
FOURTH GENERATION LANGUAGES
AND PROCESSING EFFICIENCY

John D. Alleyn-Day
A H Computers,

8210 Terrace Drive,
El Cerrito, CA 94530-3059 USA

415-525-5070

Fourth Generation Languages have great power and can be used to
write processing programs easily and quickly. However, they also
have a reputation for being extremely inefficient -- a reputation
which is undeserved. Many programs written in fourth generation
languages are inefficient because the programmer is tempted to
use programming methods without really understanding what the
language is doing.

I am going to discuss a particular situation that arose using
RELATE/3000. The same situation could have arisen with several
diffferent languages, and with many different data situations.
Since the solution would have been similar in each case, I want
to share it with you.

I have been working extensively with the Sierra Club, who use
RELATE/3000 together with IMAGE for a significant part of their
processing. The fourth generation language is often used to
access data from both RELATE/3000 files and from IMAGE databases.
The Sierra Club has run into devastating problems with
efficiency. Some batch programs have taken all weekend to run,
just to turn out a report. In some cases, the time needed was so
extreme that the jobs were aborted so that other users could get
their share of computer resources! In this environment, my task
was to put together several batch programs that would be
producing statistical summaries of data from files with 500,000
or more records each. I was facing a serious problem of
efficiency and, in working out a solution, I learned a great deal
about fourth generation languages.

The major conclusion to come out of my work was that the
inefficiencies were not necessarily an integral part of the
fourth generation language but rather of the way in which the
language was used. You see, the simplici ty of the programming
methods encourages programmers, myself included, to construct
very inefficient programs without realising the true import of
their code. I will illustrate this for you as we go along.

In order to understand the example I am going to work with, let
me gi ve you some background about the data structures that are
involved. We will be looking at three files. The first is "grd"
which is an IMAGE detail set. It has a unique key of "resource".
The second file is "grdx" which is a Relate/3000 file and is a
type of history file, with old data from "grd". The third file
is called "detail" and contains details of money amounts. The
"detail" fields with which we are mainly concerned are

Fourth Generation Languages and Processing Efficiency
0021- 1

"resource", date, and amount.

We want to get the field "amount" from C'detail" and collect it
together on the basis of the "fiscal year" (which is a function
of "date"), "class" which comes from "grd" and "preY class" which
comes from "grdx". We also need the "resource" for the time
being as we want the count of the number of records in "detail"
for each resource as one of our parameters. This was the first
step in a series that ultimately produces a small statistical
report. We shall not concern ourselves with the rest of the
program as it is of no interest to our present problem. The
following example of Relate/3000 code shows how we can do this in
a few lines.

open file grdx.data;mode=read,share
open database gendbz.dba.parajtype=imagejmode=5jpass=READPW
open set grdidatabase=gendbz.dba.para
modify field grdresourcj name=resource
open file detail.donors;mode=read,share

select &
detail.@, &
fiscal= &

$integer($substr($year($new date(date,+92»,3,2),2), &
memb cnt=0, & -
rcount=0, &
resource, &
class=grd.grdclass, &
prey class=grdx.prev class &

by fiscal,class,prev crass, resource &
where grdx.resource=grd.resource &

and grdx.prev class<>"" &
and grdx.resource=detail.resource

consolidate &
fiscal:f &
class:f &
prey class:f &
amount:t &
memb cnt:f &
rcount:c &

to testdata;records=150000 &
by fiscal,class,prev_class,resource

The select statement is asking RELATE/3000 to read the "amount"
data from the "detail ll file, pick up the "class" from the
corrresponding "resource" record in the "grd" file, and the
·prev class" from the "resource" record in the "grdx" file when
"prev- class" is not blank. Each of these files is at least
500,000 records, but from our familiarity with the data we know
that only about 15% or so of the resources will have a non-blank

Fourth Generation Languages and Processing Efficiency
0021- Page 2

"prev_class".

A program like this is very straightforward in concept and easy
to put together. This is the program as I first wrote it. After
it had run for the better part of a weekend and was still
incomplete, we had to abort it on Monday morning to release
computer resources for other users.

If I had written a COBOL program to solve this problem, it would
have taken only a few hours. In frustration, I asked myself, "Is
this inefficiency an inescapable problem associated with the
relational database and the fourth generation language, or is
there something that I can do about it?".

In working out a solution I learned that there is a cardinal rule
which must be applied. KNOW WHAT YOUR FOURTH GENERATION LANGUAGE
IS ACTUALLY DOING. Why does it take so long?

This is what I found out that RELATE/3000 was doing. In my
program, the language will select one of the files to read
sequentially (usually the shorter one) and, for each record, use
the key "resource" to access the corresponding data in the other
files. In my particular case, one of the RELATE/3000 files,
"grdx", was the shortest, and was therefore the one that was read
sequentially. For each of the 500,000 records there is likely to
be two disc I/O's for "GRD": one to read the master and the
second to read the detail in the IMAGE database. Additionally,
for the "grdx" record, there will be about 2 or 3 disc I/O's on
the "detail" file, 1 or 2 for the key and one for the data
record. (This number depends on the size and the randomness of
the files.) A quick calculation gives 2.5 million I/O's, and at
20 I/O's per second, these reads alone will take about 35 hours.

I must then add a few hours for sequentially reading the first
RELATE file and for writing the new one. Furthermore the data
must be sorted and this is another place for inefficiency.
Relational database systems usually sort a file by finding an
existing index that is suitable or by creating a new index. In
my case the sort key is made up of data elements from different
files, so Relate/3000 cannot use either of these options directly.
Instead it starts by copying the data needed into a temporary
file and then creating a new index for that data. Like IMAGE,
Relate/3000 attempts to protect the data integrity by forcing the
data to disc after each write. This will account for about
80,000 I/O's, taking about 2 to 3 hours. The keys also have to
sorted and written out. The data is then read by key from this
temporary file, totalled and written to the new file. It is not
hard to see why this program could easily take several days to
run.

This tendency to permit inefficient programming is not the
characteristic exclusive to RELATE/3000. Let us look at the same
basic program written in QUIZ. The following statements achieve
approximately the same result (substituting IMAGE masters for the
"detail n file and the "grdx n file).

Fourth Generation Languages and Processing Efficiency
0021- Page 3

access grdx &
link to resource of detail &
link to resource of grd

select if prev-class of grdx

define n-date numeric*6
ascii(date«days(d-date of detail) + 92»)

define fiscal numeric*2 &
n-date[I,2]

define memb-cnt numeric*7 0
define rcount numeric*5 = 0

sort on fiscal, class of grd, prev-class of grdx,
resource of grdx

report summary &
fiscal &
class of grd &
prev-class of grdx &
amount of detail subtotal &
memb-cnt &
rcount

set subfile at resource name testfile

This code will carry out a very similar process to the one that
the RELATE/3000 code performs. The est imates of the number of
disc I/O's obtained for RELATE/3000 apply equally well to QUIZ.
The sort considerations are somewhat different. QUIZ uses a
record complex made up of the join of all the data and sorts it
as one huge record. Because of the large record being sorted, it
is unlikely that the method used in QUIZ will be, on average, any
more efficient than the method used by RELATE/3000. In any
particular case, the relative efficiency will depend on the size
of the data record, the size of the key, and other factors.

So the major part of the inefficiency of the processing is not
dependent ·on any specific fourth generation language, but rather
on the processing methods that are generally encouraged by fourth
generation languages. Specific methods for improving this
performance depends on the particular language used, but the
general approach is the same. I will illustrate my methodology
using the RELATE/3000 example, l&aving you to make the necessary
adjustments to achieve similar results in your own language.

Now that I know why my program takes so long to run, I can set
about making it run faster -- much faster. Twenty or thirty
percent improvement in efficiency will not be enough; I need it
to run five to ten times faster. For this phase of my work, I
adopted another rule, "Use batch techniques for batch programs".
This shouldn't be anything new. The "Image Handbook" in the

Fourth Generation Languages and Processing Efficiency
0021- Page 4

chapter called "Throw off your Chains" contains lots of hints for
handling database files in a batch environment. The fact that
this is a fourth generation language rather than a third
generation language shouldn't make much difference. In my
original program I totally ignored the tenet "paths should be
reserved for on-line users". The major reason for the poor
performance is the keyed reads that are being carried out to
obtain data from secondary files. How can I avoid this?

Let us go back a few years to the days of punched cards and
sequential files on tape. without keys and chains, there was no
possibility of doing what I have done here. Instead, we used all
kinds of processing tricks to get the answers in the most
efficient way possible, usually making considerable use of the
system sort, record sort breaks, and matching record keys. I can
use that experience now to carry out a similar process.

I thought about how I would have written a COBOL program to do
the same job. I would have read each file in turn, extracting
the fields I wan ted and then released the records to the sort,
sorting on my key values. I would have arranged the sort so that
the records from the different files were sorted together by
"resource"; then I would have matched the records and created my
output records, each of which would have been a composite of
several of the input records. It might have been necessary to
sort again before total ing, or, if the final resul ts were
sUfficiently compact, I might have created a table in memory to
accumulate the answers.

The answer to my problem is to do something similar here.
Because of the intrinsic limitations of the various software
tools, I will not be be able to achieve the same efficiency as a
COBOL program, but I can approach it. I can do as much as
possible with serial reads and extracted data. I must avoid
using paths through datasets which, although they are excellent
in on-line situations, are a disaster in batch processing. Also,
to simplify things, I will deal with the files two at a time
instead of all three as I might in a COBOL program. The first
step is to do two extracts and a sort.

I start by reading serially through the "grdx" dataset and
extracting an MPE file consisting of only those records and
fields that I really need. Just as if I were writing COBOL,
before starting I generate my "sort" record layout with the
following piece of code.

create file sample;records=0ifields= &
(fiscal,i,2), &
(class,a,2), &
(prev class,a,2), &
(resource,d,8), &
(amount,d,10), &
(memb cnt,d,7), &
(rcount,d,S)

Fourth Generation Languages and Processing Efficiency
0021- Page 5

Now I copy the data I want to my first work file with the
following code.

open file grdx
copy rea.rcount=l &

to rea.data;type=mpe;structure=sampleirecords=300000 &
for prev_class<>nn

This process takes about one and a quarter hours.

Extracting IMAGE datasets is, of course, a job for SUPRTOOL. If
you have IMAGE datasets this big and are serious about improving
your efficiency, you must have SUPRTOOL, which can also be used
for the sorting phase.

Now I switch to SUPRTOOL, extract the IMAGE dataset, appending it
to the previous one, and then sort. (I make use of a field
"rcount" that is not being using at the moment as a record-type
indicator.) The resulting file will be sorted so that, for each
"resource", there will be one record from "grd" and sometimes a
preceding record from the ngrdx" file. The following code
achieves this.

base gendb
get grd
define f,l,2,integer
define p,1,2,byte
define a,l,4,double
define n,1,4,double
define g,1,4,double
extract f=0
extract grd-class
extract p=" "
extract grd-resource
extract a=0
extract n=0
extract g=2
output rea. data, append
xeq

input rea. data
key 7,4,doubleil9,4,double,desc
output reb. data
xeq

The extract took about 10 minutes and the sort about 20 minutes.

RELATE/3000, in common with most fourth generation languages, can
operate on MPE files as well as on its own files. I use
functions to "combine" the records and create a new file with the

Fourth Generation Languages and Processing Efficiency
0021- Page 6

combined records. My first step is to run through my new file
getting the lI prev class" field from the records of type I into
the "prev_class" Class field of the records of type 2. How this
is done will vary considerably with the particular fourth
generation language that is being used and with the format of the
data being processed. In my example, I used the following code.

open file sample
open file reb.dataitype=mpeistructure=sample
let prev_class=$last(prev_class,resource)

The "let ll statment holds the data in "prev class" from one record
to the next, resetting it to blanks when the "resource" key
changes. The overall effect is to blank out "preY class" in the
records of type I and to move the value from that-record to the
records of type 2. This process takes about 30 minutes.

From here I could have proceeded in a variety of ways. One
possibility is to copy the type 2 records which we want to
another file and handle the "detail file" in a process similar to
what I have discussed, namely extracting it to an MPE file,
sorting and combining. However, I will actually get about 80,000
records from this file, and it takes only about twice as much
time to link this file to the "detail" file using standard
RELATE/3000 code as it does to extract the "detail" file, combine
and resort. Because this was a once only report, I chose to go
back to standard fourth generation language techniques as
follows.

create file rec.dataistructure=sampleirecords=250000
modify file ree.dataicrashproof=noieompress=noi sean=0
close file ree.data

open file reb.dataitype=mpeistructure=sample
open file detail.donorsimode=read,share
select &

reb. resource, &
reb. class, &
reb.prev class, &
detail.@-&

where reb.prev class<>"" &
and reb.resource=detail.resource

copy &
rec.fiscal= &

$integer($substr($year($new date(date,+92»,3,2),2), &
rec.memb cnt=l & -
to ree.data

This process took about fi ve and a half hours.

From here on the files are getting progressively smaller, and the
use of the standard fourth generation language procedures will

Fourth Generation Languages and Processing Efficiency
0021- Page 7

not be seriously time-consuming.

This raises a final point. A programmer must use judgement in
applying the techniques I have illustrated. On small files the
increased efficiency possible with my techniques will probably
not repay the time you spend doing the additional analysis.
However, if you run a program very frequently, analysis and
reprogramming for greater efficiency may be very valuable, even
if small files are involved. Some installations run small
reports everyday at lunch-time in preparation for the afternoon's
work. In such a case, the extra effort to increase speed can be
justified.

Finally, I suggest that the Fourth Generation Language Developers
consider this problem. Many customer representatives claim that
their systems run batch programs. This is true -- in a way.
Fourth Generation Language programs can be run in batch, but as I
have demonstrated, they use on-line~chniques most of the time.
This should be changed. Language statements used by the fourth
generation languages do not necessarily stipulate the processing
actually carried out. The two examples that I used from
RELATE/3000 and QUIZ now imply the use of keyed reads, leading to
inefficient batch programs. Why could not a Fourth Generation
Language interpret these examples as extracts, sorts, merges and
record matching, similar to the processes that I actually used?
A fourth generation language that could choose its processing
method based on whether it was considered to be batch or on-line
could achieve a substantial improvement in efficiency, and an
increased market acceptance.

So far, the forth generation language vendors have not seen this
as a problem that they need to address. However, there is one
group that has stepped into the breach, namely Robelle. They are
just bringing out an addition to SUPRTOOL called SUPRLINK, which
carries out the matching of records in an efficient manner. As
of this writing the program is in beta test. I have not had time
to test it , but it appears to have all the cpability necessary
to solve the problem that I have described here.

To sum up, if you are having problems with your fourth generation
language efficiency, there are two steps to follow. First,
understand exactly how your fourth generation language operates
and carries out its processing. It may take quite a bit of work
to get this out of your fourth generation language supplier or to
do the detective work to find it out on your own. My advice is,
"Be persistent". Secondly, make use of batch techniques for your
batch programs and not the on-line techniques that you may be
seduced into using by the your fourth generation language.
And, of· course, use your judgement as to when it is worth the
trouble and when it is not.

Fourth Generation Languages and Processing Efficiency
0021- Page 8

	Fourth Generation Languages and Processing Efficiency

