4GL's, COBOL and Data Communications

by
John D. Alleyn-Day
A H Computers
8219 Terrace Drive,
El Cerrito, CA 94530-3059
415-486-8202 or 415-525-5070

Introduction

One of our clients, Underground Service Alert, operates an
extensive system for sending messages to hundreds of printer
terminals located in the states of California and Nevada.
Although not a true real-time system, it must neverless transmit
messages in a timely fashion with insignificant delays. They
were using on old system that had been around for about ten years
and that had come to the limit of its performance because of
various problems with the software. It was our task to change
this software structure to allow it to handle their increased
business.

The Database System

The major problem was that the old system revolved around an
IMAGE database and, in particular, a detail dataset that was used
to control the transmission process. This was a very complex set
with six paths. These paths were present to allow access by a
variety of routes but they had a very deleterious effect on
performance. One of the critical keys was the "status" of the
record, indicating whether or not the message was "Sent",
"Waiting" or "Failed". The sending program read down this path
to find messages to send. Unfortunately, changing the status, as
one must for each message transmitted, involved a delete and an
add.

This process was causing a major I/O bottleneck in the system and
it was therefore necessary for us to find another method of
controlling the transmission without such an excessive overhead.
Furthermore, we wanted to introduce an additional feature, namely
making the order of tranmission dependent on a "priority" field
that indicated the importance of the message.

The "status" had to be a key, so that the messages waiting to be
sent could be quickly found. At the same time, it had to be
capable of fast updating. Several different methods were
considered, including MPE flat files or MPE message files, from
which the records would be deleted as they were sent. However,
incorporating the priority scheme made a FIFO queue such as a
message file inapproriate.

4GL's, COBOL and Data Communications

0020 -1

Our final solution was to use a KSAM file for our transmission
queue. Making one of our keys "status" followed by "priority"
allows us to find messages waiting to be sent in priority order,
and to insert new messages into the queue at the point
corresponding to the priority that we assigned. Furthermore,
KSAM allows us to change secondary key values with comparatively
little overhead, without deleting and adding the record. There
is a further performance advantage of using KSAM. We usually
write more than one record at a time to the file (because any one
message is usually sent to several different destinations) and,
if we lock around this group of updates, then the buffers are
most likely to be written out to disc only at the end of all the
updating. This can also save enormously on disc I/O.

The Structure of the Programs

Our main requirement is to control approximately ten outgoing
modems, to have each dial a specific number, prepare a message
from data on our database and then transmit it. The database
then needs to be updated with the information that the message
was sent.

There are several subsidiary functions that must also be
performed. We have to schedule the transmissions appropriately,
ensuring that the most critical messages go first and that two
different modems don't try to send to the same terminal. We also
need to keep track of failing terminals and not attempt to send
to a terminal that is down. Furthermore we need a mechanism for
changing the operating parameters "on the fly" and methods for
inquiring into the performance and controlling it.

In general, the activities associated with each modem are
asynchronous, in the sense that what happens on one modem has
little or no connection with what is happening on another. There
are also long I/O waits associated with each modem, while it is
dialing or transmitting data. We cannot have a program wait for
one modem to complete dialing before it continues to another,
without serious impact on the total throughput of the system.

We could have written a program with privileged mode no-wait no-
buf I/0. This has been done by many people in the past for
special-purpose terminal-handlers. However, it would have been
very complex and it would still not avoid the problem that there
would be no modem port I/O while the program was updating the
database. However, this situation, with multiple simultaneous,
asynchronous processes is what time-sharing is all about, and is
precisely what the HP300@ was built to handle. So we make use of
process handling and allow the MPE operating system to handle the
complex scheduling of the various processes, rather than trying
to do it ourselves.

4GL's, COBOL and Data Communications

0020-Page 2

Control Program

(online)
/|\
__\|/__ HMessage
)) Files))
/\
—\l/

Scheduling Program
(father process)

/|\

- Message \{/
)))

Modem Program Modem Program
(son process)

(son process)

/1\ /\
_\|/__ N/
)) - - - Modem ports - - -))

Fig. 1.

Interconection of Programs and Message Files.

4GL's, COBOL and Data Communications

0020-Page 3

The programs are set up as shown in Fig. 1. The main scheduling
program is the father process,and keeps track of the messages to
be sent and the availability of each line. It also updates the
queue file to reflect the status of the messages. Each dial-out
modem has its own son process. This process opens the port, sets
up the modem, prepares messages, dials the modem, and transmits
the messages. The way in which the modems are controlled was
discussed in a talk that I gave last year at the Interex
conference in las Vegas, called "Dialing out from the HP30090".

There is also a "control" program, run in session mode that
communicates with the scheduling program via two permanent
message files. This allows the supervisor to see the internal
tables, to alter internal parameters and to fail and restore
lines and terminals.

We make use of MPE to do our scheduling for us. The son
processes spend a great deal of their time waiting on I/0, either
from the port or from the message file in which commands from the
control program are placed. If there is nothing to be sent, the
son process is suspended on a read of the message file and hence
uses virtually no computer resources at all.

The father process, on the other hand, cannot suspend in this
way. Not only must it respond to replies from the sons, but also
to commands from the control program. Furthermore, it has other
functions that must be performed at regular intervals.

The Operation of the Programs

The scheduling program has several internal tables that are used
to store vital information. The largest table is the "internal
queue”, which is a miniature version of the "queue" file and is
replenished from this file at regular intervals. It is there for
performance reasons to save on disc I/O.

The father process runs through a polling loop. It first checks
the time, and if five minutes (or whatever interval has been set
by the supervisor) has passed, the program reads the "queue® file
to determine the messages waiting to be sent, using the key by
status, priority, etc. These messages are put into the internal
queue table. The program checks each modem and if it is not
busy, finds the terminal with the next highest priority message
and instructs the modem to send the next four messages waiting
for that terminal. The program also checks the return from the
son processes. Depending on the result, various actions are
taken, such as updating the queue file to indicate that the
message has been sent and checking the error tables to update hte
error counts.

There is an internal table that keeps track of failing terminals,
counting how many times a call failed to go through, or how many

4GL's, COBOL and Data Communications

0020~ page 4

times the line was busy. After some number of failures, the
terminal is considered to be down and all subsequent messages to
that terminal are failed immediately. A terminal can be restored
by the supervisor via the control program. A terminal may also
be manually failed by the same mechanism.

Another internal table keeps track of the outgoing lines. In
this table are stored the last command sent and the terminal and
messages currently being handled by the corresponding modem as
well as counts of failures on the line and flags to indicate a
failed line or a busy line.

The control program is a very simple program and interacts with
the transmission process by putting commands in the sending
message file. These are retrieved by the scheduling program
which either changes parameter data within its stack or responds
by dumping the contents of one of its tables into the reply
message file. The control program then formats this data and
displays it for the supervisor.

Telecommunication Problems

The major difficulty in this scheme is recognising and handling
telecommunication problems. Ideally, all problems would be
recognized and handled automatically by the program, and in most
cases we have achieved that. Busy signals, "no carrier" and
disconnects are interpreted and handled by the scheduling
program.

Sometimes, it is a little tricky to assign a problem to a
terminal or a line. No dial-tone, of course, is a line failure,
and a busy signal is a terminal problem. But a disconnect could
be a problem associated with a specific terminal and the line
connecting to it or it could be associated with an outgoing line
and the modem attached to it. However, when we are updating the
failure counts, we set the count back to zero as soon as a
successful transmission is made. So we count this type of
failure both as a line failure and a terminal failure, and it
soon becomes apparent into which category it really falls. Even
this can get a little difficult, as happened once when a major
line out of the local MCI switch was damaged, and a very large
number of calls failed to go through. This looked to the program
as if both terminals and lines were failing. However, to the
supervisor, it was very apparent that something dreadful was
going on, and a call by him to MCI soon determined the nature of
the problem.

There is one problem that we have not yet completely resolved.
For some reason, the modems will, from time to time hang up when
dialing. The program thinks that all is well, and keeps trying
to dial, but the modem doesn't respond. It doesn't occur very
frequently, and, of course, rarely when I am around to see what
has happened. It can easily be cleared by hanging up the modem,

4GL's, COBOL and Data Communications

0020-pPage 5

so the scheduling program contains code that checks each dialing
modem, and warns the supervisor if a modem takes longer than a
certain time to complete a dialing command. This invariably
means that the modem has got into this peculiar state, and the
supervisor is able to handle it. It would be preferable to
correct this problem automatically without human intervention
but, in the meantime, this is an effective strategy.

Problems of Operating Strategy

Structured programming is particularly important in an
application such as this. Firstly, great use is made of HP
intrinsics, and it is most convenient to have these in sections
of their own so that they can be executed as simple functions.
Furthermore, in operating the program, it becomes important to be
able to change the strategies used in polling the various
functions. This is made particularly easy if the program is well
structured.

As an example of the strategy changes that we made, we started

with a strategy that had the program go through the following

sequence repeatedly. First the time was checked to see if the

internal queue should be refreshed. Then the program checked all

the replies waiting from the modem programs and carried out any

updating needed as a result. Then the program looped through

each modem, and, if it were possible to send, the appropriate
commands were prepared and sent. Then the supervisor's message

file was checked for a command.

Although this looks like a perfectly reasonable way to poll, it
turned out to have two major drawbacks. First of all, there was
a tendency for there to be a lot of completed messages at one
time and this would lead to heavy updating while the son
processes sat idle, waiting for their next command. Then,
transmit commands were sent all at once to the son programs,
tending to keep them in sync. We wanted to keep them out of
sync, so that message preparation would not occur at the same
time on different modems, as this process puts a significant
demand on the database. Furthermore, because the updating was
all in a chunk, it often took a long time to acknowledge the
message from the supervisor, which translated into a poor
response time for that command.

We fixed these problems by changing our strategy. Now, after
each reply from a son process, we check to see if we can start
another message on that line, and do so right away if possible.
In addition, we check the supervisor's message file after each
update, so that we never have to wait more than a few seconds for
a reply. It was particularly easy to do this because the
structured programming allowed us to shuffle the processing
around just as we wished.

However, this is still not the optimum strategy. The supervisor's

4GL's, COBOL and Data Communications

0020- Page 6

message file is read with a timed read, and it takes a second to
time out, so the more frequent reads add additional delay time
into the loop and thus make the program operate at something less
than optimum speed. 1Its speed, however, is better than with the
original strategy.

Useful Programming Techniques

Writing and debugging multiple process programs of this kind can
get to be quite complex, and I developed one or two techniques
that may be useful to other people attempting the same thing.

As a matter of course, I always program trace messages into my
COBOL programs, usually for each entry into a section. In the
past I used the "parm" to turn on and off a flag for this
purpose. With son processes it gets a little complex doing it
this way, so for these programs, I used a different technique,
namely a JCW that is set before the programs starts. There is a
different JCW for each program, so that the messages from each
program can be controlled independently.

With several programs running in the same session, sorting out
the messages can get quite complex. Each message, of course,
identifies itself in the message with its name, and, in the case
of a son, with a number to identify which one it is. This number
is passed by the father in the "parm" and corresponds to that
program's position in the line table. It is passed back in any
reply to identify which son process the reply is coming from.

As an additional debugging aid, there is a special command in the
control program that will turn on the debug flag in the father
program. This can be invaluable when a problem arises in the
live system after the program has run for several hours. The
debug messages can be turned on "on the fly" and they prints out
on the STDLIST. As an addition to this, turning on the debug
flag in this way also sets the debug JCW which is checked by the
jobstream. This is important as we normally use "set
stdlist=delete" to get rid of the listings if all is well, but in
this case we don't want that to happen.

In the tuning of the program there were changes that had to be
made to several parameters such as the maximum size of various
tables, that necessitated recompiling the program. This is
conveniently achieved by making use of macros in the HP COBOL to
assign specific values to the parameters and have them
substituted in the code as it is compiled. It avoids searching
through the code for each place that the number needs to be
changed.

The same facility is used for error handling on file intrinsics.
A standard routine is laid out at the start of the program, with
the appropriate error messages substituted for each use of the
routine. This saves a great deal of debugging time for error

4GL's, COBOL and Data Communications

0020- Page 7

routines.

Using the 4GL system with Cobol

All the screens in this system have been implemented in a 4GL.
The decision to use a 4GL was based on improved development times
and the availabilty of the language for future development.
Unfortunately things didn't work out quite the way we expected.
Our system is somewhat out of the ordinary and many 4GL's work
best on very ordinary systems. If the 4GL methods don't fit your
development, the 4GL can cause more trouble than it is worth. We
found that we didn't save very much development time by using a
4GL.

We carefully avoided using features in COBOL that might cause
problems, such as item locking in IMAGE, and we ran into no
significant problems with mismatches between COBOL and the 4GL.
From this point of view, our melding of COBOL and the 4GL was
very successful.

However, it appeared that the 4GL was running particularly slowly
and also seriously slowing down the COBOL program. Although we
were able to make some marginal improvements we finally
discovered that this was because the 4GL in question has an
unexpected and undocumented "feature" whereby each write is
forced to disc, rather than waiting until the file is unlocked at
the end of a group of writes. There is no way of overriding this
"feature", and the vendor is not about to change it in any way.
Combined with other inefficient ways of handling the data that
the 4GL forces us into, this completely eliminates one of the
major advantages of KSAM stated earlier. We are looking into
methods to overcome this problem.

Summary
Mixing a 4GL with COBOL can be done without any major programming
difficulties. However, inefficiencies in the 4GL will

necessarily be present and can impinge on the efficient operation
of the COBOL programs.

The handling of multiple outgoing telecommunication channels
using father and son processes is a very effective method of
control. Most of the programming is fairly straightforward, if
one is familiar with using intrinsics within COBOL program
programs, but tuning the program for optimum performance requires
a considerable amount of experience and trial and error.

4GL's, COBOL and Data Communications

0020~ Page 8

095900 * Define the maximum number of line-groups to be handled

006200* Define the maximum number of lines to be handled
P06300$define $lines=10#

006400

096500 * Define the maximum number of messages to be batched
006600* into one call.

006790$define $batch=4#

007300*define the standard error routine for intrinsic calls
007400$define $filecheck=

087509 if c-c less than zero

207600 call intrinsic "FCHECK" using

207709 \11\,

007809 file-err-code

097909 move low-values to file-err-msg

008000 call intrinsic "FERRMSG" using file-err-code,
028100 file-err-msg,

008200 file-err-length

008300 move "12" to quit-msg

0084090 perform pquit#

e eeccccscscesccccncse

027709 @1 line-data.

027800 92 line-table occurs %$lines times.

027809 02 line-table occurs 10 times.

027900 @3 hold-index occurs $batch times index.
027900 @3 hold-index occurs 4 times index.

028000 @3 batch-pointer pic 99.

0281090 23 mt-file-num pic s9(4) comp.
107100 move +1 to dummy.

107200 call intrinsic "FCONTROL" using

107300 ctlt-file-num,

107400 \4\,

107500 dummy .

107600 $filecheck(ctlt-file-num#,Fcontrol Error Controlt
007500 if c-c less than zero

007600 call intrinsic "FCHECK" using

207700 \ctlt-file-num\,

097809 file-err-code

007900 move low-values to file-err-msg

008000 call intrinsic "FERRMSG" using file-err-code,
008100 file-err-msg,

208200 file-err-length

208300 move "Fcontrol Error Controlt File" to quit-msg
298400 perform pquit.

Fig 2. Example of using macros in COBOL

4GL's, COBOL and Data Communications

0020~ Page 9

File#).

	4GL's, COBOL and Data Communications

