USING INFORM, PROTOS. AND QUIZ
A User's Experiences
Richard Decker
Computer Task Group
Suite 644
World Trade Center
Baltimore Maryland 21202

This paper shares some of my experiences in developing sysems with
COBOL and fourth aeneration lanquaaes. The fourth qeneration lanquaages
to be highlighted will be INFORM/3080. PROTOS and QUIZ.

INFORM/3000 is the report writinag product of Hewlett-Packard's (HP)

RAPID/3008@. PROTOS is a product developed by PROTOS SOFTWARE COMPANY
of AUSTIN, TEXAS that generates COBOL source code. QUIZ is the report
writing section of POWERHOUSE products developed by COGNDS of CANADA.

A aqood workina knowledge of the Hewlett-Packard database lanquaaqe

IMAGE and screen formatter UPLUS must be mastered before the user can
acquire all the potential that the fourth qeneration languaae PROTOS
can offer. The user of QUIZ and INFORM does not need a knowledae of
the database lanquaqe or screen formatter. The difference is that
PROTOS is a oproductivity tool desianed to be wused mostly by
programmers, while QUIZ and INFORM packages are tools used by end
users.

There is a learning curve to be considered when first beainnina to use
the new languages. I have learned all of the lanaquages on my own
without havina the opportuinity of attendina a formalized class on any
product. Manuals supplied with all products are excellent, well
written and oraanized. A person could become proficient in the
lanquaae with about 4@ hours of concentrated study and practice for
PROTOS., about 20 hours of effort for QUIZ, and about 1@ hours for
INFORM.

0003-01



OBSERVED PROBLEMS

Problem 1:

I have observed that when a fourth generation lanquaqe is installed at
a site a strona tendancy prevails to let the user play & predominate
role in developing reports. After the database has been built. and the
data loaded into the system, the screens are developed and a user can

access data on-line. The user is usually very pleased with the
quickness of the on-line screens, but in time, they always want a
hardcopy report that shows everythina. Hardcopy reports that show

evervthina., sorted two or three different ways are not thinas that
process very fast.

Possible solution to problem 1:

Durina system analysis all anticipated reports should be analyzed and
an aareement reached with the user and analyst as to content before the
analyst or proarammer is transferred to another project. Reports that
might take a lona time to process might be faster in execution time if
the proarams creating them were written in COBOL. If the report
accesses more than one file and various types of cross-checking and
validation are 1involved within the report then the use of COBOL 1s
recommended. Reports such as these are best addressed durinag
development.

Problem 2:

On the other hand are 'ad-hoc' reports. These reports are those quick,
short reports that answer ‘questions of the moment'. Fourth neneration
lanquaages are usually excellent for these types of reports. These
quick reports are wusually answerinag questions of data content. The
data content is either of a certain field of data, or durinag a
particular time period. There is usually a selection verb involved and
one or more parameters associated with it. A problem arises if the
programmers are busy with other things and the end user knows nothing
other than the report writers of the fourth generation lanquaqe. The
problem is that production reports are written with the report writer.
and some of the reports are made aquite extensive in scope of data
reported. A user can become very attached to a packaae and try to see
iust how intricate he can make a report before the entire system is
brought to its knees. This tvpe of crippling affect is not necessary.

Possible solution to problem 2:

More thought and on-qoina support should be aiven the user by the
programina staff. Complicated production reports should be written in
COBOL, or PROTOS. and some restraints should be placed on the user
abusina the power of the report writers for ’'ad-hoc’' reports. This type
of mal-practice causes lack of system control. and may very well cause
the buvina of more and more disk drives. and more powerful CPU's. all
in the name of 'aiving the user what they want’®.

0009-02



How is the oroarammina staff suppossed to accomplish this on-aoina
support when they are already backlogoed with reauests. Here are a few
suaqaestions that mavy help. Situations differ. of course. from site to
site. The reasons for backloas are surely not all the same.

Suanestion number one: More uniformity of proaramming stvle.

If all proarams were to look alike, maintenance people would know where
to look for a problem. If a chanae were to be made to proarams. the
change would be opredictably placed. and a better estimate of time
involved could be given. Uniformity of stvle also includes uniformity
of code. Copylibs should be used wherever possible. Skeleton programs

should be the basis for all types of proagrams. Screen program
development., report programs, and maintenance type proagrams all should
have a well thouaght out pre-defined basis for their development. The

cries of programmer creativity should be drowned out. If a person has
a better way of doina a routine, or program, then let the idea be
shared for the benefit of all. Having more than one style of code in a
shop., or worse within the same system, is a nightmare to maintain.
Besides, when you execute fourth generation languages. vou are trading
individual creativity for speed. The speed comes from the predictable
way of expressing the syntax of the development lanquage.

Suaqgestion number two: More interaction between users and the DP staff.

If a user is becoming obsessed with a package, and beqins to be abusive
with its capabilities, do not let it continue until the entire CPU is
openly crving for help. Fourth generation report writers are ideal for
certain types of reports. Determination of best use is always needed.

Sungestion number three: Normalize +the database whenever possible.

Fourth generation languaaes work best in databases that are normalized.
Normalization is linking of data with the use of keys and related
information. A process of delimiting the data to a smaller and smaller
number of records to scan is quicker than looking at all records in a
file. Random access can be used with keys. Seaquential search is
needed if no keys are available.

Review the present structure of the database and see if benefits could
be realized with some structured modifications. This sucgestion could
become very expensive to incorporate on existing systems. It may not
be practical or possible on vendor systems. When developina systems
in-house it is a primary concern.

0009-03



MAINTENANCE

Different products take different approaches to their operation.
PROTOS, because it will aenerate COBOL code as the output utilizes its
own database to oraanize itself. QUIZ will wutilize either
DICTIONARY/3000 or a compiled schema, called QSCHEMAC. to organize and
operate. INFORM utilizes DICTIONARY from which it extracts data.

Schema description

A schema is a flat file describinag each data element of a system in its
most primary form. For example last name is a alpha-numeric element of
twenty characters. and item cost is a numeric element with two decimal
positions. The schema then aoes on to describe where elements are
found within a file. In addition to file lavouts. redefinitions of a
element may be found. For example the element of telephone number may
be redefined as composed of an area code. prefix or exchange. and the
station number or last four diaqits. Editinag information can also be
found in some schemas. This information is usually identified after a
verb in the schema. such as the verb TYPE. TYPE Dollar would indicate
that all elements following should be formatted with two decimal points
when shown to a user. Other TYPE editinag would be Date in MDY or YMD
format, or a picture clause such as Type 999.93933, a number havina four
decimal places.

Maintenance of the schema

If the QSCHEMA method 1s emploved then a schema file 15 maintained

using an editor subsystem. This editor file will contain the names of
IMAGE database and formfiles. In addition the names of flat and keyed
files to be used are also listed. The identification of each element
used, size. tvype. and record lavout of each file is also listed in this
editor file. After the editor file is created, use of a wutility
proaram creates the QSCHEMAC file.

Each data element’s size and type must be entered into the system by a

user at least once. Each file name and layout must be entered into the
system by a user at least once. These two statements are to be done
whether DICTIONARY/3000 or an editor file is used with the products.
So why use DICTIONARY/3000? Because more vendor products interact with
and thru DICTIONARY/3000 than an editor file.

0003-04



Maintenance of the dictionary

When wusing QUIZ the choice of usinaq DICTIONARY/3@00 or QSCHEMA is left
to the customer. DICTIONARY is probably a better choice.
DICTIONARY/300@ 1s available on the HP-300@ whether or not a fourth

generation lanquaae is in use. The dictionary could be used as a stand
alone reference source. Proaram DICTDBM.PUB.SYS (Dict database
manager) maintains the dictionary. DICTDBM is not as easy to use as
the QDDR product to input information into DICTIONARY/3000. The QDDR
packaage also has some other nice features associated with it that are
helpful in the maintenance or development phases of projects. There is
an option that automatically aenerates COBOL copvbooks for all the
divisions of a COBOL proaram. In addition a user can view all
information concernina a data element, dataset. database or file
residing in DICTIONARY/30208. When DICTIONARY/3002@ is used there 1is
another product made by CO6NOS called QDDR that uses menus and screens
to update the DICTIONARY/3000. This is important if many flat files,
or KSAM files are used in the system. The record lavout of flat files
and KSAM files are not automatically copied into DICTIONARY/3200.
Image database rootfiles (showina database schema information) and
FORMSPEC ., containina formatted screen information. are automatically
copied into DICTIONARY/3000 using a few simple utility proarams.

Maintenance of standards for proarams - Copybooks

While thinking of ways to increase productivity and quality of software
used 1n today's systems, let's not overlook some of the more common and
less expensive methods available to proarammers.

The communication area (COMAREA) of the buffer for the screen handler
UPLUS/3008 1is not simple. Use of a copybook member for the COMAREA
standardizes and thus simplifies the use of UPLUS/3000. The copvbook
member for the IMAGE area contains all the redundant parameters the
IMAGE calls require. database name field, dataset name field. modes,
buffer name field, etc. Usinag copybooks insure that those data
elements appearina in many proarams will always be named the same
thina. This is appreciated by +those persons doing maintenance on
proarams after the original author has departed. It is also
appreciated by the oriainal author when trying to aqet a proagram
finished by a deadline.

Another use of copvbooks would be to store the format to be used

within the Identification division of a COBOL proaram. Within this
format is an expanded Remarks section. Expansion would include all
pertinent information about the proaram and how it relates to other
programs and files within the system. This can prove to be an
invaluable asset durinag maintenance of the system.

0009-05



Type of systems developed

Normally my work 1is in a manufacturinaq environment. Users of my
systems include plant managers, production supervisors, operators,
office clerks. and secretaries. In qeneral, managers require summarial
information. operators need simple data entry screens which reaquire
minimal trainina to use. and secretaries need simple and flexible
capabilities with their screens. Usually the systems developed are a
combination of on-line proarams involving data entry or inguire
screens, and batch proarams. In developina the screen proarams
UPLUS/3000 ., or FORMSPEC, was the screen generator used.

Thouaghts on choosing a development languane

If only one of the lanquaaes were utilized to develop a system the

followina drawbacks might be encountered. COBOL proarams take time to
develop and the services of a proarammer. PROTOS would reaquire a
knowledaeable proarammer or user. INFORM and QUIZ are limited when it
comes to doing intricate edit checking.

Factors to consider when mixing the lanaquages

COBOL only

If COBOL 1is the only lanquaqe used there is usually a backlog of user
requests. These requests can be for new systems, modifications +to
systems, corrections to proarams. updates to ‘hard-coded' tables. or
need for more proarams. This delay results from a variety of factors;
the aquality of the proaramminag staff. the size of the proaramminag
staff, the tenure of the staff. The DP staff's inexperience in
proaramming. or their understandinq of a system under consideration,
areatly affects the speed at which requests are satisfied.

COBOL and INFORM

When COBOL and INFORM are used there is an assumption that data somehou
found its way into a database, or file and a user is extractina data
almost in a reference type mode. INFORM can be used to create links
between various datasets in a database, but in its simplest mode it
reports data elements within a sinaqle dataset. During development work
this can be a areat asset. The product itself 1is very menu/panel
driven which is good for novice user, however the proaression of panels
gets tirina quickly. A more experienced user is aiven the option of
stringing out his request for a panel. The more experienced user can
enter a string of “1.5.3" and will get to the data element screen
within the database they want, enabling them to do what they want to
do. Normalization of any database is stronaly suaagested when using a
fourth aeneration report writer. Normalization will affect the
retrieval time for requested information. Searchina for keys within
the data uses a short string of data called an index to locate the
desired data. If the user requests data that is not indexed then all
the data must be read to match the ‘string of data’ reauested.

2003-06



COBOL and QUIZ

When COBOL and QUIZ are used a more dynamic environment can be
more readily established. By usina the ACCESS statment in the QUIZ
lanquaane linkaqe to various datasets is aquickly and easily
accomplished. The SELECT statement is used to retrieve a subset of
information. The SORT statement allows a more readable report.

Steps necessary before and during use of fourth generation lanquanes
First the dictionary has to be created. To accomplish this run the
proaram DICTINIT.PUB.SYS. This will establish +the DICTIONARY/3000

database. After the dictionary database is created it must be filled
with information. To fill the dictionary database a utility proaram is
ran. The name of the proaram to fill +the dictionary 1is
DICTDBD.PUB.SYS. Filling the dictionary with information about

databases and formfiles 1s an easy matter. With the command LOAD and
the name of the database or formfile the proagram aoes to the rootfile
or formfile and nets all information of data elements. datasets. and
forms. At this point the wuser can access the dictionary and find
information concerning dataset names, and what data elements are in the
datasets. To allow uers to access information located in more than one
dataset at the same time. relational linkaaes or aroups must be set up
in the dictionary.

Once the aroups are established a user can more fully utilize the
dictionary to extract information in a more loqial form.

INFORM - Run the program INFORM.PUB.SYS. A series of panels 1is
presented to naviagate the user thru the proaram to extract data.

QUIZ - The dictionary aqain has to be established prior to using QUIZ.
The dictionary can be aenerated by using the method discussed with
INFORM, or another method can be used. QUIZ is a COGNOS product. and
the purchase of QDDR could also be made in additon to QUIZ. QDDR is a
series of formatted screens which allow data entry into
DICTIONARY/3000. Once the dictionary 1is made QUIZ uses its own
lanquane to extract and report data. Statements such as ACCESS. SORT.
REPORT. GO. LINK and others are used to manipulate the data and
datasets or files. QUIZ is powerful in that with the ACCESS and LINK
statements many datasets and/or files can be loaically tied together to
extract needed information. No previous links need to be established.
such as in usinao INFORM. The use of temporary subsets of information
is also a useful idea. As a QUIZ jobstream executes the user can
direct that subsets of information be saved either permanently or just
for the duration of the jobstream. This allows for easier qeneration
of rather intricate reports. Much more detailed reports can be
aenerated using QUIZ than INFORM with the same amount of effort
involved.

0003-07



PROTOS - The dictionary involved with this product is not the

DICTIONARY/3000. Rather PROTOS uses its own dictionary aenerated from
a schema that +this product recoanizes. There are more steps and

planning involved using this product in comparison to QUIZ or INFORM.
But we are talkina apples and oranges here. PROTOS is a COBOL
generatina lanquage. and is more powerful in what it can do than the
other choices being compared in this paper.

In plannina for PROTOS a PROSCHEMA must be made. A PROSCHEMA involves
naming the databases and formfiles to be accessed. Declarations of
data element’'s +type can be made. These declarations involve date
formattina. currency formattina. decimal alignment and redefines of an
item into sub-items. Files are declared and their associated record
layouts are aiven. PROTOS. when defining datasets and files., will aive
a prefix to the items associated with them. In the COBOL code these
internally aenerated prefixes appear. An option is available where the
prefixes are predefined by the user.

Several User Defined Commands (UDC's) are then used to initialize and
ready the PROTOS product for use. The three main UDS’'s are PROINIT.
PROBUILD, and PROCOPY.

PROINIT will build the PROTOS database dictionary and initialize it
for use. The dataset capacities are pre-defined. but can be
overridden.

PROBUILD will read the PROSCHEMA and fill the dictionary with
information as directed by the PROSCHEMA.

PROCOPY will build a copylib. In the copylib will be all the file
layouts, and buffer areas that will be needed by future proarams. In
addition all IMAGE and UPLUS buffer areas will be in the copylib.

At this point the user has a dictionary. a linkage definina database,
and a copylib. Programs written in PROTOS syntax can now be written.
The PROTOS lanquane is easy to learn and not exceptionally complicated.
It is very helpful to understand how IMAGE and UPLUS work when writinag
a proaram. PROTOS is a lanquaqge of few words. A proaram that will do
quite a lot can be written with very few lines of code. This is where
the increase in productivity can best be observed. However because the
lanquaae is so powerful, a thorouah understandina of what can be
accomplished by a singqle command is necessary.

0009-08



After the PROTOS source code is written it must be converted to COBOL
code. The UDC to accomplish this is the PROWRITE udc. After the COBOL
code has been aenerated the normal compiling.and prepina must be done
prior to savina the object and COBOL source code. Some installations
save both the PROTOS and COBOL code. while others discard the COBOL
code after the executable code has been saved. It is advisable to make
any future modifications to the PROTOS source and not the COBOL source
code. Within the aenerated code any calls to IMAGE or UPLUS are
performed usina the SL provided by PROTOS. Beina that all error
checking is done within the SL, user edit checkina and exception
handling must be thouahtfully done.

Factors involved when choosina a language

All three vendors have excellent reputations, and all three qive very
aood customer support. Let us approach this aquestion of choosing a
product from what the desiaqn of the system demands.

Desian Considerations

If the new system is in its budding staces the analyst must converse
with the user to determine what are their expectations of the system.
Will the system have many on-line screens. Will the screens be very
intricate or will they display information found pretty much in a
lonical area of data. A logical area of data is somethinag like basic
personnel information. component makeup of a product. current payroll
information, etc.

If the data elements are somehow logically linked toaether then those
items might be contained within a sinale dataset. If a screen 1is to
show many items upon a sinale request from the user the screen becomes
more intricate. A user may like ‘busy’ screens that show just as much
information as can npossibly be displaved 1in eighty columns and
twenty-four rows. Another user will like menu driven systems that take
them to a certain area of information and display only requested items
of information.

Data entry screens usually look simple enounh but internally many many

checks have to be done to determine proper linkage to master datasets.
I am speakina of a user defined conditions that make data entry more
valid and accurate. Does a purchase order have a vendor? Is the vendor
valid? Cross-checkina and validation of data can become as involved as
the user ., money. time and expertise of people involved allow.

0003-09



FORMSPEC can be wused to develop the screens. The proarams will be

written in COBOL with or without the help of PROTOS. If PROTOS 1is to
be used there are some considerations as to how screens are made. The
naming conventions are most prominent. Data element names within the
PROSCHEMA will only be fifteen characters long. This limitation of
field size allows PROTOS to interact with the FORMSPEC product. PROTOS
allows a very convenient technique to be applied to screens workinag
with detail sets. The technique involves fillinag up the screen with as
many detail records as the screen will allow. The screen is defined in
the PROSCHEMA usinag the REPEAT verb and naming of the screen. When
PROTOS operates it treats the area of the screen as a matrix, and
automatically tracks data fields within the matrix. With this
technique inguiry. and updatinq of many detail records is possible with
a screen full of data.

If the system 1is to be fairly static any of the lanquages will do
nicely. Static means once the information is loaded into a database
the user will access the system to retrieve information in much the
same way as a reference library is used. The data may be updated
daily, weekly or less often but at the moment the user is reaquestina
data, the system is fairly static. Personnel. payroll. and some
inventory applications are in this area of a reference system. If the
system will stay within one area of a plant, then this too becomes a
reference type system showing a status of the area.

When systems cross departments. or location boundaries the systems

become more interactive and more complicated. More cross-checkina and
validation is needed to insure accuracy and smoothness of operation
between the various areas of the system. In these situations a lanquaaqe
other than & report writer 1is needed. COBOL proarams., or programs

qenerated by using PROTOS. are needed to build the system. If many
reports are needed PROTOS is very well suited to qgenerate complex
reports with minimal effort on the part of the proarammer. Reports

written in PROTOS are much easier to write and modify than a strainght
COBOL proaram. The reason for this is the use of the FORMAT verb in
PROTOS. The proaram shows the 'format’ or report lavout of the report
in the proaram. The fields are then defined by just naming the data
elements to be shown, and control breaks are identified by naming data
elements after the BREAK verb.

0003-10



QUIZ 1is a very pouwerful report writer. It is easier to use than

PROTOS. If the report is a listing of data element values it is very
easy to use. The user accesses the dataset or file., and aqives the
REPORT verb naming the data elements desired. Then the 60 verb is used
and the report is formatted. column headers included. and aenerated to
printer or other device. If subsets of information are needed., the
SELECT verb makes aquick work of extracting the needed data. A SORT
verb is also easy to use and declare. Again. if the report is a set or
subset of information QUIZ is excellent to use. The way that the
database is organized can areatly affect the performance. but that is
the problem of the analyst or database desianer. not the languaae. It
is when the data to be extracted is not a simple subset of information
that QUIZ is more difficult to use. Extraction becomes difficult if
the conditions to select data are based on data elements not defined
within the dataset itself.

Summary

When usinag fourth aqeneration lanquages oraganization of data and

preparation for use of the tool is very important. Various tvpes of
dictionaries and various dictionary wutilities have been reviewed in
this paper. Data structure has bsen shown to be the foundation for the
fourth generation languaaes. Some dictionary maintenance products have
bsen mentioned and briefly reviewed. In reviewinag these products
emphasis has been placed on how the product is set-up for operation.
In genersl . the complexity of a program will dictate what tvpe of
fourth aeneration product to use for an application. The more complex
a proagram the areater the need for COBOL. Once the dictionary is built
and loaded with data of the system, extraction of information has been
agreatly simplified by these lanquages. It is this simplification of
extraction that can affect svstem performance. Reports should be
scrutinized to determine if the power of the lanquanes 1s beina used
effectively. Svstem administrators should be aware of how a user is
accessing the data to determine efficiency and “bottle-necks" caused by
ahuse.

2023-11






	Using Inform, Protos, and QUIZ - a User's Experiences

