
Using COBOL II's Facilities

By: Patrick A. Lockwood

Orion Systems Technology, Inc.

1309 East Northern Ave., Suite 701

Phoenix, AZ 85020

Copyright 1988 Orion Systems Technology, Inc.

Page 0038-1 Using COBOL U's Facilities

INTRODUCTION

This paper is targeted at analysts/programmers who are familiar with COBOL, but
who have not had much experience utilizing it on the HP3000.

HP's implementation of 1974 ANSI Standard COBOL provides the designer and the
programmer with many tools to help develop robust systems, with techniques that
rival the current crop of fourth generation languages for speed, and allow the use of
concepts not usually associated with this high level language.

Thispaperwill exploretechniques usedtoquicklydevelop systemsinCOBOL II (most
of which is upwardly compatible with the ANSI '85 compiler), and to accomplish this
without sacrificing quality.

Some topics to be ~vered are:

* Use of MULTIPLE COpy LIBRARIES for both DATA and PROCEDURE

divisions.

* Commonly (and not so commonly) used INTRINSICS called from COBOL II,
and how they can help you.

* DECLARATIVES and I/O STATUS checking.

* PROCESS HANDLING vs DYNAMIC SUBPROGRAMS in on line menus.

Examplesfrom realprogramswill beusedthroughout, with minorchanges to protect
both the innocent and the guilty.

Using COBOL 11'. Facilities Page 0038-2

COpy LIBRARIES

I haven't worked on a computer system that uses COBOL without some form of the
COpy statement; however many make it inconvenient to implement.

HP has provided two facilities for managing copy libraries that provide the program
mer with great flexibility, as well as making standardization easy to implement.

1. MULTI-MEMBER library files.

On the HP3000, unlike many other systems, multiple members may reside in one
copy libraryfile. Normally, acopy libraryfile ismaintained as aKSAM file, which may
be easily manipulated with the COBEDIT.PUB.SYS utility. This utility allows you to
add new members, and to delete or edit existing members. Editing is handled by
process handling to the EDITOR while still within the COBEDIT utility.

copy VSAPTCD IN GCCl IB NOLI ST •
copy WSBANIC IN GCCLIB NOLIST.
copy WSCTlREC IN GCCllB NOLIST.
copy WSGLACCT IN GCCl IB NOl IST •
copy USJCII IN GCCl IB NOliST •
aPY WSlEDGER III GCCL IB NOL IST •
copy WSOWNER IN GCCl IB NOL IST •

copy CENLINEW IN COPYllB NOlIST.
aPY aIIURI IN COPYllB NOL IST •
aPY STOCALl" IN COPYL IB NOLI ST •
aPY VCALl" IN COPYL IB NOLI ST •
aPY PAUSEU IN COPYL IB NOLI ST •
aPY STDPRTRW IN COPYL IB NOL IST •

Figure 1

01 WSAPTCD
01 VSBANK
01 VSCTLREC
01 VSGLACCT
01 VSJCII
01 WSLEDGER
01 VSOUNER

01 CENLINEW
01 COIDIV
01 STOaLl"
01 VCALl"
01 PAUSEW
01 STOPRTRW

SPAGE "WOrking Storage Copy Meab!rs"102.2

102.3
102.4
102.5
102.6
102.7
102.8
102.9
103
103.1
103.2
103.3
103.4
103.5
103.6

2. MULTI-LIBRARY COpy STATEMENTS in a program.

Within one program,
you may copy mem
bers from multiple li
brary files, thus allow
ing you to maintain
separate libraries of
standardized routines
used in any program,
as well as libraries of
members unique to a
single application.

Figure 1 shows how these two facilities make it easy to combine data from multiple
copylibraries intoone program. Notethat two librariesare specified; COPYLIB, which
is the library of commonly used members, and GCCLIB, which contains record
descriptions used only in the GCC applications. The NOLIST entry tells the COBOL
compiler not to list the data being inserted into the program at compile time.

Page 0038-3 Using COBOL 11'8 Facilities

COpy LIBRARIES

The first copy library member listed in Figure 1 is CENUNEW, the commonly used
working storage for centering text in any line up to 132 characters long. Using the
COBEDIT utility, it's easy to list the data from a copy member to the terminal.

:RUN COBEDIT PUB SYS

HP32233A.01.05 COPYLIB EDITOR - COBEDIT SUN. FEB 14. 1988. 12:59 PM
(C) HEWLETT-PACKARD CO. 1986

TYPE "HELP" FOR ALIST OF COUMANDS.
>LlB .CQpYlIB
>LlST CENllNEW

Text-nome CENLINEW

PIC X(1}
132 TIMES
BY TOC.

PIC X(1}
132 TIMES
BY TIC.

COUP PIC S9(4) VALUE 79.

COMP PIC 59(4).
COMP PIC 59(4).

001OOOtt....tt••
001100*
001200. CENLINEW; Working storage for CENLINEP
001300·
001400·...••....
001500.
001600 05 LINE-LENGTH
001700
001800 01 BLANK-COUNT
001900 01 CHAR-COUNT
002000
002100 01 TEXT-IN.
002200
002300 05 TI-COL
002400 OCCURS
002500 INDEXED
002600
002700 01 TEXT-OUT.
002800
002900 05 TO-COL
003000 OCCURS
003100 INDEXED
>

Using COBOL II'. Facllnles Page 0038-4

COpy LIBRARIES

The COBEDIT utility allows you to switch between libraries; the following shows a
listing of a member of GCCLIB, which contains application specific record descrip
tions.

NOTE that COBEDIT allows back-referenced file names for selecting the current
library.

~-------------->LlB «ClIB
>LlST WSBANK

Text-nome WSBANK

PIC X(6).
PIC X(B).

PIC X(8).
PIC X(6).
PIC X(10).
PIC X(30).
PIC X(30).
PIC X(30).
PIC X(10).

PIC S9(9)V99 COMP- 3.
PIC S9(9)V99 COUP-3.

05 ACCOUNT-NO
05 JOB
05 BANK- ACCT- NO
05 NAME
05 ADDR1
05 ADDR2
05 LAST-CK-NO
05 OPEN-CASH
05 TRANS-CASH

290300ttt..
290400t
290500t WSBANK; Working Storage for BANK-DESCR Data Set in DAPTnn Data Bose
290600*
290700.."*
290800.
290900 02 BANK- DESCR.
291000 05 CASH-ACCT-IDX.
291100 10 JOB-IDX
291200 10 ACCOUNT-IDX
291300
291400
291500
291600
291700
291800
291900
292000
292100
292200
292300
>00

END or PROGRAM

Commonroutines mayalsobestored in copy libraries; oncetested, they may beused
easily by all members of the staff without worrying about re-inventing the wheel, and
withassurance thattheyarenot contributingtowards bugsdiscovered duringtesting.

Page 0038-5 Using COBOL II's Facilities

COpy LIBRARIES

A common routine CENLINEP is stored in COPYUB; many programs in different
applications have occasional need to center text.

>llB tCOPYlIB
>LlST CENIINEP

Text-nome CENLINEP

001000..••..••..
001100.
001200. CENLINEP; Centers TEXT-IN in TEXT-OUT
001300·
001400....••....
001500
001600 MOVE ZEROS TO BLANK-COUNT.
001700 MOVE SPACES TO TEXT-OUT.
001800
001900 IF LINE-LENGTH <1OR
002000 LINE-LENGTH> 132,
002100
002200 MOVE 132 TO LINE-LENGTH.
002300
002400 SET TIC TO LINE-LENGTH.
002500 PERFORM CENLINE-LAST-COUNT.
002600
002700 SET TIC TO 1.
002800 PERFORM CENLINE-FIRST-COUNT.
002900
003000 IF BLANK-COUNT <LINE-LENGTH,
003100
003200 COMPUTE CHAR-COUNT = (BLANK-COUNT / 2) + 1
003300
003400 SET TOe TO CHAR-COUNT
003500
003600 COMPUTE CHAR-COUNT = LINE-LENGTH - BLANK-COUNT
003700
003800 PERFORM CENLINE-MOVE CHAR-COUNT TIMES.

Continued on Page 7 ..•.

Using COBOL 11'. Facilities P8g8oo38-8

COpy LIBRARIES

003900
004000 CENLINE-lAST-COUNT.
004100
004200 IF TI-COL (TIC) = SPACE.
004300
004400 ADO 1 TO BLANK-COUNT
004500 IF TIC > 1,
004600
004700 SET TIC DOWN BY 1
004800 GO TO CENLINE-LAST-COUNT.
004900
005000 CENLINE-FIRST-COUNT.
005100
005200 IF TI-COL (TIC) = SPACE,
005300
005400 ADD 1 TO BLANK-COUNT
005500 IF TIC <LINE- LENGTH,
005600
005700 SET TIC UP BY 1
005800 GO TO CENLINE-FIRST-COUNT.
005900
006000 CENUNE-MOVE.
006100
006200 MOVE TI-COL (TIC) TO TO-COL (TOC).
006300
006400 SET TIC, TOC UP BY 1.

>

The ability to have multiple libraries accessed within one COBOLprogram makes the
use of common routines a 'common' occurrence in shops that rely on standardized
techniques to develop programs quickly.

P8ge0038-7 Ualng COBOL Il'a F8Cllnies

COpy LIBRARIES

Combining the copy members CENUNEW and CENUNEP from COPYUB, and
WSBANK from GCCLIB, we're able to use coding techniques like the following:

MOVE NAME IN WSBANK
MOVE 30

PERFORM CENLINEP.

MOVE TEXT-OUT

TO TEXT-IN.
TO LINE-LENGTH.

TO HEADING-BANK-NAME.

NOTE that the use of the copy member name as a paragraph name (CENLINEP) is
acceptable; the entry in COPYLIB actually has no paragraph name.

Similarly, by beginning the working storage copy members with a period (.), and
having the '01' level be prior to the COpy statement, allows reference to the group
item by its copy member name (WSBANK), as well as by the '02' level that
corresponds to the data set name (BANK-DESCR).

The NOLISTconvention forcopy members is common in shopsthat make heavy use
of copy libraries; typically, each programmer has a listing of the common library
(COPYUB) athis/herdesk, aswell as listings ofthose application dependentlibraries
(such as GCCUB) that are frequently referenced. This makes compiled listings
shorter, and for programmers experienced with the shop's conventions, easier to
work with.

Using COBOL II'. Facilities P8ge0038-8

DECLARATIVES and I/O STATUS

You've seen it, the infamousTOMBSTONE printed by the file system when aCOBOL
program attempts an I/O operation that is unsuccessful, and for which there wasn't

an appropriate error handling routine established.

ManyprogramscheckforAT ENDand INVAUD KEYconditions, butareatatotal loss
if an OPEN fails, or if the INVALID KEY condition doesn't allow the program to
adequately diagnose the problem, thereby preventing 'elegant' error handling.

Two features of COBOL II (and COBOL85) provide the means to trap I/O errors and
take the appropriate action based upon the actual condition that occurred.

DECLARATIVES.

This Section of the program, which must be the first Section within the Procedure
DMsion, defines procedures to be used when the file system discovers an error or
unusual condition.

FILE STATUS.

This entry in the SELECT filename clause defines a storage location in which the
status of the most recent I/O operation for a file is returned.

The two, working in combination, give the programmer complete control over error
and exceptional condition processing for a file.

To see how these work together, we'll begin with some sample program code,
beginning on Page 10 with a file select clause using the FILE STATUS option.

Page 0038-9 Using COBOL U's Facilities

ASSIGN TO "GLBYTDAD"
ORGANIZATION IS INDEXED
ACCESS IS DYNAUIC
RECORD KEY IS WORK-KEY
fiLE STATUS IS 10ERRW.

DECLARATIVES and I/O STATUS

The FILE STATUS item must be selected if you want to trap I/O errors and be able
to determinethe cause ofthe I/Ofailure. When an inputoroutputoperation has been
performed on the file. the status item is updated with atwo character code indicating
the status of the operation.

Ifthefirstbytecontains0 (ZERO), theoperationwasbasicallysuccessful.The second
byte contains additional information further defining the status.

5.2 SPAGE "INPUT-OUTPUT SECTION"
5.3 INPUT-OUTPUT SECTION.
5.4
5.5 fiLE-CONTROL.
5.6
5.7 SELECT WORK-fiLE
5.8
5.9
6.0
6.1
6.2
6.3

The example above shows a FILE STATUS item of IOERRW. This is a two byte field
defined as a commonly used member of COPYLIB.

Page 11 shows this copy member, which also includes an additional field used for
interpreting the second byte of the status returned for I/O operations.

Using COBOL II'. Fecllllles Page 0038-10

DECLARATDVES and I/O STATUS

Meanings of the first byte (IO-ERR-1) are:

* 0 Successful completion
* 1 At end, EOF has been reached
* 2 Invalid key, duplicate for writes, or not found for reads
*3 Physical I/O error, or beyond EOF

••••••••••
*
* ICERRW: Worlth. Storage for FILE STATUS

*••••••••••

••••••••••
*
* Used to convert the second byte of FILE
* STATUS (lOERRV) to 8 val id MPE fi le system
* error code (FSERR)

*
02 100000-CIlARS PIC 1(2) VALUE "00". • •••••••••

02 FILLER
REDEFINES 100RRV-CHARS.

88 10-OK VALUE "0".
88 10-At-EII) VALUE "1".
• IG-IIYALID-m VALUE "2".
88 10-PERMANENT-ERRat VALUE "3".
88 10-IIISC-ERROR VALlE "9".

88 10-SUCCESSFUL
as 10-ALUIED-DUPL
88 IO-EOF
as 10-SEClENCE-ERR
88 10-DUPL-KEY
88 10-11"-FOUIID
88 10-BCUlD-VI0l

88 10-PERM-ERRat

05 10-ERR-1

05 10-EII-2

VALUE "00".
VALUE "02".
VALUE "10".
VALUE "21".
VALUE "22".
VALlE "23".
VALUE "24",

"34".
VALUE "30".

PIC 1(1).

PIC 1(1).

01 100RR-CONVERT.

05 100RR-DlIItY PIC 1(1) VALUE
Lell-VALIES.

05 100RR-CHARACTER PIC 1(1).

01 UERR-IlPE-ERR-"
REDEFINES 100RR-allVERT

altP PIC 59(4).

88 100UIICIITAIllABLE VALUE 90,
91.

88 100FILE-IIOT-FIIJIID VALUE 52,
53.

88 10-DEY-tllAVAILULE VALUE 55.
88 IO-DUPLICATE-FILE VALUE 100,

101.

P8ge 0038-11 Using COBOL II's Fecilities

DECLARATIVES and I/O STATUS.

The other feature that helps us handle I/O errors is afairly simple routine inserted in
the first part of the program; it works for main programs and subprograms.

The program must have a DECLARATIVES Section, which must be the first section
in the program. NOTE that the use of a section for Declaratives requires a section
name for the first paragraph of the normal procedure division, even if the program is
not to be sectioned to create additional code segments.

A sample DECLARATIVES follows.

40.3 SPAGE "Procecb'e Division - section 0"
A~SIiprJytI» 40.4 PROCEDURE DIVISIOII USING STDCALL",

IJei9 a*l1Iih lie 40.5 DBCALL",
1JfIfI1¥!/trs••• 40.6 VCALL",
~trWI1B1IJtn 40.7 USAPTCD,

40.8 STDPRTRW.
40.9
41

IiIJIpkdsIottmfd10 41.1 DECLARATIVES.
/Jegi1/Ef1MIMS 41.2

!ZCIOIMIJ£mpir;r/ 41.3 GLBYTOA-START SECTUII 00.
41.4

UiEstitnBi 41.5 USE AfTER ERRCII PROCEDlIlE CIt IIItK-fILE.
41.6

rolMetlbfIJfR¥fIiI 41.7 GLBYTDA-lo-ERRCIt.
IUWJ ITpoarJn 41.8

41.9 If 10-IIISC-ERIKIt,
42

Qnvt2fIIfJIe (J/ 42.1 lINE 10-ERR-2 TO 100RR-CHARACTER
Ql;JfIfb IJlliTi'IUII. 42.2

42.4 lINE SPACES TO STD-CALL-RESULT-IISG
42.5

Q(1YIi?111l!S!6Je 42.6 CALL IITRINSIC "fERRIISG" USING 100RR-MPE-ERR-IRIt,
42.7 STD-CALL-RESULT-IISG,
42.8 STD-CALL-COIIDTN-WRD
42.9

r"mlunbtDIT 43 IIOVE 100RR-MPE-ERR-'" TO STD-CALL-COIDTN-WRD.
43.1

IiIJIpkdsIottmfd 43.2 EIID DECLARATIVES.
43.3

IJJrJi7 tm1dIJfO!P1I 43.4 'llnDA-BEGII SECT1ell 00.
IIiIJB:IinIlI1Ie 43.5

43.6 PERFCIIII IDISEKEEPING.

Using COBOL II'. Facllnles Page 0038-12

DECLARATIVES and I/O STATUS

The documentation for COBOL provides the rules for precedence for FILE STATUS
items and USE PROCEDURES (with a flow chart further explaining this in KPR#
4700245142 in the System Staus BUlletin); it really boils down to a simple statement
....'"you use aFILE STATUS item, andhave a USE PROCEDURE, your destiny is in
your own hands'.

The FILE STATUS item is updated for all of your I/O, and the USE PROCEDURE is
executed for every exceptional condition. This allows the following type program..
ming:

The file is first opened for
input; just to see if it's
there. If so, the control
record is retrieved. If it
doesn't exist, the user is
asked for parameters for
building a new file, and for
data to be stored in the
control record.

The change in processing
based upon 10-FILE
NOT-FOUND (FSERR 52)
is easy to handle; all other
I/Oerrors are unexpected
and cause an exit to the
error handling routine.

The USE Procedure is in
voked for all 'NOT Io-OK'
situations, and the FILE
STATUS item is set after
each I/O.

236.4 'PAGE ICBEGIN-WORK-FlLE"
236.5 BEGIN-WORK-FILE.
236.6
236.7 OPEN INPUT WORK-FILE.
236.8
236.9 IF la-OK.
237
237.1 CLOSE WORK-FILE
237.2
237.3 OPEN 1-0 WORK-FILE
237.4
237.5 IF la-OK,
237.6
237.7 PERFORM GET-CONTROL-RECORD.
237.8
237.9 IF 10-FILE-NOT-FOUND,
238
238.1 PERFORM ASK-FOR-CONTROL-DATA
238.2 PERFORM ISSUE-FILE-EQUATION
238.3
238.4 OPEN 1-0 WORK -FILE
238.5
238.6 IF 10-OK.
238.7
238.8 PERFORM WRITE-NEW-CONTROL-REC.
238.9
239 IF NOT 10-OK,
239.1
239.2 GO TO 10-ERROR-EXIT.

Ifthe FILESTATUS contains a9 inthe first byte (10-ERR-1), the second byte is moved
to 10ERR-CHARACTER, which is used, via the redefinition of 10ERR-CONVERT, to
call INTRINSIC -FERRMSG" to obtain an interpretation of the error condition to place
in a message passed back to the caller.

P8ge 0038-13 Using COBOL II's Facilities

DECLARATIVES and I/O STATUS

In the example shown on Page 13 only the IQ-FllE-NOT-FOUND condition was
specifically anticipated. But note howeasy itwould be toattemptthe open, then ifthe
condition 10-UNOBTAINABLE (Exclusive Violation) was found, the program could
'elegantly'letthe userknowthat thefile was in usebysomeone else, and request that
a later retry would be appropriate.

The COBOL manual recommends calling ·CKERROR" to convert the second byte of
FILE STATUS to an ASCII number, however the simple move to a redefined integer
(COMP) accomplishes the same thing, and that number is in the correct format for
calls to uFERRMSGI'.

Of course, there are many other ways to accomplish the same logic that this little
routine uses; it only points out one set of circumstances that make use of these
techniques. Once mastered, and with key elements readily available in a COPYlIB,
you'll find its flexibility to be helpful in complex applications.

Obtaining actual file system error codes for those conditions that do not begin with
a9 in thefirstbyte isalsopossible.The intrinsicFCHECKapplies tofiles on anydevice,
and can be used simply. For example:

CALL INTRINSIC IIrCHECK" USING WORK-FILL
IOERR-MPE-ERR-NUM.
\\. \\. \\.

This returns the file system error code for the last I/O for WORK-FilE into IOERR
MPE-ERR-NUM.

NOTE that the intrinsics manual asks for filenum for file intrinsics; COBOL program
mers may substitute filename, as defined in a SELECT statement. The backslashes
in the call above stand for 'null' parameters; optional parameters not required for a
simple call Just for the file system error number.

To easily change programs from COBOL74to COBOla5, a new copy member can
be created that contains the FILE STATUS errorcodes used with the newer compiler
(and run time processing). The table on Page 15 provides a brief overview of the
differences.

Using COBOL 11'. FacliRles Page 0038-14

DECLARATIVES and I/O STATUS

COMPARISON of ANSI 85 va ANSI 74 1·0 STATUS CODES

~SI85 ANSI74 MEANING

04 00 Read length of record doesn't match file.

OS 00 Optional file not present; created.

07 00 File NOT a TAPE file as OPEN/CLOSE implies.

14 . 00 Relative record number larger than PICTURE of key descriptor.

24 24 Write beyond file boundary, or relative record number larger than
PICTURE of key descriptor.

35 9x Non-optional file not present; not created.

37 00 Open mode invalid for file type.

38 00 Attempted OPEN on file closed with lock.

39 00 Attribute conflict; file not opened.

41 9x Attempted OPEN on file that is open.

42 9x Attempted CLOSE on file that is not open.

43 9x/00 Attempted DELETE/REWRITE without prior READ.

44 00 Boundary violation or invalid record size.

46 10 Attempted READ after EOF or previously unsuccessful read.

47 9x/00 Attempted READ on file not open for input.

48 9x/00 Attempted WRITE on file not open for output (or 1-0).

49 9x/OO Attempted REWRITE/DELETE on file not open for 1-0.

Creating anew copy library member incorporating the revisions to 1-0 Status makes
upgrading to COBOL 85 an easier task.

Page 0038-15 Ualng COBOL lI'a Facilities

SOME ADDITIONAL INTRINSles

TO introduce the use of some intrinsics that are fairly easy to use from COBOL II, I'll
describe a situation that we ran into, and the solution that we used. Ofcourse, there
are always multiple solutions to any design/programming problem, but this will be
fairly illustrative of the power available to COBOL programmers.

A system, written in COBOL 68, was being converted to COBOL 74. To those ofyou
never exposed to the wonders ofCOBOL68, it had no facility for calling HP intrinsics
directly; any needed intrinsic calls were written in SPL First the COBOL program
called the SPL intrinsic handling routine, which called the instrinsic, then returned to
the COBOL program. It was a little cumbersome, but it worked. However, it did
discourage COBOL shops from heavy use of intrinsics. Naturally, as part of the
conversion process, direct calls to intrinsics were substituted for the calls to SPL
intrinsic handling routines.

The system being modified was structured with a MAIN SUPERVISOR, which called
dynamic subprograms for various required functions. Due to the system table limits
at the time the system was developed (CST entries, maximum code segments per
process), it had to also initiate a second level supervisor for some functions, using
process handling to accomplish this.

Called Programs

Initiated via Process Handling

Called Programs

NOTE that parameters were passed between processes by entries in a data base.

Using COBOL 11'. Fecllftles Page 0038-18

SOME ADDITIONAL INTRINSICS

Ourcharterwasn'ttototally redesign thesystem, butwewereasked ifwe couldspeed
the movementbetweenthe mainsupervisorandthesecondary supervisor.Thebasic
logic in use was:

MAIN SUPERVISOR

Post parameters to control data base
Cose terminal
Call SPL routine to CREATE and AcnvATE process

{ Wait for Tenant Supervisor}

Retrieve parameters from control data base
Open terminal
Ifparameters indicate a differentproductiondatabasewas opened
by tenant supervisor, close initial database and opendata base that
had been opened by tenant supervisor.

TENANT SUPERVISOR

Open control data base, and retrieve parameters
Open production data base
Open forms file
Open terminal

{Additional Processing}

Post current data base name and other parameters to control data
base, then close it.
Cose production data base
Cose terminal
Close forms file
STOP RUN

P8ge 0038-17 Using COBOL II'. Fecllitles

SOME ADDITIONAL INTRINSICS

Aftersome analysisofthefrequencyofuseoftheTenantSupervisor (howoften itwas
initiated from within the Main Supervisor by a user in one session), we elected the
following two concepts for reducing the transition time:

1. Eliminate the control data base as a means of passing parameters.
Several options came to mind; we chose an extra data segment as a
means ofpassing parameters between processes. They provide afast
means of sharing data between processes, and implementation in the
system would be easy, utilizing the existing data structure (the control
record layout) for parameter storage.

This eliminated the data base open, GET/PUT I/O, and data base
close in both the Main Supervisor as well as the Tenant Supervisor.

2. Because the frequency of use seemed to justify it, we elected to not
terminatetheTenantSupervisor(STOP RUN) when itscurrentprocess
ingwascomplete, butto retain itas aprocessthatcould be re-activated
when next needed.

This eliminated the repeated overhead of program loading, forms file
open, and data base open (so long as the data base requested in the
passed parameters was the same as the previously requested data
base).

The results were quite acceptable to the users.; the transition time YlaS..reduced. On
the first initiation of the Tenant Supervisor during anyone session, there was still a
noticeable delay, but not as long as previously.

Thesecond, and subsequent initiationsoftheTenantSupervisorwere ataspeedthat
gave no indication that another program was being started. The following intrinsics
were used to accomplish this from within COBOL programs:

GETDSEG
DMOVOUT
CREATE
ACTIVATE
DEMOVIN
KILL
FREEDSEG

Using COBOL 11'. Fecl181es Page 0038-18

SOME ADDITIONAL INTRINSICS

To illustratehowthese may be usedfrom within COBOLprograms, we'll startwith the
WORKING STORAGE used in the Main Supervisor.

55.4 01 DSEG-IDK-AREA.

55.5

J.s:sifoed IJf JIPI' (Cl7lBlY:) 55.6 05 DSEG-IIIDEX alP 'IC 59(4) VALlE ZERO.

oszr;/etJ,fUJ (in 1IDIfir) 55.7 05 DSEG-LGTH alP 'IC 59(4) VALlE '76.

Jhwmm 4frjfrJerIMIlJe 55.8 05 DSEG-ID IDF 'IC 59(4).
55.9 05 DSEG-ID-I REDEFINES DSEG-ID 'IC 1(2).

56

Jl6JfiJw IaBIitJo 56.1 01 DSEG-DISPLACEJEIIT CDF 'IC 59(4) VALUE ZERO.

ItJnJs /() IJJI()YIJI,/tJIA7WJIIT 56.2 01 DSEG-"'-TRAIISFER alP 'IC 59(4) VALUE 176.
56.3

'!JI1or ar:1Jtet:/ptrJteY 56.4 01 CREATE-'IN alP 'IC 59(04) VALUE ZERO.
56.5

Jhwmm to IJe ioilillierl 56.6 0' CREATE-PROG-twE 'IC X(27).

Extra Data Segments are an additional
segment of memory that a program is
allowed to use for storage of data. They
may be easily shared by multiple proc
esses within the same process tree (fa
ther process and its sons). One advan
tage they have is that transfer of data isat
memory to memory speeds; there is no
disc I/O associated with their use, other
than any required by MPE's memory
manager.

The GETDSEG intrinsic is used to create
8 new Extra Data Segment, or to gain
access to one that has been previously
created. The 10isthe namebywhichyour
program attempts to initially perform the
GETDSEG, for the stated LENGTH.

The INDEX is a unique number assigned
by MPE; once acquired, the index is used
to obtain access to the data in the DSEG
using the DMOVIN intrinsic (move data
from extra data segment to your
program's working storage) and the
DMOVOUT intrinsic (move data from
working storage to the extra data seg
ment).

DISPLACEMENT is like a subscript or
index, telling the DMOVIN and
DMOVOUT intrinsics where in the Extra
Data Segmentto begin the move ofdata,
using 0 (ZERO) as the firstword. The size
ofthe data string to be moved is stated in
number of words.

P8ge 0038-19 Using COBOL II's Facllftles

SOME ADDITIONAL INTRINSICS

The first change to the Main Supervisor was to add a call to GETDSEG, done only
oncein the intialization logic.Thisestablishesthe datasegment, andassignsaunique
indexnumberto it. This is the identifier bywhich itwill be recognized by anyprogram
that is a member of this process.

The 10 is the namebywhich otherprocesses sharing this extra datasegmentwill first
obtain access to it.

The size, in number of words, is the size of the record used in the original data base
parameter passing routine.

A.ssip 8IJ ID to ll5ZYl

It!tIJllJtd1.1JIPl'
Ia.ifIIJ tisifJtl

JD esl4IJistJed81KJ1'e

Old lor emJI" ctJlJtlilitms.
Ubuxl esl4IJir1J

tIiJI,pJasticf 8JKIezillo
CIJIJJIJJ(JfJ emJI" di5p18.1
lrJulliJe tarll.I Jl8JiJ
~1oI"8IJ

'bJlasI1rJpJJic"emnIouJJd
in lain (JJ"SlJIpIqfF8lJlS.

107.9
108
108.1
108.2
108.3
108.4
108.5
108.6
108.7
108.8
108.9
109
109.1
109.2
109.3
109.4

MOVE "M" TO DSEG-ID-X.

CALL IIiTRIIiSIC "GETDSEG" USIIiG DSEG-INDEX,
DSEG-LGTH,
DSEG-ID.

IF DSEG-IIIDEX > 11m AID DSEG-ltlDEX < 12005

MOVE "aJILD DSEG FAILED" TO STD-CALL-RESULT-II$G
IDlE "GO" TO SID-CALL-RESULT-cmE

CDUVTE STD-CALL-CDDTII-YIU) • DSEG-INDEX

PERFCIUlJ DISPLAY-RESULTS-UPCII-lDISOLE

GO TO EJI)-OF-PROGRM.

Once established, the Extra Data Segment may be used repeatedly. There is no sig
nificant time used in acquiring an Extra Data Segment; it is significantly less than the
time used to open a data base.

The errorconditions forwhich thetest is done are items such as invalid length, you've
attempted to exceed the maximum configured XOSEGS, etc.

Using COBOL II'. Facllftl8s P8ge 0038-20

SOME ADDITIONAL INTRINSICS

Theend ofprogramroutinewasmodifiedto includeacall to FREEDSEG; this releases
the the data segment from the session. Perhaps not strictly required in this
application; experience has shown that good housekeeping pays off.

The same is true for the call to the KILL intrinsic. This deletes the son process; that
is the Tenant Supervisor, if it had been intitiated.

116.1 EIID-OF-PROGRAM.

116.2
b ft'lJ8ol Supenisor mine JI7111 116.3 IF CREATE-'III NOT = ZERO,

116.4
116.5 CALL IIiTRIIiSIC "KILL" USIIiG CREATE-'Ili.
116.6

/IJ'Il5Z'C IfIJS ar:tJlerI, free /1 116.7 IF DSEG-IIIDEX NOT = ZERO,
116.8
116.9 CALL IIlRIIiSIC "FREEDSEG" USIIG DSEG-IIIDEX,

117 DSEG-ID.
117.1

/IpMudioo 6ala IJase open. 117.2 IF DB-OPEN,

d:lieJl 117.3
117.4 PERFORM DBCLSDBP.

117.5

~ IIJe 10I1/JSfile 117.6 PERFORM VCLOSEFCltMF.
117.7

~ IIJe lenniJNJI 118.2 PERFCItM VClOSETERM.
118.3

.&illIJifpJqfl1Jm 118.4 IJ]IACK•

Earlier, the use of copy members for commonly used functions was discussed. This
routine includes performs of three commonly used copy members:

DBCLSDBP; closes the currently open data base
VCLOSEFORMF; closes the currently open VPLUS forms file
VCLOSETERM; closes the currently open terminal file used by VPLUS

Page 0038-21 Using COBOL 11'. Facilities

SOME ADDITIONAL INTRINSICS

The routines to create and/or activate the Tenant Supervisor and pass parameters
become easy after the preliminary work has been done.

439.3 IIIITIATE-TEIWIT-SUPERVISOR.
440

JIoyefJlWmeleIS 10J'll5'irl 440.1 PERfClUt MOVEClJT-DSEG.
440.2

thfJlt'/JcliYale a/J()lJJerpn:Jt:eS.'t" 440.3 PERfClUt CREATE-AND-ACTIVATE- TSUPVOAX.

lJJeo 1fIJll1orillo Mum 440.4

JIove dllJ4fer/jWIJIJ1e1elS 118'* In 440.5 PERfClUt IlNEIN-DSEG.

440.6
440.9 • cantinJe processing
441.6
441.7 IlNECIJT-DSEG.
441.8
442.7* set up parllDetera here
443.3

!B' IJJe IHlIT8BpJer/ by 443.4 CALL INTRINSIC "DMOVWT" USING DSEG-INDEX,

f»l.lDl 443.5 DSEG-DISPLACEMENT,

SIarIinIIfJC8li()JJ Iii laJrellJ.5'l:C 443.6 DSEG-NUM-TRANSfER,

JlumlJer 01 'fJIds 10 lransler 443.7 WSCTLREC.

3Ju.n:e 01dal8 10 IJe mt»WIoul 443.8
443.9 IF C-C lOT = ZERO,

ClJecJ lor enrJJ:$ antieril ilaDy 444

IOUDd 444.1 lINE "OM" TO STD-CALL-RESULT-aJ)E

444.2 lINE "DIIDVWT fAI L· TO STD-CALL-RESULT-MSG

444.3
444.4 PERfORM DISPLAY-RESULTS-UPON-CONSOLE

444.5
444.6 GO TO END-Of-PROGRAM.

NOTE that this process is suspended after the Tenant Supervisor is initiated (Une
440.3), so the next instruction will be executed as soon as control is returned to this
process. The use of the Extra Data Segment is barely more difficult than a "CALL
USING- when dealing with a subprogram.

Continued on Page 23 .•.

Ualng COBOL 11'. Facilities Page 0038-22

SOME ADDITIONAL INTRINSICS

Creating and/or activating a process is not difficult. NOTE that the %101 parameter
(flags. as defined in the Intrinsics Manual) tells MPE that the created process should
usethe NOCB parameter; it has stacksize p~oblems and needs the space this frees.

PERfORM DISPLAY-RESULTS-UPON-CONSOLE

PERfmtM DISPLAY-RESULTS-UPOtiI-CONSOLE

GO TO END-Of-PROGRAM.

USING CREATE-PIN,

2.

TO STD-CALL-RESULT-MSG

TO STD-CAll-CONDTIl-WRI)

TO STD-CALL-RESULT-CCI)E

TO STD-CALL-RESULT-M$G
TO STD-CALL-CONDTII-IDU)

TO STD-CALL-RESULT-CCI)E

GO TO EIID-Of-PROGRAM.

MOVE "ACTIVATE fAILED"

MOVE CREATE-PIli

MOVE "CR"

CALL IIiTRIIiSIC "CREATE" USING CREATE-PROG-IlAME,

\\,
CREATE-PIN,

\\.
X101.

lINE "CREATE fAILED"
MOVE CREATE-PIli

MOVE "CR"

If C-C < ZERO,

CALL IIiTRINSIC "ACTIVATE"

If CREATE-PIli < 1 CIt > 1024,

If CREATE-PIli = ZERO,

MOVE "TSUPVOAX.grcqJ.acct" TO CREATE-PROG-NAME.

CREATE-AID-ACTIVATE-TSUPVOAX.444.8
444.9
445.1
445.2
445.6
445.7
445.
445.9
446
446.1
446.2
446.3
446.4
446.5
446.6
446.7
446.8
446.9
447
447.1
447.2
447.3
447.4
447.5
447.6
447.7
447.8
447.9
448
448.1
448.2
448.3
448.4
448.5
448.6

Jdilele IIJe I'eo8nI
3gJeM;rJI: t!IjJtX'/q 10

IJe6diwJledIJf il
IIemnbIJJd wI

tlJ!fifDtJI~
aBfItd IIiIIIJJe

jJIfD!AT lie ar!IIItfI

MJ etJiI7jJtJiJJl /JIJ/1Je

HKIJIIDIIJtTIfJiIInJetI

Ih INIiII= j&7!II

MDJ" IffJdiwJIe
JJIIJer11t'IIfJ~

II!IroitJrJIer
IIenr;nAJ//IJd erillo

tmJJIJQIJ~

JrdiI!

Continued on Page 24 •••

Page 0038-23 Using COBOL II'. Facilities

SOME ADDITIONAL INTRINSICS

When theTenant Supervisor returns control to the Main Supervisor, the passed, and
maybe changed, parameters are restored using DMOVIN. Its operation is just the
reverse of the DMOVOUT intrinsic; it moves data from the Extra data Segment into
the program's Working Storage.

PERFCItM DISPLAY-RESULTS-lJP(II-aliSOLE

GO TO END-Of-PROGRAM.

IF C-C NOT = ZERO,

CALL IIiTRIIiSIC "DMOVIII"

TO STD-CALL-RESULT-cmE

TO STD-CALL-RESULT-IISG

USING DSEG-INDEX,

DSEG-DISPLACElCfIlT,

DSEG-NUM-TRAJISFER,

WSCTLREC.

MOVE "DI"
lINE "DMDVIII fAILED"

448.8 IIOVEIII-DSEG.

448.9
449
449.1
449.2
449.3
449.4
449.5
449.6
449.7
449.8
449.9
450
450.1
450.2
450.3
450.4* Restore p8r~ters here

IJwIIIIJI:r!JfJllJ CA'118lTl
J1IufiJIr ItJc8IiJJJ ioJar:
MunIJer 0/IIDIrlr If}~

I/uzt!i in~sIIJnfIe

/Iemn ItJuJxt eDl

The Main Supervisor code to replace control data base open, gets, and puts was
easily replaced by the GETDSEG, DMOVOUT, DMOVIN, and FREEDSEG intrinsic
calls.

But what about the Tenant Supervisor?
What changes did it require for an Extra Data Segment?
And how could we eliminate its startup overhead?

Using COBOL II'. F8CUftl.8 P8ge 0038-24

SOME ADDITIONAL INTRINSICS

The initiated program needs to do some
of the same things as the initiator. It must
use GETDSEG to acquire access to the
ExtraDataSegment, anditusesDMOVIN
and DMOVOUT to receive and return
parameters in the Extra Data Segment.

However, to avoid startup overhead, it
needs some slight modifications. First, it
needs to have a way to suspend itself,
rather than completely terminate.

This allows it to be re-activated in the
same state that it was in when it sus
pended.Thatmeansthatanyfilesopen at
the time it suspended will still be open
when it is re-activated.

It must, therefore, be able to recognize
whether the current activation is an initial
activation, or a reactivation. This is an
easy task, since the DSEG-INDEX itself
becomestheswitch; ifnon-zero, then the
program was Just re-initiated.

67.5 PROCEDURE DIVISUII.
57.5
57.6 TSUPY-START.

57.7
57.8 IF DSEG-llmEX =ZERO,

t1Jtd IlWl-IIIIC AJr 57.9
1iJ'sf 1iIJIe;-ifJr) 6C(jlIi~ 58 PERFCIUlJ IKIJSEKEEPIIG

IJ!iITlMJtltIJ tJIIJer 58.1
iIJiIiIIizJJ/it /arb 58.2 CAlL IIITRIIISIC "GETDSEG" USIIG DSEG-INDEX,

58.3 DSEG-LGTH,

58.4 DSEG-ID.

58.5
58.6 IF DSEG-INDEX > 11m AND DSEG-IIIDEX < X2OO5

/It!I1'I:nbuxt elil 58.7
58.8 MOVE "OS" TO STD-CALL-RESULT-COOE

58.9 MOVE "BUILD DSEG FAILED" TO STD-CALL-RESULT-MIG

59 GO TO EIID-Of-PROGRAM.

59.1

JItJe iJJ jIN1II/Jf!IIn 59.2 CALL IITRIISIC "DMOVII" USING DSEG-lImEX,
59.3 DSEG-DISPLACEJElT,
59.4 DSEG-IlUM-TIWISFER,
59.5 USCTLREC.
59.6

/IttTrnbJod eli! 59.7 IF C-C lOT III ZERO,

59.8
59.9 lINE "OM" TO STD-CALL-RESULT-COOE
60 IIOVE "DMDVII FAILED" TO STD-CALL-RESULT-IISG
60.1 GO TO END-OF-PROGRAM.

Page 0038-25 Using COBOL II's Facilities

SOME ADDITIONAL INTRINSICS

The housekeeping routines, which are only executed on the first activation of the
program, include terminal and forms file opens, as well as a data base open.

On second, and subsequent initiations, these routines are bypassed. The GETDSEG
isn't extremely time consuming, but the file opens create tremendous overhead.

The normal proc-
essing can nowcon-
tinue as if this were a 66.9 IKIJSEKEEPING.

dynamically called
67
67.1 MOVE "AM"

SUbprogram; if the 67.2 MOVE "II"

currently open data
67.4
67.6 MOVE "AIBOOOF.lroup.8CCOWIt"

base is the correct 67.7

one (baseduponthe
68.1 PERFORM WFENfORMf •
68.2

passed parameters 68.3 If IIOT Y-OK,

in the DSEG), the
68.4
68.5 MOVE "VOPENfORMf fel led' ,

program can pro- 68.6 MOVE "Yf"

ceed with the next
68.7 MOVE V-STATUS
68.8 GO TO END-Of-PROGRAM.

VPLUS screen to be 68.9

displayed the
70.3 11M 9

to 70.4

user. 70.5 PERfORM ..eIlTERM.

70.6
70.7 If IIOT Y-OK.

There's one last 70.8

thingwe havetotake
70.9 MOVE "VOPEIlTERM fel led' ,

71 MOVE Y-STATUS

care of; ensuring 71.1 IIOVE "YT"

that when the pro-
71.2 PERFc:mI YCLOSEFCllMF,

71.3 GO TO END-Of-PROGRAM.

gram is ready to re- 60.9

turn control to the
61.8 PERFORM OPEII-PROPER-DATA-BASE.

TO DSEG-ID-X.
TO DB-OPEN-SU.

TO Y-fORJlS-FiLE-IlAME.

TO STD-CAlL-RESULT-MSG

TO STD-CAlL-RESULT-cmE
TO STD-CAlL-CONDTN-WORD

TO Y-TERM-anL.

TO STD-CAlL-RESULT-MSG
TO STD-CALL-COIIDTII-IDU)

TO STD-CALL-RESULT-cmE

MainSupervisor, itsuspends itselfratherthancompletely terminating. This ishandled
through a small change to the end of program routine.

Using COBOL 11'. Facllnles P8ge 0038-28

SOME ADDITIONAL INTRINSICS

Theend ofprogram routinehaschecksforerrorsdiscoveredbyprocessing routines,
and a call to intrinsic ACTIVATE. Calling ACTIVATE with a PIN number of 0 (ZERO)
indicates to MPE that you want to activate the Father of the current process.

USIIiG 0,3.

TO STD-CALL-RESULT-C(I)E
TO STD-CALL-RESULT-MSG

TO TSUPV-STD-CALL-RESULTS.
TO CR-WSAPTCD.
TO CR-USER-PARMS.

lINE "DS"
lINE "DIIJWIJ'T FAILED"

GDBACIC.

lINE "AF" TO STD-CALL-RESULT-C(I)E

lINE "ACTIVATE FATHER FAIL" TO STD-CALL-RESULT-II$G
PERFCIUI DISPLAY-RESULTS-UPCll-COISOLE

PERFCIUI DISPLAY-RESULTS-UPCll-COISOLE.

PERFCIUI DISPLAY-RESULTS-UPCll-COISOLE.

CALL IIiTRINSIC "DMOVWT" USING DSEG-IIIDEX,
DSEG-DISPLACEMEIIT,
DSEG-IIlII-TRANSFER,
USCTLREC.

IF C-C NOT = ZERO,

GO TO TSUPV-START.

IF C-C lOT =ZERO,

CALL IIiTRINSIC "ACTIVATE"

IF STD-CALL-RESULT-cmE MOT ;: "DS",

IF (lOT RESULTS-OK),

lINE STD-CALL-RESULTS
lINE USAPTCD
MOVE TSUPV-USER-PARMS

SPAGE "CLOSE RCIITIIES"
END-OF-PROGRAM.

73.9
74
74.1
74.2
74.3
74.4
74.5
74.6
74.7
74.8
74.9
75
75.1
75.2
75.3
75.4
75.5
75.6
75.7
75.8
75.9
76
76.1
76.2
76.3
76.4
76.5
76.6
76.7
76.8
76.9
71
71.1
71.2
71.4
71.5

1/emriJJ /I/fJWJIA: ld
1IjJ~1r

diIp;IrU: t/irJ/6f

The ACTIVATE of the Father suspends the current process; when re-activated, it
continues with the next instruction, which takes it back to the start of the program.

P8ge 0038-27 Using COBOL II'. Facilities

SOME ADDITIONAL INTRINSICS

The following summarizes some of the key differences between called dynamic

subprograms and created processes.

CALLED PROGRAMS CREATED PROCESSES

Subprograms may reside in Segmented Programs are prepped as main pro

Ubraries (SLs), or be prepped with the grams.

main program.

Shared data bases and other files elimi- Initial activation requires opening any re

nate overhead associated with opens quired files. If not suspended upon com

and closes. pletion, this is repeated for each crea-

tion/activation.

Parameter passing techniques are famil- Parameter passing requires additional

iar to most programmers. design work, but is relatively easy once

mastered.

Programs execute serially; that is, the Created processes may execute serially,

calling program suspends until the called or may be executed in parallel with the

program returns. creating process.

Each can be an effective technique when properly applied; the analyst must be

familiar with multiple techniques to create applications that meet the user's require

ments and effectively utilize the hardware/software environment of the HP3000.

Using COBOL H'.FacUlt... Page 0038-28

SOME ADDITIONAL INTRINSICS

There are a few additional comments regarding these techniques:

5.7 SPECIAL-NAMES.
5.8
5.9 CONDITION-CODE IS C-C.

As is true of so many design/programming techniques, the more you use them, the
easier they become. And the more you learn. the more you find there is to learn.

Today's COBOL on the HP3000 provides many ways for the inventive analyst to
achieve things that previously were reserved for 'Systems Programmers'.

Page 0038-29 Using COBOL II's Facilities

SUMMARY

COpy COBOL II's Copy Ubrary facility makes the use of common working
UBRARIES storage and common procedure division routines easy. In addition to

assisting in the development of error free programs, it enhances the
speed of development.

The multiple library capability not only simplifies maintenance of librar
ies. but also eases the task of updating programs for new versions of
compilers and operating systems. Forexample, changes to parameter
sizes associated with the new intrinsics in the XL operating system can
be easily accomodated in a new copy library, allowing programs to be
compiled for either with minimum change.

FILE
STATUS &
DECLARA
TIVES.

The use of File Status items and the Declarative section give the
programmercomplete control of file system error handling. This, com
bined with the ability to call file system Intrinsics using the COBOL
filename in place of the normallntrinsics's fi/anum parameter allow for
'elegant' error handling. as well as provide access to many facilities
previously considered too esoteric for COBOL programmers.

OTHER Special Capabilities such as Process Handling and Extra Data seg
INTINSICS ments can be easily utilized in COBOL II. A careful reading of the

Intrinsics manual will open many doors for the creative analyst/pro
. grammer.

I hope these ideas have spurred your imagination. Hewlett Packard has given us a
powerful tool forbusiness programming in COBOLII. One ofour tasks is to recognize
the facilities available to us, and make use of them to provide quality systems to our
users.

Using COBOL II's Facilities Page 0038-30

	Using COBOL II's Facilities

