
Computer Assisted VIEW, IM~GE & SPL
Norman A. Hills

N.A.Hills Computing Services Limited
336 Piccadilly Street

London ON Canada N6A 137

Introduction

VIEW provides an effective user to termin~l interface, IMAGE
is an efficient Data Base for organizing data storage, and
3PL is a versatile language with which to build a busness
system. D~TA ELEMENTS must be defined in each of VIEW, IMAGE
and SPL conforming to the various rules which are different
for each sub-system, as illustrated in Table I.

Table I

DATA ELEMENT COMPARISONS

Sub-System VIEW IMAGE

Data Element FIELD NA"'1E ITEM PART

Alpha first Char
and A-Z, 0-9 or: +-*/?' fJ'J,&@

Numeric Types DIG K1
NJJ\1n I1
IMPn 12

Character CHAR Xn

SPL

IDENTIFIER

LOGICAL
INTEGER
DOUBLE
REAL
LO~G

BYTE (char)
LOGICAL (words)

While the programmer must live with these differences, he
must also maintain a conformity between the sub-systems so
that the Data Elements do not become damaged or distorted
during any transfer between the sub-systems. This need for
intra-system conformity complicates the task for system
maintenance particularly when there is a need to revise any
of the characteritics of a data element.

The presence of ~he data element in THREE distinct systems
requires that each data element be defined THREE TIMES. For
anyone concerned with labour efficiency or cost
effectiveness there is an obvious redundancy of effort
associated with THREE definitions for the same data element.

There are many packages available that address in various
ways this issue of programmer productivity. Our approach has

Computer Assisted VIEW, I~~GE & SPL 0037-1

been to make more effective use of the eXisting resources
that are available in the standard HP3000 utilities.

VIE~"

Most systems start with the development of VIEW screens as
samples for the user to review his visible interface to the
system.

RUN ENTRY.PUS.SYS

requires the user to identify the name of the FORMS file and
a BATCH file. The potential user can then experience the
Field Edits and the other features of VIEW that can be
included in the design of the screens.

As a later step, when the database has also been created,
the user can employ DBENTRY from the CSL libraries to
interact between the VIEW screen and the IMAGE database and
it can be very useful to have this type of practice prior to
the development of any application programs.

The information about each of our Data Elements that has
been stored in our VIEW forms file is of course very
pertinent to the balance of the program development. It
would be very helpful to be able to have the computer
convert some of this information rather than have the
programmer create manually the corresponding d~ta elements
for the other sub-systems.

Existing VIEW Intrinsics in Table II can be used to retrieve
pertinent information relative to each Field Name.

Table II

VIE\~ INTRINSICS

T~ORD OF INFORM.A.TION
INTRINSIC BUFFER RETURNED

VGETFILEINFO 5 Number of Forms in File

VGETFOR ~"INFO 3-10 Form Name
12 Number of FIELDS in Form

VGETFIEL1)INFO 11-18 Field Name
20 Field Number
21 Field Length

25-26 Data Type of Field

Computer Assisted VIEW, IMAGE & SPL 0037-2

To obtain complete information from the Forms File, the
number of forms from VG~TFILEINFO establishes the number of
iterations required for VGETFORMINFO, and the number of
fields from each VGETFORMINFO establishes the number of
iterations required for VGETFIELDINFO.

For this retreived VIEW information to be applicable to
IMAGE and SPL we have replaced the screen desi~n identifier
in the FIELD MENU during forms design with a FIELD N~ME that
follows our particular conventions established for IMAGE
naming of SETS and ITEMS.

- Each Field Name becomes Itemname Setname in the VIE~

formsfile. In View we are limited to the underscore as
the only permissible joiner, and this has the unfortunate
feature of.becoming invisible in the forms file listings.

- Although the JOIN utility of QUERY uses the convention of
Setname.Itemna~e, we find it much more convenient during
program preparation and program maintenance to be able to
have the Item as the orimary key of any sort, so we are
using the Itemn~me first.

- Each ITE~ and SET name will be a maximum of 5 characters.

This information from the Formsfile can be re-arranged to
develop a significant start for the IMAGE database DBSCHE~A

as:

- A sorted list of ITE~ names.

- ~ sorted list of SET names.

- A list of ITEM n~mes that are associated with each SET
name.

Computer Assisted VIEW, IMAGE & SPL 0031-3

- A highly probable identification of the ITEM Type which
we would usually translate as follows:

Table III

DATA TYPE TR.t\~SLATION

VIEW TYPE FIELD LENGTH IMAGE TYPE SPL TYPE

DIG < 6 K1 LOGICAL
or 11 INTEGER

> 5 12 DOUBLE

NUt-tn < 6 11 INTEGER
> 5 12 DOUBLE

IMPn < 6 11 INTEGER
> 5 12 DOUBLE

CH~R n Xn LOGICI\L

- An extraction of the PROCESSING SPECIFICATlON associated
with each Field is not available through an existing
intrinsic. Our only solutions so far to this desire, is
to copy the formsfile listing to a disc file, scan it for
the occurrence of the Field Name, and then extract the
subsequent text of PROCESSING SPECIFICATION.

IMAGE DBSCHE'1A

The skeleton of Itemnames and Setnames followed by Items of
the set can be enh~nced by the programmer to include
comments and any additional items or sets that have not
originated as a View Form Field.

For those who would like to write the OBSCHEMA as their
first step, is is unfortunate that there are no intrinsics
that will help to develop VIEW from the DBSCijEMA.

RUN DBSCHEMA.PUB.SYS is used in the conventional way to
create the ROOT FILE for the Database.

RUN UBDERIVE.PUB.SYS is used to create the BASENAMEnn
dataset files for the database, and at the same time create
the files of declarations and code that can become part of
the subsequent SPL programs via appropriate $I~CLUDE

statements.

This process is quite fully explained in the June '87 issue
of Interact article titled DERIVATIONAL PROGRAM CODE. To

Computer Assisted VIEW, IMAGE & SPL 0037-4

avoid repetition, we will concentrate here on the aspects
that have been incorporated subsequent to this reference
publication.

In the above reference we descripe the contents and purpose
of four files created by DBDERIVE:

basenameOC

basen~meGL

basena~ePC

basenameZX

We now have DBDERIVE create a fifth file named basenameSP
which is a BTREE file containing the correct spelling for
all the known expression elements that may be referenced in
the source code, as follows:

- BasenameGL contents of identifiers

- INTRLIST file of valid SPL Intrinsic names

- All of the SPL Reserved words.

This BTREE file basenameSP acts as a DICTIO~ARY of valid
words that may be included in the 3PL Program Code.

EDITOR entry of SOURCE CODE

The HP EDIT3000 can be customized to execute up to 3 user
interfaces by using the initi~tion command:

RUN EDITOR.PUB.SYS;PAR~=16

These user interfaces can be located in an SL at either the
SYSTE~ ACCOUNT or GROUP level, and can be invoked at either:

- INITIALIZATIO~ to set up files or processes

CO~MAND phase so that whenever any test is entered in
response to a / prompt, the users' procedure will be
executed and m~y execute user defined special commands.

- ADD phase will be executed whenever any text is entered
in response to a line number prompt.

We make use of this feature of EDIT3000 by having INIT
Activate a Process which will receive via a message file
during the ADO phase, a copy of each line as it is entered.

Computer Assisted VIEW, IMAGE & SPL 0037-5

This background process takes each word of the entered line
and searches the BTREE spelling Dictionary file basenameSP
to determine if the word is valid. If a line cont~ins 1ny
word that is not in the BTREE dictionary, then the offending
word is surrounded by the escape sequence for blinking
inverse video and the whole line is returned directly to the
$STDLIST screen.

By having the spelling check performed by a background
process, it does not slow down the interactive response of
the terminal to each terminating line feed. Only the
offending lines are returned to the $STDLIST screen and
although the offending lines may not appear until two or
three lines after they were entered, this is still far more
efficient and productive than wating until the first compile
to be made aware of transpositions and other spellin~

errors.

If the user is presented with a blinking word that is
correct, then this is an effective reminder that the user
should have the word apprpriately added to the program
DECL~RATrO~S, at either the LOCAL or GLOB~L level, and have
the word added to th~ BTREE file basenameSP so that the
background process in future will return only lines that
contain genuine omissions.

SPL COMPILES

Now that we have been using these techniques for about two
years, we have settled down to a few conventions of
convenience.

PROGDEV user is the program developer, with ~L,pq,~R

capability, ho~e is th~ pro~ram testing group PROGTEST and
the source cod~ for development versions is in the group
TSTLIBRY. The programs for testing are compiled as
appropriate:

1/ Following any database reVision, by a JOB STREA~ which
includes all the required steps such as:

CODIDENT to create the currently required contents for
all of the $INCLtJDE fil~s that are part of the source
code listings Since all the modules will require
compiling, this stream will also PURGE USLname and BUILD
USLname.

SPL textname.TSTLIBRY, USLname, $NULL to compile all of
the source code files into the USL file.

PREP and Save the compiled program.

Computer Assisted VIEW, IMAGE & SPL 0037-6

2/ UDCname textname
SPL Itextname.TSTLIBRY, USLname, $NULL
PREP USLname, $newpass; MA~ATA=nnnn; C~P=I~. BA. pij, MR
PURGE Progname
SAVE $OLDPASS, Progname

UDCname textn~rne as a UDC with only one PAR~ which can be
used to compile any source text from TSTLIBRY to USLname
for PREP and SAVE of each modification during testing. It
is important to recognize that any program change that
intriduces global variables not previously used, will
require the Job stream to perform a complete recompile
with the expanded $INCLUDE of Global variables.

LBRARI~N user is the ACCOUNT LIBRARIAN, with AL,PH,~R

capability, home is the group LIBRARY and the source code
for production versions is in the group LIBRARY.

In addition to this, we have a group OLDLIBRY which will
contain a copy of the most recently replaced production
source code, and a group named OLDPROG which will contain
the most recently replaced PROG code. The steps to be
performed when a new version has completed its test and is
ready for production include:

3/ REN textname
RENAME Itextname.LIBRARY, !textname.OLDLIBRY
FCOPY FRO~ = Itextname.TSTLIBRY; TO = !textname.LIBRARY

REN is a UDC for quickly renaming source codes files that
are about to be replaced.

4/ An expanded version of the job stream in TSTLIBRY is
maintained as a SYSTE~ job so that it can include the
commands to DEALLOCATE before and ALLOCATE after the
complete SPL and PREP of the production version of the
program code.

As each new module is created, it is added to both of the
job streams so that the updating of any production version
can be accomplished with a minimum of instruction to the
computer.

D~TA TRANSFER~

Every application of VIEW ~nd IMAGg requires program code to
effect a data transfer between the Form Field and
itemname'setname. Character strings are a reltively simple
one to one transfer, but each of the numeric fields require
a translation between the character format of the form field
contents and the binary format of the database itemname. We

Computer Assisted VIEW, IMAGE & 3PL 0037-1

have simplified this transfer through the use of VG~T'TYPE

AND VPUT'TYPE intrinsics of our own creation. These
intrinsics operate on three I~TEGER ARRAYS.

- The first array contains the field numbers for each
window that is to be transferred, and the process is
termination by a '0' as the field number.

- The second array contains the same number of integer
elements, and each integer identifies the type of
conversion that is to be performed during the transfer.

- The third integer array agRin contains the same nu~ber of
elements, and the element is the word address of the
location on the stack for the database item.

The creation and keying into the program of these arrays is
tedious and easily subject to error. Since all of the
variables were identified during the run of these utilities,
we can readily have the three integer arrays and their
assigned values computer created and ready for inclusion in
the programs by a $INCLUDE statement.

SlJt~MARY

Our approach has been the application of creative laziness
to a more effective utilization of existing resources that
are available in the standard HP3000 utilites. While the
product of our efforts may be of some interest to other
us ers of IMAGE wi th SPL or VIE~-l, we feel that tell ing the
story of how our shortcuts have evolved, could be an
inspiration to others who should be looking for
opportunities to implement savings within their own
particular environment.

Computer Assisted VIEW, IMAGE & SPL 0031-8

	Computer Assisted VIEW, IMAGE & SPL

