, you can save a lot of time and effort opening.. closing.. and reading
fl1es. The chief benefits are simpler file handling routines and fewer
records to read. You don't have to go elsewhere to get any information.
Normallzed databases tend to have more files.. but each file has shorter
records.

Very large data records are rarely a conscious decision on the part of the
database designer. Most "everything" records just seem to grow as

Separating Data and Protessing or
Dellgnlng Databases for Systems Yet to Come

0005-1



applications evolve. It 1S a lot easier to add a new field to an existing
record than to consider the implications of a new file in the overall design.

"Everything records" often suffer from a "merging" of data entities. If
several fields have been added to a record to indicate a number of
different client statuses, for example; perhaps a new "client-status" file
should be created. That way new status codes could be created and old ones
deleted without a structural change to the primary file. The resulting
design would also be easier to comprehend.

It is difficult for programmers to understand very large record structures.
It is hard to grasp the individual meaning and relative importance of 300
different data items in a single record. Normallzation clarifies data
relationships and anything that clarifies the structure. simplifies
development and maintenance.

The Multi-Record Type File

The next "warning sign" is another example of "merged" entities. That is
the multi-record type file. (eg. Header Records, Detall Records, Trailer
records). There are few advantages to multi-record type files. The only
one I can think of is a reduction in file opens. There are a lot of
disadvantages'

Multi-record type files complicate programs. The programmer must check
for file type, save record locations for later updates, check for different
data types in overlapping fields, and a number of other irritations. Any
record structure change is major problem. You can't just add a field, you
must check every other record type in the file and make adjustments. Even
minor changes cause major ripples.

Terribl~ performance problems can also result. At one site I visited, there
was one Image data set, containing over 1 million records, that had 17
different record types described for it. Three record types comprised over

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-8



99 percent of fHe, two types had less than 100 records each, one had 5. To
report those 5 records, over 1 million had to be readl The user base had
l1ttle idea which record type was which. They were forced to decide if
they should scrap an fairly satisfactory system or live with it, as it was,
forever.

Multl-record type flles perpetuate old, batch processing concepts. They
come from an era when sequential files were the cutting edge of data
management technology. There is little advantage in retaining this
technique.

Calculated Items

Calculated fields are also considered a "warning sign" in data design.
Although I have found no specific prohibition against stored, calculated
values in relational theory, they are generally rejected in normallzed
designs. If calculated values are stored in the database, their accuracy is
always in question. This restriction is usually rather loose, however. If
accuracy of data is vitally important and processing time is relatively
unimportant, calculated fields should be avoided. If processing time is of
paramount importance, calculated fields are well worth considering.

All the "warning signs" llsted above fall into a broad category I call
"language specific designs". They result from applying appllcation
programming techniques to data structure design. When programmers learn
how to "code around" unusual data designs, they typically add those
techniques to their "bag of tricks". Unfortunately, they also tend to add the
unusual data designs to that mental bag too. This perpetuates "unfriendly"
designs. It's llke the old saying: "When the only tool you have is a hammer,
all your problems start to look like nails." Don't repeat a questionable
design just because you know how to program around it.

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-9



File Specific Rpplication Designs

Another broad category of "warning signs" is "file specific application
designs". This is the opposite side of the design coin. In this case it is the
application that suffers because the developer overuses certain file
features. For example, if an entire application is built around the generic
retrieval capabillty of KSAM, future systems may suffer.

A more common but less obvious example of a "file specific appllcation
design" involves item level locking in Image. Item level locking has widely
been described as an important component in "strong" application locking.
While Item level locking may be useful in a single application, it is an
invitation to misfortune in the long term. Applications that rely on item
level locking to achieve acceptable performance, are extremely fragile. If
a subsequent appllcation does not follow exactly the same locking rules as
the first, Image resolves the conflict by using the broadest locking level
requested. This could easily cause an existing appllcation to suddenly
become unacceptably slow.

For a more complete discussion of locking strategies and pitfalls, I would
suggest reading Chapter 15 of the Image/3000 Handbook. "Picking the
Lock". A general rule can be applied; don't design your database around the
way you code, and don't code around the "neat tricks" in your file
management system.

When should you -break the rules-?

As I mentioned earlier, the "warning signs" indicate some "rules" have been
violated. But, there are valid reasons for breaking those rules. If
performance concerns become overwhelming or a change will greatly
simplify the overall processing, then bend the ~ules just en'ough to get by.
Don1t assume that all normalization should be thrown out the window just
because one report runs slow. If possible, wait until the user base has a
chance to exercise the system. They wlll show real bottlenecks, as
opposed to predicted ones.

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-10



I know of at least three examples, from personal experlence, where
violations of the normallzation rules dramatically enhanced the existing
system, without compromising the overall design.

One site I visited did not have n calculated or summary fields, even
though they had hundreds of thousands of transactions. Even the simple~t

of calculated reports took hours. Since day old data was accurate enough
for management reports, several summary flles were constructed. In each
summary fl1e, thousands of records were compressed into a few summary
records each night. The reports then ran almost instantly against these
shorter files the next day.

Another site had a system that was almost totally table driven. They had
over 30 different types of "lookuplt files in which the records all had the
same format; "code-value", followed by "description". They were all put
into a single multi-record type fHe to create a .. table of tables". This kept
the overall structure cleaner and made adding new table types much
simpler.

The third site (a well known software vendor, very famillar to me) had a
database in which each Customer was related to one or more CPU records.
The number of CPU records per Customer was not originally keep on the
Customer record. It was soon discovered that every Sales Rep wanted to
instantly see the number of CPUs each Customer had. Rather than force
that number to be counted on each inquiry, it proved to be more effective to
count CPUs when they were added, store that count on the Customer record,
then have a batch process re-count periodically for "insurance".

In all three instances, the data designs were "de-normalized" to a limited
degree to aid in processing. But, none of the sites had to corrupt their
basically sound designs; and all of the sites have added new systems on
top of their original databases with little or no problems.

Separating Data and Processing or
Dellgnlng Databases for Systems Yet to Come

0005-11



Conclusion

In the final analysis, subsequent systems are the measure of a database
design. If the second appllcation runs as well against your database as the
first, then you have a strong, stable, flexible design.

Data (the database) and processing (the applications that use that
database) are and should be separate. Processing is based on the needs of
the user at the moment. Data reflects the information needs of a company
over time. With accessible data and flexible data structures, MIS can plan
for the needs of systems yet to come and keep the users satisfied. And
that is, after all, our job.

Separating Data and Processing or
Designing Databases for Systems Yet to Come

0005-12


	Separating Data and Processing or Building Databases for Systems Yet to Come

