
Dodging Bullets in Your DP Shop

Victoria Shoemaker
Taurus Software, Inc.

770 Welch Road Suite 3A
Palo Alto, CA 94304

Introduction

At last count, there were exactly 3,572,614 HP3000
programs that mishandled error conditions. Do any of
your coworker's programs write records to already full
data sets without giving anyone a clue? How many of
you have received phone calls at obscure hours by some
poor user wondering exactly what is going on in this
$STDLIST? What percentage of operators do you think
know how to read an oct~l stack dump and then fix the
problem? The cost of recovering from a program that
kept on running when it should have stopped because
something was wrong can be staggering.

Error handling within a computer programs and JCL
means recognizing error conditions and taking
appropriate action. There are generally three courses
of action that can be taken when an error is detected:

A. Recover from the error,
B. Print an error message and abort the program,
C. Ignore the error entirely.

All too often programs take Action C. This can lead
to countless headaches and nightmares for users and
programmers alike, and is rarely the best way to
handle an error condition.

Action B, print an error message and abort is an
acceptable method of handling errors; however, it is
often used as a copout by lazy programmers.
Unfortunately for most of us, this is the method used
by MPE when it encounters an error: Print a system
failure message on the console, and die.

Action A, recover from the error, is often the best
method of error handling, but it is also the most
difficult and costliest one to implement. It would be
unreasonable to always attempt to recover from error
conditions. If your program can't open the data base,
it's tough to recover, so print an error message and

Dodging Bullets In Your DP Shop 33-1

abort. Batch programs should abort more often than
online programs. Often an online program should print
an error message to the user and let the user decide
what to do next. You wouldn't want your editor to
abort if you tried to Text in a file that you
misspelled.

The key to good error handling is to detect the error
as soon as it occurs. Whenever you wait, assuming any
errors will get detected down the road, you run the
risk not being able to figure out the cause of the
problem or an even worse fate of never discovering
there was a problem until it's too late.

As an example: What if a program that writes to a
database, doesn't check to see if the DBPUT worked?
(As I've seen before) If it's an online program, the
user may simply keep entering data for hours without
knowing that all of her bits are going into the great
bit bucket in the sky. If it's a batch program, then
maybe hundreds of honest hard-working employees
mysteriously won't get paychecks on Friday.

Dodging Bullets In Your DP Shop 33-2

"Error handling within programs

The first step to handling an error condition is
detecting it. The second step is for the program to
decide what to do with it: recover, abort, or ignore.

Detecting errors

Processing
Errors

When to Abort

For example: If your program is reading down a chain
in an Image detail data set when the DBGET fails, what
should the program do? Your program should probably
be able to recover if the error is an end-of-chain
error, but should probably abort with an error message
if it's any other Image error. Your program should
check for an error condition after every system
procedure call. It cannot be stressed enough, how
important it is to check for an error condition after
EVERY system procedure call. ReL~mber, the sooner the
error is detected, the better off you and everyone
else will be.

Whenever a program makes a system procedure or
intrinsic call, the following steps should be taken
after checking for an error to ensure proper error
handling:

If no error occurred, then continue processing

If an error occurred:

1. Retrieve error number

2. Determine if error is recoverable.

If recoverable, recover.

If error is not recoverable:

1. Retrieve and print error message based on
error number.

2. Abort the program, if appropriate.

When should the program abort and when should the
program simply print an error message and then
continue processing?

1. All severe errors should abort the program.

2. Errors within a batch program should abort.

Dodging Bullets In Your DP Shop 33-3

3. Errors within an online program should print a
message and continue if possible.

4. Programs that may run batch or online SHOULD CHECK
whether they are being in batch, or online using
either the WHO or FRELATE intrinsic and abort or
continue accordingly. This is where many programs
have problems.

Dodging Bullets In Your DP Shop 33-4

File System Errors

File system errors should be detected by checking the
condition code after every file system intrinsic call.
The condition code is part of the hardware status word
and is set by every file system intrinsic. The
condition code can have one of three different values:

CCE - Condition Code Equal. This means that the
intrinsic call was successful.

CCG - Condition Code Greater than. This means that a
warning condition occurred, and that the intrinsic
call mayor may not have worked, depending upon which
intrinsic was called. Check the intrinsics manual.

CCL - Condition Code Less than. This means that an
error condition occurred and that the intrinsic
failed.

Checking
Condition Code
in SPL

In SPL, check the condition code by simply using a
relational operator with no expression. The condition
code must be checked immediately after the intrinsic
call. In addition, be careful not to assign the
return value of an intrinsic call into an indexed
array because this will destroy the condition code
returned by the intrinsic call.

Some examples:

LEN := FREAD(FNUM, BUF, BUFLEN);
IF =THEN

PROCESS'RECORD
ELSE

IF> THEN «END OF FILE REACHED »
END'OF'FILE

ELSE «SOME OTHER ERROR »
FILE'SYSTEM'ERROR;

FNUM := FOPEN(FILENAME, FOPTS, AOPTS);
IF < THEN

FILE'OPEN'ERROR;
«WE DO NOT NEED TO CHECK CCO, BECAUSE

FOPEN DOESN'T RETURN IT »

Do NOT do the following:

FILENUMBER(N) := FOPEN(FNAME, 3);

Dodging Bullets In Your DP Shop 33-5

Checking
Condition Code
in PASCAL

Checking
Condition Code
in COBOL

The array index N, will destroy the condition code.

BUFLENGTH := FREAD(FILENUM, BUFFER, LEN);
NUMREADS := NUMREADS + 1;
IF <> THEN «READ FAILED »

HANDLEREADERROR;

This will not work, the statement after the FREAD
will destroy the condition code.

In Pascal the condition code may be checked by using
the CCODE function. The CCODE function works as if it
were a local variable to the current procedure that is
set each time an intrinsic is called. CCODE may be
checked any time before the next intrinsic call within
the same procedure. Unlike SPL, the condition code
does not need to be checked immediately after the
intrinsic call, and you may assign the result of and
intrinsic call into an array. The CCODE function
returns the following values: 0, for CCG, 1, for CCL,
and 2 for CCE. It often helps to use a nconstn
statement at the beginning of your program defining
these three values. Example:

LEN := FREAD(FNUM, BUF, BUFLEN);
IF CCODE = 2 THEN (* READ WAS OK *)

PROCESS_RECORD
ELSE IF CCODE = 0 THEN

DO_END_OF_FILE
ELSE (* CCODE MUST BE 1 *)

FILE_SYSTEM_ERROR;

You can only check condition codes in COBOL II. You
must define the name of your condition code variable
within the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION. The COBOL condition code is similar to the
SPL condition code in that you must check it
immediately after the intrinsic call and may not
assign the result of the intrinsic call to an indexed
variable. The condition code variable may only be
compared with zero. Condition code equal to zero
means CCE, less than zero CCL, and greater than zero
CCG. Example:

ENVIRONMENT DIVISION.
SPECIAL-NAMES.

CONDmON-CODE IS CONDCODE.

Dodging Bullets In Your DP Shop 33-6

PROCEDURE DIVISION.

CALL INTRINSIC "FREAD"
BUFFERLEN

USING FNUM, BUFFER,

Printing Error
Messages

FCHECK Intrinsic

GIVING BYTESREAD.
IF CONDCODE > 0 THEN

PERFORM END-OF-FILE
ELSE

IF CONDCODE < 0 THEN
PERFORM HANDLE-FILE-ERROR

ELSE
PERFORM PROCESS-RECORD.

Whenever your program detects a file system error
that it does not know how to recover from, it should
print an error message and stop. There are several
intrinsics that facilitate this.

The FCHECK intrinsic is used to request the file
system error that has most recently occurred. The
first two parameters to FCHECK are:

the file number of the file on which the error
occurred
the error number to be returned to the program.

If an error occurred during an FOPEN intrinsic, a
value of zero should be passed to FCHECK as the file
number. Be careful when using FCHECK because there is
an unfortunate ambiguity with file system error
numbers. A file system error of zero can mean one of
three things occurred:

The end of file was reached.

There was no file system error.

In rare circumstances a file system error occurred,
but the system did not set the internal error
number for FCHECK to retrieve.

Other intrinsics The FERRMSG intrinsic is used to translate the file
system error number into an error message. This
message is usually more helpful than simply printing
the file system error number.

PRINTFILEINFO prints a file tombstone and is another
intrinsic that is often called when a file system
error is detected. EDITOR, FCOPY and other programs
call PRINTFILEINFO when they discover a problem.

Dodging Bullets In Your DP Shop 33-7

The undocumented GENMSGU intrinsic can be used to
print out a file system error message. It has two
single word integer parameters passed by value. The
first parameter is the message set number from
CATALOG.PUB.SYS, and the second parameter is the error
message number. Use message set 8 for file system
errors. (Set number 2 can be used for MPE errors
returned by the COMMAND intrinsic.)

Dodging Bullets In Your DP Shop 33-8

Image Subsystem Errors

Image error handling is a bit easier than the file
system. After every Image call, check the first word
of the status array. If the first word is zero, then
what you tried to do worked; otherwise it didn't. If
the program understands the error number, such as 15
for end-of-chain, the program should be able to take
appropriate recovery. If the program doesn't
understand the error number, it should go into error
mode. There are basically two ways to handle Image
errors:

Call DBERROR to get the Image error message, print
the message and then resume with the program.

Call DBEXPLAIN to print all pertinent Image error
information, then abort the program.

Dodging Bullets In Your DP Shop 33-9

VPLUS Subsystem Errors

VPLUS error handling is similar to Image error
handling. After every VPLUS procedure call check the
first word of the COM area. If the first word is zero
then everything is OK, otherwise you've got problems.

Usually, the program should call VERRMSG to get the
error message, then should zero the status word, then
call VPUTWINDOW to put the error message in the VPLUS
window. If the program decides to abort, the program
should either call VCLOSETERM before printing any
error messages or it should do the following:

Call the FCONTROL intrinsic using the 49th word of
the VPLUS COMAREA as the file number and 12 as the
control code to turn the terminal echo back on for
the user.

Escape sequences should also be printed to the
terminal to turn format mode off «esc>X), turn
block mode off «esc>&kOB), turn memory lock off
«esc>m), and home down «esc>F).

Dodging Bullets In Your DP Shop 33-10

Other Intrinsics

There are many other intrinsics, virtually all of
which return a status code via the condition code, or
return an error number or both. Unfortunately, MPE
does not provide any mechanism for converting an error
number into error message. The program must either
convert the error number itself, or simply print the
error number out as part of the error message.

Dodging Bullets In Your DP Shop 33-11

Aborting a program because of an error

When a program encounters an error that it cannot
recover from, then it should abort by going through a
special abort procedure. The abort procedure should
do the following:

1. Print the file system/IMAGE/VPLUS error message
that caused the abort.

2. Print an error message specific to the program and
location within the program that detected the
error. Ideally, no two error messages detected
from different points within a program should print
the same message.

3. Terminate the program by calling the QUIT
intrinsic, do not use STOP RUN in COBOL programs or
the TERMINATE intrinsic to abort a program.

As an alternative to calling QUIT, the program may set
the high order bit of the system JCW by calling the
SETJCW with a negative value, then call the TERMINATE
intrinsic. Doing this causes the program to end in an
error state. The QUIT intrinsic does this
automatically for the user. Note that the JCW may
also be set with the PUTJCW intrinsic, or the COMMAND
intrinsic with a SETJCW command.

Dodging Bullets In Your DP Shop 33-12

Error Handling Within Job Streams

Error handling within job streams is often done
carelessly. The :CONTINUE command should only be used
when necessary. Wanton placement of :CONTINUE
commands within a job can be hazardous to your health.

For example, many programmers make the mistake of
putting :CONTINUE commands before :PURGE commands.
This is almost always incorrect. If the :PURGE
command attempts to purge a file that does not exist,
then a WARNING is issued, not an error. No :CONTINUE
command is necessary for the job to continue. In most
circumstances in which the :PURGE command fails, the
job should stop running because there is a problem,
such as the file being accessed by another program.

Using JCW The system defined job control words (JCWs) CIERROR
and JCW can be used very successfully within job
streams. These JCWs are managed by both the system
and the user.

The JCW called CIERROR is set by the MPE whenever an
error or warning occurs with an MPE command. It is
set to the command interpreter error number if there
is a problem, otherwise its value is not changed.
Unfortunately, there is no way to tell by looking at
the number whether it is an error or a warning. There
are many uses of CIERROR. This example will check if
a file exists:

:SETJCW CIERROR = 0
:CONTINUE
:LISTF MYFILE;$NULL
:IF CIERROR = 0 THEN
: TELLOP MYFILE is alive and well.
:ELSE
: TELLOP HELP! MYFILE is not there!
:ENDIF

The JCW called JCW is used to help the job determine
what happened with a program run. When a program is
run, MPE sets JCW to zero.

If the program is successful, then JCW may be set to a
value from zero to 16383 to indicate its success.

If a warning occurs during the program, then the
program may set JeW to a value from 16384 to 32767.

Dodging Bullets In Your OP Shop 33-13

Aborting a Job

If an ~r occurs during the program, then the
program should set the value of JCW to a value from
32768 to 65535.

If a program terminates with the value of JCW from
32768 to 65535, then MPE will consider that the
program has terminated abnormally and generate command
interpreter error 989. A job would have had to have a
:CONTINUE command before the run of the program for
the job to continue.

When a job encounters a nonrecoverable error, it
should abort. This is most easily done by doing
nothing because MPE will handle it for you if you
don't use :CONTINUEs and your programs abort properly.
By using this method, an operator can always tell if a
job succeeded or failed by taking a quick glance at
the bottom of the $STDLIST.

A perhaps better way of aborting a job is to use
:CONTINUE commands before each run of a program, then
use JCW checking to determine if the program
succeeded. If ever a program within the job fails,
use the :TELLOP command to notify the operator that
the job has failed. Example below:

IJOB ARlOO2J,BATCH.AR
ISETJCW ERROR, 0
!CONTINUE
!RUN ARlOO21P.PROG.AR
!IF JCW >= FATAL THEN
! SETJCW ERROR = 1
!ENDIF
!IF ERROR =0 THEN
! CONTINUE
I RUN ARlOO22P.PROG.AR
IENDIF
!IF ERROR = 0 AND JCW >= FATAL THEN
I SETJCW ERROR = 2
!ENDIF
IIF ERROR = 0 THEN
! CONTINUE
! RUN ARlOO23P.PROG.AR
!ENDIF
!IP ERROR = 0 AND JCW >= FATAL THEN
! SETJCW ERROR =3
!ENDIF
!
!IF ERROR <> 0 THEN
! TELLOP **************************************
! TELLOP ** JOB **
! TELLOP ** ARlOO2J **
! TELLOP ** FAILED! **

Dodging Bullets In Your DP Shop 33-14

11ELLOP **************************************
SHOWlCW

! ABORT
!ELSE
! 11ELLOP lob ARlOO2J completed successfully.
!ENDIF
!EOl

This job stream has several noteable features:

1. It is written is such a way that can be easily read
and modified. The :IF statements never get more
than one level deep.

2. When the job fails an easily identifiable message
is printed on the console for the operator.
Presumably, the program that failed has printed an
error message on the $STDLIST that will enable the
operator or programmer to pinpoint the problem.

3. By using the :ABORT command to tenminate the job
stream, MPE will stop processing the job and print
a message at the bottom of the $STDLIST that the
operator can easily recognize as a failed job.
Note that the :ABORT command is not intended for
this purpose but serves nicely.

4. When the job succeeds, a simple message is printed
to the console and the job terminates with an :EOJ
command, a signal to the operator reading the
$STDLIST that the job was successful.

Dodging Bullets In Your DP Shop 33-15

Error Handling Within UDes

Let's not forgot abort user-defined commands.
Basically, error handling within UDCs is the same as
it is within job streams. The :CONTINUE command
performs the same function in ODCs as it does within
jobs, it allows the rest of the ODC to complete if one
of the commands encounters an error. An example of
this would a copy ODe as follows:

COpy FROMFILE,TOFILE
FILE INPUT = lFROMFILE
FILE OUTPUT = lTOFILE
CONTINUE
RUNMYCOPY
RESET INPUT
RESET OUTPUT

This ODC would make certain that the INPUT and OUTPUT
file equations were reset regardless of the success of
the program MYCOPY.

Dodging Bullets In Your DP Shop 33-16

Suggested Error Handling Standards

Programatic error handling:

1. Check the condition code or status word after EVERY
intrinsic or system procedure call.

2. Retrieve and display system error message whenever
appropriate.

3. When a program running within a job cannot recover
from an error, it should always abort, even if it
is an online program.

4. When a program running online detects an error,
print a message and continue if possible, otherwise
abort.

5. When aborting a program, always print a unique
error message in addition to the system error
message, and always set the job control word JCW to
a fatal value.

Error handling within jobs:

1. Do not abuse the :CONTlNUE command. If there is a
problem with the job, it should abort.

2. Use the :CONTINUE command before each command that
could fail; then use JCW checking to ensure it
succeeded.

3. If a job fails, print an easily recognizable
me~sage on the console.

4. Make certain that an operator can easily determine
if a job failed by glancing at the $STDLIST.

5. Successful jobs should always end with an :EOJ
command.

Dodging Bullets In Your DP Shop 33-17

Conclusion

For a data processing shop to run as smoothly as
possible, the programs and job streams need to be
written so that errors get detected as soon as
possible after they happen. Once an error is
detected, appropriate handling of the error is
imperative, whether it be a simple error message or a
program abort.

By following the guidelines in described in this
paper, you will be well on the road to DP pie in the
sky.

Dodging Bullets In Your DP Shop 33-18

	Dodging Bullets in Your DP Shop

