
Con'trol Techniques tor User ~ s Global Resources

Kevin Darling
'l'he Gap ~ Inc.

Eas'tern Dis'tribu'tion cen'ter
3434 Mineola Pike

Er1aDger~ Ky. 41018

I Wl'RODUCTIOB

In 'the pas't ~ we have des igned and iJIIpleasen'ted sys'teaas 'to do a s'tream of
'tasks and only concerned ourselves abou't resource con'ten'tion when i't was
necessar,y. The implica'tion of 'this is 'tha't mos't processes were ba'tCh and
processed serially. To nan a job ou't of sequence or agains't a program
currently nmniDg could impac't 'the data and user access.

Well~ systems have become more user oriented. The sys'tems are nOli online
and users have direct con'trol of the input and can nOli see 'the resul't of
their 1I0rk online. To support 'this user in'teractivity~ lie have had 1;0

respond to 'the resource and da'ta conten'tion needs of these new
applica'tions.

To support 'the users~ we have developed a sof't1m.re and da'ta base solution
'tha't provides systems lIi'th a means 'to con'trol 'the common da'ta and
resources. These global u'tilities or GUTIL rou'tines as we viII refer 'to
them ~ have varying uses. They provide system developers a cOlDlllOn se't of
rules and rou'tines 'to comple'te 'the work and keep code cOllllDon. These
routines have also helped reduce 'the amount of coding in COBOL programs
since the routines are simply called by 'the program. The ca'tagories of
rou'tines available include:

- Global parame'ter con'trol
- Work-file processing ~ includiDg build defini'tioDS and file equa'tions
- Ou'tpu't file equa'tion defini'tions
- Error and warning message processing
- Ron da'ta base dependent rou'tines

Following will be a d~scrip'tion of 'the rou'tines and da'ta base 1;0 suppor't
these user con'trols. :

GLOBAL PARAME'l'ERS

Global parame'ters are da'ta s'truc'tures 'to hold fixed da'ta and modifiable
da'ta. These parame'ters are generally accessed by multiple processes and
fea'tures con'tained in global param'ters allow 'them 'to be access globally and

Control Techniques for User ~ s Global Resources
0022-1

also allow a specific process to lock the parameter exclusively.

To support the global parameter data structure, a master data set is used
in a GUTIL data base. The data structure can be represented as follows:

GLOBAL-PARMS (master):
* Parameter name - This is the key to the data set. This field

that contains the actual name of the parameter programs will
reference.

* Access ID - This field contains the ID for the program that
currently 'is using the data item. This ID number is assigned when
the data base is opened.

* Flag - This field is to maintain the current access status of the
parameter. The value determines whether there is open access,
read access only or locked with no access by any other process.

* Type - This field is to determine the format the data is returned
to the program. If the type is 0, it returns a single element
integer. If the type is a 1, it returns a character string of up
to eight characters. If the type is a 2, it returns a 2 element
double integer.

* Length - The definition of the length of the data field to be
returned.

* Binary data - This data item is a 2 element data area where the
integer data is stored.

* ASCII data - This data item is a defined character string for
storage of the character data.

* Binary min and max - These values control the range the parameter
falls in. If the value becomes greater than the maximum, the
routines automatically wrap the value around to the minimum.

Other data items maintained in the data structure but not critical to the
actual data processing include a time stamp for the last modification and
the modifier name for the process that last modified the data.

The uses for the global parameter data structure include:

* Nearest printer to an LDEV - This structure allows you to define
a terminal parameter that stores the nearest printer to that
terminal. Programs could dynamically access this information and
route the output being requested by the user to the printer. If
a change is necessary while a user is working, like to route to
a different printer, the parameter could be modified and the next
request for a report would reference the new printer location.

Control Techniques for User's Global Resources
0022-2

* Informative parameters to control programs - These parameters
include concepts for location identification for reports and
program control. The parameters could also be used to supply
data for controlling programs. This data could be constant or
could be very dynamic and changed periodically.

* File building key information - This structure enables you to
define parameters used to build files. In our use of this concept,
we have defined integer data types that get incremented from some
start value through and ending value to create a unique key for
data work files. If the number series reaches the maximum number,
the routines automatically wrap the value around to the minimum
value. Using this and the file building features we will discuss
later, we create files for use by processes and maintain the key
series separately for each major process.

* Dynamic data parameters - This data structure is used to hold data
that could be and usually is modified frequently by many processes.
Such uses include data retention values, time stamps, and parameters
that provide unique key entries for data bases.

The routines that are in place to support global parameters include:

* GETGPARM - This routine gets the global parameter data and based
on the type, returns the data to the calling program.

* SETGPARM - This routine sets the data value based on the type to
the value that is passed to the routine.

* INCGPARM - This function increments by one the data value in the
parameter. The parameter needs to be a type O.

* DECGPARM - This function decrements by one the data value in the
parameter. The parameter needs to be a type O.

* GETGPARMSTAT - This routine returns the current status of the
global parameter. This status is the flag value kept in the data
base for the global parameter.

WORK-FILES

Work-files are the most complex component of the GUTIL routines system.
The software supports the automatic creation, maintenance, file equation
definition, and purging of these files. This is done in such a manor that
the system developer only need define the characteristics and file equation
for the file one time and the system is intellegent enough to resolve the
processing for the file.

Work-file equations are generally pre-defined file equations that get
established by the procedure for which they are established. These file
equations allow some use of variable definition that the routines are
intelligent enough to resolve.

Control Techniques for User's Global Resources
0022-3

The work-files themselves are files which when built can be used for any
purpose. The files can also be created with user labels. The user label
area is especially good for maintaining processing, restart, and data that
is common to all data in the file. In the case of the restart information,
the programs could use this concept to be able to help control the restart
of programs in event of a program failure or graceful termination. The
files themselves with the user labels and the data base entries also
provides a secure version control on the files.

To support the work-file concept, there are four master data sets and three
detail data sets. The data sets and their data include:

CATALOGS (master):
* Catalog - This is the key to the data set and is a number that

represents a grouping of files. These files generally have a
root that is used to store and reference the file.

* File root map - This is the actual map that is used to generate
the root for the file. There could be GUTIL variables included
in the definition that the serving routines resolve in order to
complete the file build.

* Description - This is simply a definition, for reference, of the
defined purpose of the catalog.

FILE-CODES (master):
* File code - This is the number that is used by the build command's

CODE= parameter. It clearly defines the file type for use by other
routines but also allows programmers and support personnel to easily
determine the use of a file.

* Description - This is simply a definition, for reference, of the
defined purpose of the file code.

FILE-ROOT (automatic master):
* File root - This is the actual root that gets assigned to files

when the file is created. There is one entry per unique root.

PROCEDURE (master):
* Procedure - This typically is a program or procedure name. It is

used as a global reference to data so routines can do things for
a specific program or routine.

* Description - This is simply a definition, for reference, of the
program or procedure and basically what it does.

WORK-FILE-BUILD (detail):
* Catalog - This is used to define the catagory the file was created

under. It allows a path into the data to display all files that
are referenced by such a grouping. It is a key to the data set.

Control Techniques for User's Global Resources
0022-4

* File code - This is used to define the specific file code class the
file belongs. It typically is a finer resolution as to getting
specific files needed. It is a key to the data set.

* File name map - This is the definition of how the name is to be
constructed if it contains variables to be resolved.

* Lock word - This is the lock word that is assigned to the file when
it is built.

* Group name - This is the group in which the file is to be created.
* Record size - The length of the data record.
* Label length - The number of words that are required for the label

information the file may use.
* Various MPE file create information fields including blocking

factor, extents, record limit, and KSAM key information if the
file is a KSAM file.

WORK-FILE-EQUATIONS (detail):
* Catalog - This is the global catagory for the file equation

grouping. It is a key to the data set.
* Procedure - The program or procedure name that is used to index

and reference a specific group of file equations. It is a key to
the data set.

* File code - This is the code number assigned to a more specific
group of files. It is a key to the data set.

* File equation - This is the actual file equation the routines use
to be set up for the calling program.

WORK-FILES (detail):
* Catalog - This is the global catagory for the file grouping. It

is a key to the data set.
* File code - This is the code number assigned to a more specific

group of files. It is a key to the data set.
* File root - This is the actual root or name of the file as it

appears on the system. It is a key to the data set.
* Date/Time created - This represents the date and time the file

was created. This information is also kept in the label and is
used to help maintain version control.

* File name - This is the full name of the file including the group
in which the file resides.

* Label length - This represents the length of the label as it is
defined.

The use of work-files can be extended from their basic use of storing user
data. One extent ion which uses the concept of user labels includes storing
common data used in processing in the label. This could reduce the amount

Control Techniques for User's Global Resources
0022-5

of data that has to be stored in each record. A second application of
work-files is to use the user label for storing check points for
processing. The programs would update fields in the label at critical
points of the processing. If the program would fail, a simple clean-up of
the data back to a check point could be done and then the program
would be restarted. Upon restart, the program would first determine if it
was already processing the data and where it had left off. Processing
would then be set to begin at the point of interruption and the program
would continue until normal completion. Use of user labels does require
some tools to be written to maintain the data should modification be
necessary. Such utilities could and should be user developed to meet the
need of the particular application data file. But, tools like DISKED5
can be used to do the simple data editting tasks.

Most of the applications we have developed rely heavily on being able to
generate unique files for processing through the day. We also use work
files that are created once and that are used over. Such applications
include data base clean-up programs. The file has restart information in
the label that initially starts as ready to process. The program uses the
file to store the keys found in searching that are candidates for deletion.
Upon completing the search the phase is set to deleting and the record
number is set to the top of the file in the label. The program begins
purging and updates each time the pointer. When completed with that phase,
the phase is updated to the next search to be done or set to program
completed for the next run. In this example, if the program fails during
the search phase, it simply redoes the search when restarted. If the delete
function has begun, the program gets the record number it last purged and
moves on to the next record and continues processing.

To support the work-files philosophy, several routines are available. They
include:

* BUILDWFILE - This routine uses the definitions defined in the work
file build data set to actually build the file. If there are
variables or parameters that need resolution for completing the
actual build, this routine resolves them. Typically, such items
that need resolution include getting a global parameter to fill in
a particular value.

* DELETEWFILE - This routine deletes the work-file entry from the
data base but does not purge the data file. This allows the
entries that need to be searched for a program be reduced while
still maintaining the data for backup.

* ENTERWFILE - This routine reads the label information of the
work-file and then recreates the work-files data set entry. This
is required so that the automatic version control built into the
system will allow use of the data file.

* EQUATEWFILE - This routine uses the data passed to establish the

Control Techniques for User's Global Resources
0022-6

defined file equations for the specific file. It uses the
definition in the work-file equations data set. And like the build
function, will resolve any parameterized variables.

* GETWFILEINFO - This routines retrieves the label information and
returns the data to the calling program.

* PURGEWFILE - This routine actually purges the data file and data
base entry for the data set.

* SECUREWFILE - This routine logically locks the data file in the
work files data set to control the access of the data file.

* SETWFILEINFO - This routine writes the label information back to
the data file.

* STATUSWFILE - This routine returns the status of the data file,
including the security and logical lock information.

OUTPUT FILE EQUATIONS

Output file equation control is available to control the set-up and issuing
of file equations for a program of process. Before a program begins
processing, it establishes the necessary file equations for referencing
output devices. During the processing if there are changes or new
equations that need to be set, the program can reexecute the file equations
store in the data base and continue processing.

Data base support for the routine include two master and one detail
sets. One master already discussed for work-files is Procedures.
others used to support output file equations include:

data
~e

FILE-FORMAL (master):
* File formal - This item is the eight character reference for the

file equation which also can be seen in a SHOWOUT FHAME field
for the output queue.

* Description - This item describes the file formal for reference and
documentation purposes.

PRINT-FILE-EQUATION (detail):
* Procedure - This is a key entry from the master data set. It is

used to be able to define all file equations for a specific program
or procedure.

* File formal - This is a key entry from the master data set. It is
used to be able to define a specific file equation for a program and
not the entire set available.

* File equation - This field contains the actual file equation the
routines use to set up the equations for the programs.

Output file equation control in a controlled environment has two purposes.
The first is upon initial start-up of the program, all necessary file
equations are defined for the output needs of the program. Much like work
files, the equations can be parameterized such that some resolution of the

Control Techniques for User's Global Resources
0022-7

equation may be necessary. A second use that relies even more heavily on
the parameterization available is the use of one common file equation with
the device ID being undefined. This value could then be resolved by either
using a global parmeter that has been updated to reflect the output
location or by using the global parameter NEAREST-PDEV-TO-#'#, where '" is
the terminal requesting the output, to define the final destination.

The single routine used to support this feature is:

* EQUATEPFILE - This routine uses the procedure/file-formal to define
the file equations requested. It resolves the parameterization
in the file equation based on the same rules as work-file equations
are defined.

WARNING AND ERROR MESSAGE PROCESSING

Warning and error message processing is available for the special
processing of messages back to users, operators, and programmers. This
facility enhances the error messages the HP provides to better define
errors and display the data to various places in specified formats. These
routines use highly parameterized data to resolve the processing of
information passed by programs. Warnings are typically used for
informative purposes while errors usually will be followed by the program
terminating in some error state.

The data base support for message processing includes again the Procedures
data set already defined and also the following:

MESSAGES (detail):
* Procedure - This is a key to this data set from the master. It

is used to be able to access messages for a specific program and
allow for the same error number to be stored for different programs.

* Message - This is a sorted data item which is the actual message
number.

* Type - This defines whether the message is a warning or an error
and what level of warning or error it is.

* Flags - This item defines information concerning the display and
responce needed for a message, if any. Examples of this include
definition of the display locations (eg. console, log file, or
$STDLIST) and whether a console reply is necessary or not.

* Message parameters - These define up to four data parameters and
the format in which to be displayed. These parameters typically
contain data that should be displayed for better error resolution.

* Message text - This defines the message text, including any
parameters that need to be resolved. Also included are references
to the message parameters which are passed by the program.

Control Techniques for User's Global Resources
0022-8

The key use here is to consolidate the messages for systems into one place
for easy maintenance. It also provides programs with functionality that
can be used to better debug program errors and aborts. By storing the
parameters and messages in a data base, the form of the message can be
easily modified even while programs are running. This should be especially
handy if a program begins to issue messages to the console which are simply
informative and the operations person wishes that the messages would stop
displaying. The message could be modified to be rerouted to $STDLIST or
modified to better display the error data if it appears difficult to
understand.

Routines available for message include:

* DUMBMSG - This routine processes messages based on information in
the data base. This message can be sent to more than one location
and may request operator reply. It can automatically cause an abort
or simply log the message to a file and continue. If the message
causes an abort, 104 words of the stack, starting with the address
of the first parameter, is displayed.

* LOGABORT - This routine logs an entry to the abort log file and
terminates the porgram.

* LOGSTART - This routine creates an entry in the process log file
indicating that a program has started.

* LOGSTOP - This routine creates an entry in the process log file
that a program has stopped.

* SMARTMSG - This routine is the same as DUMBMSG except that it
checks the last message before returning the new message. If the
new message is more serious than the old, it returns the message;
otherwise, it does not.

SPECIAL ROUTINES FOR GUTIL

Any program that uses the routines described above that need access to the
data base need to execute two other routines. The first is INITGUTIL.
This routine is designed to open the data base and then initialize the data
and common areas associated with using the routines. Second is
RELEASEGUTIL. This routine closes the data base and releases any special
resources consumed by the GUTIL routines.

Control Techniques for User's Global Resources
0022-9

NON DATA BASE DEPENDENT ROUTINES

GUTIL also includes routines that are not data
routines are typically are for specific tasks
Examples of the routines included are:

base
or

dependent. These
data manipulation.

* CAPCHECK - This routine uses the Local Attribute available with MPE
as well as a security template to determine whether the user has
the authority to use a particular function.

* STARTJCW - This routine starts a process that displays a reply
message to the console and then processes the reply back for the
calling program. The JCW needs to be checked by the program to
determine what should be done.

* TIMESTAMP - This routine returns the date and time in a two element
double integer. This is used to track modification in the GUTIL
routines and it can be used by programs to apply a time stamp to
user data to know when a particular update occurred.

* CDIGIT - This routine calculates check digits based on the check
digit calculations available in the routine.

CONCLUSION

These routines have been used in our shop for over four years now for a
variety of uses. These routines have provided our staff with common
routines and data structures for the development of user systems. These
routines also provide the control and checks and balances necessary for the
successful operation of the systems.

ACKNOWLEDGEMENTS

I would like to acknowledge Mr. Chris Hagood for writing a significant
portion of the routines discussed. And also to his documentation of the
system which made it easier to use and manage.

I would also like to acknowledge our staff for helping to continue to
develop new routines and enhance old ones to make the system effective for
getting the job done.

Control Techniques for User's Global Resources
0022-10

