Using COBOL II's Facilities
By: Patrick A. Lockwood
Orion Systems Technology, Inc.
1309 East Northern Ave., Suite 701

Phoenix, AZ 85020

Copyright 1988 Orion Systems Technology, Inc.

Page 0038-1 Using COBOL I's Facilities

INTRODUCTION

This paper is targeted at analysts/programmers who are familiar with COBOL, but
who have not had much experience utilizing it on the HP3000.

HP’s implementation of 1974 ANSI Standard COBOL provides the designer and the
programmer with many tools to help develop robust systems, with techniques that
rival the current crop of fourth generation languages for speed, and allow the use of
concepts not usually associated with this high level language.

This paper will exploretechniques used to quickly develop systemsin COBOL il (most
of which is upwardly compatible with the ANSI '85 compiler), and to accomplish this
without sacrificing quality.

Some topics to be covered are:

* Use of MULTIPLE COPY LIBRARIES for both DATA and PROCEDURE
divisions.

* Commonly (and not so commonly) used INTRINSICS called from COBOL I,
and how they can help you.

* DECLARATIVES and I/O STATUS checking.

* PROCESS HANDLING vs DYNAMIC SUBPROGRAMS in on line menus.

Examples from real programs will be used throughout, with minor changes to protect
both the innocent and the guilty.

Using COBOL II's Facilities Page 0038-2

COPY LIBRARIES

I haven’t worked on a computer system that uses COBOL without some form of the
COPY statement; however many make it inconvenient to implement.

HP has provided two facilities for managing copy libraries that provide the program-
mer with great fiexibility, as well as making standardization easy to implement.

1. MULTI-MEMBER library files.

On the HP3000, unlike many other systems, multiple members may reside in one
copy library file. Normally, acopy library fileis maintained as a KSAM file, which may
be easily manipulated with the COBEDIT.PUB.SYS utility. This utility allows you to
add new members, and to delete or edit existing members. Editing is handled by
process handling to the EDITOR while still within the COBEDIT utility.

2. MULTI-LIBRARY COPY STATEMENTS in a program.

Within one program,
you may copy mem-
bers from multiple li-

Figure 1
102.2 SPAGE ‘‘Working Storage Copy Members’’

102.3 01 CENLINEW COPY CENLINEW IN COPYLIB NOLIST.
brary files, thus allow- 102.4 01 COMMONM COPY COMMOKW IN COPYLIB NOLIST.
102.5 01 STOCALLY COPY STDCALLW IN COPYLIB NOLIST.

ing you to maintain 102.6 01 vCALLY COPY VCALLW IN COPYLIB NOLIST.

AN 102.7 01 PAUSEW COPY PAUSEW IN COPYLIB NOLIST.

separate libraries of 102.8 01 STDPRTRW COPY STDPRTRW IN COPYLIB NOLIST.
standardized routines 102.9

103 01 WSAPTCD COPY WSAPTCD IN GCCLIB NOLIST.

used in any program, 103.1 01 WSBANK COPY WSBANK IN GCCLIB NOLIST.

N 103.2 01 WSCTLREC COPY WSCTLREC IN GCCLIB NOLIST.

as well as libraries of 103.3 01 WSGLACCT COPY WSGLACCT IN GCCLIB NOLIST.

. 103.4 01 wsJos COPY WSJ0B IN GCCLIB NOLIST.

members unique to a 103.5 01 WSLEDGER COPY WSLEDGER IN GCCLIB NOLIST.

single appllcatlon ¥103.6 01 WSOWNER COPY WSOWNER 1IN GCCLIB NOLIST.

Figure 1 shows how these two facilities make it easy to combine data from multiple
copylibraries into one program. Notethat two libraries are specified; COPYLIB, which
is the library of commonly used members, and GCCLIB, which contains record
descriptions used only in the GCC applications. The NOLIST entry tells the COBOL
compiler not to list the data being inserted into the program at compile time.

Page 0038-3 Using COBOL II's Facilities

COPY LIBRARIES

The first copy library member listed in Figure 1 is CENLINEW, the commonly used
working storage for centering text in any line up to 132 characters long. Using the
COBEDIT utility, it's easy to list the data from a copy member to the terminal.

N IT.P!

HP32233A.01.05 COPYLIB EDITOR - COBEDIT SUN, FEB 14, 1988, 12:59 PM

(C) HEWLETT-PACKARD CO. 1986

TYPE “HELP"* FOR A LIST OF COMMANDS.

>LIB +COPYLIB

SLIST CENLINEW

Text-name CENLINEW

[

001100+

001200+ CENLINEW; Working storage for CENLINEP

001300+

001400seesessses

001500.

001600 05 LINE-LENGTH COMP PIC S9(4) VALUE 79.

001700

001800 01 BLANK-COUNT COMP PIC S9(4).

001900 01 CHAR-COUNT COMP PIC S9(4).

002000

002100 01 TEXT-IN.

002200

002300 05 TI-COL PIC X(1)

002400 OCCURS 132 TIMES

002500 INDEXED BY TIC.

002600

002700 01 TEXT-OUT.

002800

002900 05 TO-COL PIC X(1)

003000 0CCURS 132 TIMES

003100 INDEXED BY T0C.
_ >

Using COBOL II's Facllities Page 0038-4

COPY LIBRARIES

The COBEDIT utility allows you to switch between libraries; the following shows a
listing of a member of GCCLIB, which contains application specific record descrip-

tions.

NOTE that COBEDIT allows back-referenced file names for selecting the current

fibrary.

>LIB «GCCIIB
SLIST WSBANK

Text—nome WSBANK

290300 ¢+ v++
290400+
290500+ WSBANK; Working Storage for BANK-DESCR Data Set in DAPTnn Data Base
290600+
290700¢+++¢
290800 .
290900 02 BANK-DESCR.
291000 05 CASH-ACCT-IDX.
291100 10 JOB-IDX PIC X(6).
291200 10 ACCOUNT-IDX PIC X(8).
291300
291400 05 ACCOUNT-NO PIC X(8).
291500 05 JOB PIC X(6).
291600 05 BANK-ACCT-NO PIC X(10).
291700 05 NAME PIC X(30).
291800 05 ADDR1 PIC X(30).
291900 05 ADDR2 PIC X(30).
292000 05 LAST-CK-NO PIC X(10).
292100 05 OPEN-CASH PIC S9(9)V99 COMP-3.
292200 05 TRANS-CASH PIC S9(9)V99 COMP-3.
292300
>EXT
\END OF PROGRAM

Commonroutines may also be storedin copy libraries; oncetested, they may be used
easily by allmembers of the staff without worrying about re-inventing the wheel, and
withassurance thatthey are not contributing towards bugs discovered during testing.

Page 0038-5

Using COBOL II's Facilities

COPY LIBRARIES

A common routine CENLINEP is stored in COPYLIB; many programs in different
applications have occasional need to center text.

>LIB «COPYIIB
>LIST CENLINEP

Text-nome CENLINEP

001000s++ssss424

001100+

001200+ CENLINEP; Centers TEXT-IN in TEXT-QUT

001300+

001400sssss003e

001500

001600 MOVE ZEROS T0 BLANK-COUNT.
001700 MOVE SPACES TO TEXT-OUT.
001800

001900 IF LINE-LENGTH < 1 OR

002000 LINE-LENGTH > 132,

002100

002200 MOVE 132 TO LINE-LENGTH.
002300

002400 SETTIC TO LINE-LENGTH.
002500 PERFORM CENLINE-LAST-COUNT.

002600

002700 SETTIC T0 1.

002800 PERFORM CENLINE-FIRST-COUNT.

002900

003000 IF BLANK-COUNT < LINE-LENGTH,

003100

003200 COMPUTE CHAR-COUNT = (BLANK-COUNT /2) + 1
003300

003400 SET T0C TO CHAR-COUNT
003500

003600 COMPUTE CHAR-COUNT = LINE-LENGTH - BLANK-COUNT
003700

\003800 PERFORM CENLINE-MOVE CHAR-COUNT TIMES.

Continued on Page 7. ...

Using COBOL II's Facilities Page 0038-6

COPY LIBRARIES

003300

004000 CENLINE-LAST-COUNT.

004100

004200 IF TI-COL (TIC) = SPACE,

004300

004400 ADD 1 TO BLANK-COUNT
004500 IFTIC > 1,

004600

004700 SET TIC DOWN BY 1

004800 GO TO CENLINE-LAST-COUNT.

004900

005000 CENLINE-FIRST-COUNT.

005100

005200 IF TI-COL (TIC) = SPACE,

005300

005400 ADD 1 TO BLANK-COUNT
005500 IF TIC < LINE-LENGTH,

005600

005700 SET TIC UP BY 1

005800 GO TO CENLINE-FIRST-COUNT.

005900

006000 CENLINE-MOVE.

006100

006200 MOVE TI-COL (TIC) 10 T0-COL (TOC).
006300

006400 SET TIC, TOC UP BY 1.

>
\

The ability to have multiple libraries accessed within one COBOL program makes the
use of common routines a ‘common’ occurrence in shops that rely on standardized
techniques to develop programs quickly.

Page 0038-7 Using COBOL II’s Facilities

COPY LIBRARIES

Combining the copy members CENLINEW and CENLINEP from COPYLIB, and
WSBANK from GCCLIB, we're able to use coding techniques like the following:

MOVE NAME IN WSBANK TO TEXT-IN.
MOVE 30 T0 LINE-LENGTH.

PERFORM CENLINEP.

MOVE TEXT-0UT T0 HEADING-BANK—NAME.

N

NOTE that the use of the copy member name as a paragraph name (CENLINEP) is
acceptable; the entry in COPYLIB actually has no paragraph name.

Similarly, by beginning the working storage copy members with a period (.), and
having the '01’ level be prior to the COPY statement, allows reference to the group
item by its copy member name (WSBANK), as well as by the ‘02’ level that
corresponds to the data set name (BANK-DESCR).

The NOLIST convention for copy members is common in shops that make heavy use
of copy libraries; typically, each programmer has a listing of the common library
(COPYLIB) athis/her desk, as well aslistings of those application dependentlibraries
(such as GCCLIB) that are frequently referenced. This makes compiled listings
shorter, and for programmers experienced with the shop’s conventions, easier to
work with.

Using COBOL II’s Facllities Page 0038-8

DECLARATIVES and 1/0 STATUS

You've seenit, the infamous TOMBSTONE printed by the file system whena COBOL
program attempts an I/O operation that is unsuccessful, and for which there wasn’t
an appropriate error handling routine established.

Many programs check for AT END and INVALID KEY conditions, but are atatotal loss
if an OPEN fails, or if the INVALID KEY condition doesn't allow the program to

adequately diagnose the problem, thereby preventing ‘elegant’ error handling.

Two features of COBOL Il (and COBOL 85) provide the means to trap 1/0 errors and
take the appropriate action based upon the actual condition that occurred.

DECLARATIVES.
This Section of the program, which must be the first Section within the Procedure
Division, defines procedures to be used when the file system discovers an error or

unusual condition.

FILE STATUS.

This entry in the SELECT filename clause defines a storage location in which the
status of the most recent |/O operation for a file is returned.
The two, working in combination, give the programmer complete control over error

and exceptional condition processing for a file.

To see how these work together, we'll begin with some sample program code,
beginning on Page 10 with a file select clause using the FILE STATUS option.

Page 0038-9 Using COBOL II’'s Facilities

DECLARATIVES and 1/0 STATUS

The FILE STATUS item must be selected if you want to trap 1/O errors and be able
to determine the cause of the I/O failure. When an input or output operation has been
performed on the file, the status item is updated with a two character code indicating
the status of the operation.

ifthe firstbyte contains 0 (ZERO), the operation was basically successful. The second
byte contains additional information further defining the status.

5.2 $PAGE "INPUT-OUTPUT SECTION"

5.3 INPUT-QUTPUT SECTION.

5.4

5.5 FILE-CONTROL.

5.6

5.7 SELECT WORK-FILE

58

5.9 ASSIGN T0 "GLBYTDAD"
6.0 ORGANIZATION IS INDEXED
6.1 ACCESS IS DYNAMIC
6.2 RECORD KEY IS WORK-KEY
6.3 FILE STATUS IS IOERRW.

o

The example above shows a FILE STATUS item of IOERRW. This is a two byte field
defined as a commonly used member of COPYLIB.

Page 11 shows this copy member, which also includes an additional field used for
interpreting the second byte of the status returned for 1/0 operations.

Using COBOL II's Facilities Page 0038-10

DECLARATIVES and I/O STATUS

Meanings of the first byte (I0-ERR-1) are:

* 0 Successful completion

* 1 At end, EOF has been reached
* 2 Invalid key, duplicate for writes, or not found for reads
* 3 Physical I/O error, or beyond EOF

TRRARARRAS
-

* IOERRW: Working Storage for FILE STATUS
-

RAREARARES

02 I0ERRW-CHARS PIC X(2) VALUE **00’’.

88 10-SUCCESSFUL VALUE ‘‘00’°’.
88 10-ALLOWED-DUPL VALUE ‘‘02'‘.
88 10-EOF VALUE *‘10’.
88 10-SEQUENCE-ERR VALUE ‘'21¢7,
88 10-DUPL-KEY VALUE ‘r22'¢,
88 10-NOT-FOUND VALUE ‘'23'7,
88 10-BOUND-VIOL VALUE ‘‘24’’,
. lul ’ -
88 10-PERM-ERROR VALUE *‘30°’.
02 FILLER
REDEFINES 10ERRW-CHARS.
05 10-ERR-1 PIC X(1).
88 10-0K VALUE **0'’.
88 10-AT-END VALUE ‘Mqr7,
88 10- INVALID-KEY VALUE ‘277,

88 10-PERMANENT-ERROR VALUE '‘3'’,
88 10-MISC-ERROR VALUE ‘'9'7,

05 10-ERR-2 PIC X(1).

ARAAEARERY
-

* Used to convert the second byte of FILE

* STATUS (IOERRW) to a valid MPE file system
* error code (FSERR)

-

01 IOERR-CONVERT.

05 10ERR-DUMMY PIC X(1) VALUE
LOW-VALUES ..
05 IOERR-CHARACTER PIC X(1).

01 10ERR-MPE-ERR-NUM
REDEFINES 10ERR-CONVERT

COMP PIC S9(4).
88 10-UNOBTAINABLE VALUE 90,
9.
88 10-FILE-NOT-FOUND VALUE 52,
53.
88 10-BEV-UNAVAILABLE VALUE 55.
88 10-DUPLICATE-FILE VALUE 100,
101.

Page 0038-11

Using COBOL II's Facilities

DECLARATIVES and I/O STATUS

The other feature that helps us handle I/0 errors is a fairly simple routine inserted in
the first part of the program; it works for main programs and subprograms.

The program must have a DECLARATIVES Sectibn, which must be the first section
in the program. NOTE that the use of a section for Declaratives requires a section
name for the first paragraph of the normal procedure division, even if the program is
not to be sectioned to create additional code segments.

A sample DECLARATIVES follows.

40.3 SPAGE ‘‘Procedure Division - Section 0’’
IMW 40.4 PROCEDURE DIVISION USING STDCALLW,
bary caled wih e 40.5 DBCALLW,
paomedas. . . 40.6 VCALLW,
ol ayy menbers 40.7 WSAPTCD,
40.8 STDPRTRW.
40.9
L3
Requred stotemend! fo 41.1 DECLARATIVES.
begh LIS 41.2
SECTRN N required 8.3 GLBYTDA-START SECTION 00.
41.4
(5 stremend 41.5 USE AFTER ERROR PROCEDURE ON WORK-FILE.
41.6
Falowed by porograpth 41.7 GLBYTDA-10-ERROR.
nome by procedire 41.8
41.9 1F 10-MISC-ERROR,
42
Cover! 2nd Bde of 42.1 MOVE 10-ERR-2 TO 10ERR-CHARACTER
O70W bo /378 um 42.2
42.4 MOVE SPACES TO STD-CALL-RESULT-MSG
42.5
QoA FSRR messoge 42.6 CALL INTRINSIC ‘‘FERRMSG’’ USING IOERR-MPE-ERR-NUM,
42.7 STD-CALL-RESULT-MSG,
42.8 STD-CALL -CONDTN-WORD
42.9
for redum b colty 43 MOVE 10ERR-MPE-ERR-NUM TO STD-CALL-CONDTN-WORD .
43.1
Reqaed streomend 43.2 END DECLARATIVES.
43.3
L rormdl progrom 43.4 GLBYTDA-BEGIN SECTION 00.
b sectin rome 43.5
43.6 PERFORM HOUSEKEEPING.

o

Using COBOL iI’s Facllities Page 0038-12

DECLARATIVES and 1/0 STATUS

The documentation for COBOL provides the rules for precedence for FILE STATUS
items and USE PROCEDURES (with a flow chart further explaining this in KPR#
4700245142 in the System Staus Bulletin); it really boils down to a simple statement
... .'lfyou use a FILE STATUS item, and have a USE PROCEDURE, your destiny is in
your own hands'’.

The FILE STATUS item is updated for all of your 1/0, and the USE PROCEDURE is
executed for every exceptional condition. This allows the following type program-
ming:

The file is first opened for
input; just to see if it's -
there. If so, the control %:35865 BEGIN-WORK-FILE.
record is retrieved. If it | 236.7 OPEN INPUT WORK-FILE.
doesn't exist, the user is | 236.8

236.4 $PAGE “*BEGIN-WORK-FILE"

asked for parameters for %gg 9 IF10-0K,
building a new file, and for %::557721 CLOSE WORK-FILE
data to be stored in the .
control record. 2373 OPEN 1-0 WORK-FILE

. %g;g IF 10-0K,
The change in processing : _ _
based upon 10-FILE. |20} PERFORM GET-CONTROL-RECORD.
NOT-FOUND (FSERR 52) | 237.9 IF 10-FILE-NOT-FOUND,
Iseasyto handie; all other | 753 PERFORM ASK~FOR -CONTROL-DATA
I/Oerrors are unexpected | 5339 PERFORM ISSUE-FILE-EQUATION
and cause an exit to the | 238.3
error handling routine. %gg; OPEN 1-0 WORK-FILE

2386 IF 10-0K,

The USE Procedure is in- | 238.7
voked for all 'NOT 10-OK’ %ggg PERFORM WRITE-NEW-CONTROL-REC.
situations, and the FILE 239 IF NOT 10-0K,
STATUS item is set after | 239.1
each 1/0. @.2 GO TO I0-ERROR-EXIT.

Ifthe FILE STATUS contains a9 inthe first byte (I0-ERR-1), the second byte is moved
to IOERR-CHARACTER, which is used, via the redefinition of IOERR-CONVERT, to

call INTRINSIC "FERRMSG" to obtain an interpretation of the error conditionto place
in a message passed back to the caller.

Page 0038-13 Using COBOL II’s Facilities

DECLARATIVES and I/0 STATUS

in the example shown on Page 13 only the I0-FILE-NOT-FOUND condition was
specifically anticipated. But note how easy it would be to attempt the open, then ifthe
condition I0-UNOBTAINABLE (Exclusive Violation) was found, the program could
‘elegantly’ letthe user know thatthefile was in use by someone else, and request that
a later retry would be appropriate.

The COBOL manual recommends calling "CKERROR" to convert the second byte of
FILE STATUS to an ASCH number, however the simple move to a redefined integer
(COMP) accomplishes the same thing, and that number is in the correct format for
calls to "FERRMSG".

Of course, there are many other ways to accomplish the same logic that this little
routine uses; it only points out one set of circumstances that make use of these
techniques. Once mastered, and with key elements readily available in a COPYLIB,
you'll find its flexibility to be helpful in complex applications.

Obtaining actual file system error codes for those conditions that do not begin with
aginthefirstbyteis also possible. The intrinsic FCHECK applies tofiles on any device,
and can be used simply. For example:

CALL INTRINSIC "FCHECK" USING WORK-FILE,
IOERR-MPE-ERR-NUM,
A\ \W\¥

This returns the file system error code for the last 1/0O for WORK-FILE into IOERR-
MPE-ERR-NUM.

NOTE that the intrinsics manual asks for filenum for file intrinsics; COBOL program-
mers may substitute filename, as defined in a SELECT statement. The backslashes
in the call above stand for 'null’ parameters; optional parameters not required for a
simple call just for the file system error number.

To easily change programs from COBOL 74 to COBOL 85, a new copy member can
be created that contains the FILE STATUS error codes used with the newer compiler
(and run time processing). The table on Page 15 provides a brief overview of the
differences.

Using COBOL II's Facllities Page 0038-14

DECLARATIVES and I/O STATUS
COMPARISON of ANSI 85 vs ANSI 74 I-O STATUS CODES

SIB5/ANSI74] MEANING

04 | 00 | Read length of record doesn’t match file.

05 | 00 | Optional file not present; created.

07 | 00 | File NOT a TAPE file as OPEN/CLOSE implies.

14 | 00 | Relative record number larger than PICTURE of key descriptor.

24 | 24 | Write beyond file bougdmy, or relative record number larger thanﬂ
PICTURE of key descriptor.

35 9x | Non-optional file not present; not created.

37 | 00 | Open mode invalid for file type.

38 | 00 [Attempted OPEN on file closed with lock.

39 00 | Attribute conflict; file not opened.

41 | 9 | Attempted OPEN on file that is open.

42 | 9x | Attempted CLOSE on file that is not open.

43 |9x/00| Attempted DELETE/REWRITE without prior READ.

44 | 00 | Boundary violation or invalid record size.

46 | 10 | Attempted READ after EOF or previously unsuccessful read.

47 |9x/00| Attempted READ on file not open for input.

48 |9x/00(Attempted WRITE on file not open for output (or I-O).

49 |9x/00(Attempted REWRITE/DELETE on file not open for I-O.

Creating a new copy library member incorporating the revisions to I-O Status makes
upgrading to COBOL 85 an easier task.

Page 0038-15 Using COBOL II's Facilities

SOME ADDITIONAL INTRINSICS

To introduce the use of some intrinsics that are fairly easy to use from COBOL I, I'li
describe a situation that we ran into, and the solution that we used. Of course, there
are always multiple solutions to any design/programming problem, but this will be
fairly illustrative of the power available to COBOL programmers.

A system, written in COBOL 68, was being converted to COBOL 74. To those of you
never exposed to the wonders of COBOL 68, it had no facility for calling HP intrinsics
directly; any needed intrinsic calls were written in SPL. First the COBOL program
called the SPL intrinsic handling routine, which called the instrinsic, then returned to
the COBOL program. It was a little cumbersome, but it worked. However, it did
discourage COBOL shops from heavy use of intrinsics. Naturally, as part of the
conversion process, direct calls to intrinsics were substituted for the calls to SPL
intrinsic handling routines.

The system being modified was structured with a MAIN SUPERVISOR, which called
dynamic subprograms for various required functions. Due to the system table limits
at the time the system was developed (CST entries, maximum code segments per
process), it had to also initiate a second level supervisor for some functions, using
process handling to accomplish this.

MAIN
SUPERVISOR

swevisos | Initiated via Process Handling

NOTE that parameters were passed between processes by entries in a data base.

Using COBOL II's Facilities Page 0038-16

SOME ADDITIONAL INTRINSICS

Our charter wasn'ttototally redesign the system, butwe were asked ifwe could speed
the movement between the main supervisor and the secondary supervisor. The basic
logic in use was:

MAIN SUPERVISOR

Post parameters to control data base
Close terminal
Call SPL routine to CREATE and ACTIVATE process

{ Wait for Tenant Supervisor }

Retrieve parameters from control data base

Open terminal

Ifparameters indicate a different production data base was opened
by tenant supervisor, close initial data base and open data base that
@d been opened by tenant supervisor.

TENANT SUPERVISOR

Open control data base, and retrieve parameters
Open production data base

Open forms file

Open terminal

{ Additional Processing }

Post current data base name and other parameters to control data
base, then close it.

Close production data base
Close terminal

Close forms file

\ STOP RUN

Page 0038-17 Using COBOL Ii’s Facilities

SOME ADDITIONAL INTRINSICS

After some analysis of the frequency of use of the Tenant Supervisor (how oftenitwas
initiated from within the Main Supervisor by a user in one session), we elected the
following two concepts for reducing the transition time:

1.

Eliminate the control data base as a means of passing parameters.
Several options came to mind; we chose an extra data segment as a
means of passing parameters between processes. They provide afast
means of sharing data between processes, and implementation in the
system would be easy, utilizing the existing data structure (the control
record layout) for parameter storage.

This eliminated the data base open, GET/PUT 1/0O, and data base
close in both the Main Supervisor as well as the Tenant Supervisor.

Because the frequency of use seemed to justify it, we elected to not
terminatethe Tenant Supervisor (STOP RUN) whenits current process-
ing was complete, butto retain it as a process that could be re-activated
when next needed.

This eliminated the repeated overhead of program loading, forms file
open, and data base open (so long as the data base requested in the
passed parameters was the same as the previously requested data
base).

The results were quite acceptable to the users.; the transition time was reduced. On
the first initiation of the Tenant Supervisor during any one session, there was still a
noticeable delay, but not as long as previously.

Thesecond, and subsequent initiations of the Tenant Supervisor were at aspeed that
gave no indication that another program was being started. The following intrinsics
were used to accomplish this from within COBOL programs:

GETDSEG
DMOVOUT
CREATE
ACTIVATE
DEMOVIN
KiLL
FREEDSEG

Using COBOL II's Facillities Page 0038-18

SOME ADDITIONAL INTRINSICS

Toillustrate how these may be used from within COBOL programs, we'll start with the
WORKING STORAGE used in the Main Supervisor.

55.4 01 DSEG-WORK-AREA.
55.5
Assimed by MPF (CETOSEY) | 55.6 05 DSEG- INDEX COMP PIC S9(4) VALUE Z2ERO.
LBV Jength (in words) | 55.7 05 DSEG-LGTH COMP PIC S9(4) VALUE 176.
Program assigned name 55.8 05 DSEG-1D COMP PIC S9(4).
55.9 05 DSEG-ID-X REDEFINES DSEG-ID PIC X(2).
56
Starting locstian | 56.1 01 DSEG-DISPLACEMENT COMP PIC $9(4) VALUE ZERO.
Words lo BWOVIR/OWWUT | 56.2 01 DSEG-KUM-TRANSFER COMP PIC S9(4) VALUE 176.
56.3
PW for created process | 56.6 01 CREATE-PIN COMP PIC S9¢04) VALUE ZERO.
’ 56.5
Program lo be intisled | 56.6 01 CREATE-PROG-NAME PIC X(27).

.

Extra Data Segments are an additional
segment of memory that a program is
allowed to use for storage of data. They
may be easily shared by multiple proc-
esses within the same process tree (fa-
ther process and its sons). One advan-
tagethey have s that transfer of datais at
memory to memory speeds; there is no
disc 1/0 associated with their use, other
than any required by MPE’s memory
manager.

The GETDSEG intrinsic is used to create
a new Extra Data Segment, or to gain
access to one that has been previously
created. The D is the name by which your
program attempts to initially perform the
GETDSEG, for the stated LENGTH.

Page 0038-19

The INDEX is a unique number assigned
by MPE; once acquired, the indexis used
to obtain access to the datain the DSEG
using the DMOVIN intrinsic (move data
from extra data segment to your
program’s working storage) and the
DMOVOUT intrinsic (move data from
working storage to the extra data seg-
ment).

DISPLACEMENT is like a subscript or
index, telling the DMOVIN and
DMOVOUT intrinsics where in the Extra
Data Segment to begin the move of data,
using 0 (ZERO) as thefirstword. The size
of the data string to be moved is stated in
number of words.

Using COBOL II’s Facilities

SOME ADDITIONAL INTRINSICS

The first change to the Main Supervisor was to add a call to GETDSEG, done only
oncein theintialization logic. This establishes the datasegment, and assigns aunique
index number to it. This is the identifier by which it will be recognized by any program
that is a member of this process.

The IDis the name by which other processes sharing this extra data segment will first
obtain access to it.

The size, in number of words, is the size of the record used in the original data base
parameter passing routine.

Assim & 10 lo A% 107.9 MOVE “'AN‘! TO DSEG-1D-X.
108
Relurmed by iPE 108.1 CALL INTRINSIC ‘‘GETDSEG’’ USING DSEG- INDEX,
Lt desined 108.2 DSEG-LGTH,
10 established above 108.3 DSEG-1D.
108.4
(heck for error conditions. 108.5 IF DSEG-INDEX > X1777 AND DSEG-INDEX < X2005
& found, establish 108.6
digmastics and eil fo | 108.7 MOVE “‘BUILD DSEG FAILED’* TO STD-CALL-RESULT-MSG
comman ermor diplyy 108.8 MOVE ‘'GD’’ TO STD-CALL-RESULT-CODE
rouline used by Main 108.9
Syervisar for all 109 COMPUTE STD-CALL-CONDTN-WORD = DSEG- INDEX
‘volastrophic” errors found 109.1
in Main or subprograms 109.2 PERFORM DISPLAY-RESULTS-UPON-CONSOLE
109.3
109.4 GO TO END-OF-PROGRAM.

-

Once established, the Extra Data Segment may be used repeatedly. There is no sig-
nificant time used in acquiring an Extra Data Segment; it is significantly less than the
time used to open a data base.

The error conditions for which the test is done are items such as invalid length, you've
attempted to exceed the maximum configured XDSEGS, etc.

Using COBOL II’s Facllities Page 0038-20

SOME ADDITIONAL INTRINSICS

The end of programroutine was modifiedto include a callto FREEDSEG; this releases
the the data segment from the session. Perhaps not strictly required in this
application; experience has shown that good housekeeping pays off.

The same is true for the call to the KILL intrinsic. This deletes the son process; that
is the Tenant Supervisor, if it had been intitiated.

116.1 END-OF-PROGRAM.
116.2
M Tenant Sypervisor alive, &ill it 116.3 IF CREATE-PIN NOT = ZERO,

116.4
116.5 CALL INTRINSIC ‘‘KILL’’ USING CREATE-PIN.
116.6

I ABSEY was crested, froe it :::.; IF DSEG- INDEX NOT = ZERO,
116.9 CALL INTRINSIC ‘‘FREEDSEG’’ USING DSEG- INDEX,
"7 . DSEG-ID.
117.1

r o dals base apen, 17.2 IF DB-OPEN,
productian 17.3
o i
17.4 PERFORM DBCLSDBP.
117.5
Cse he forms fie 117.6 PERFORM VCLOSEFORMF .
17.7
Gose the termaing/ 118.2 PERFORM VCLOSETERM.
118.3
Bl U program 118.4 GOBACK.

Earlier, the use of copy members for commonly used functions was discussed. This
routine includes performs of three commonly used copy members:

DBCLSDBP; closes the currently open data base

VCLOSEFORMF; closes the currently open VPLUS forms file
VCLOSETERM,; closes the currently open terminal file used by VPLUS

Page 0038-21 Using COBOL II's Facillities

SOME ADDITIONAL INTRINSICS

The routines to create and/or activate the Tenant Supervisor and pass parameters
become easy after the preliminary work has been done.

439.3 INITIATE-TENANT -SUPERVISOR.
&40
Move peromelers lo MDY 440.1 PERFORM MOVEOUT-DSEG.
440.2
Create/delivele anolber process; 440.3 PERFORM CREATE-AND-ACTIVATE-TSUPVOAX.
Uhen wait for 1t lo relurmn 440.4
Move changed paramelers back in 440.5 PERFORM MOVEIN-DSEG.
440.6
440.9 * Continue processing
441.6
441.7 MOVEOUT-DSEG.
441.8
442.7* Set up parameters here
443.3
Lo the INDEY assimed by &43.4 CALL INTRINSIC ‘‘DMOVOUT’’ USING DSEG- INDEX,
[/ 443.5 DSEG-DISPLACEMENT,
Slarling locelion in large! BEC 443.6 DSEG-NUM-TRANSFER,
HNumber of words lo lransler &43.7 WSCTLREC.
Source of dals lo be moved oul 443.8
443.9 IF C-C NOT = ZERO,
Check for errors, and exit If sy 444
Jound 4641 NOVE DM’/ T0 STD-CALL-RESULT-CODE
&kk.2 MOVE ‘‘DMOVOUT FAIL® TO STD-CALL-RESULT-NSG
&44.3
7Ry PERFORM DISPLAY-RESULTS-UPON-CONSOLE
444 .5
&4k .6 TO END-OF-PROGRAM.

.

NOTE that this process is suspended after the Tenant Supervisor is initiated (Line
440.3), so the next instruction will be executed as soon as control is returned to this
process. The use of the Extra Data Segment is barely more difficult than a "CALL
USING" when dealing with a subprogram.

Continued on Page 23...

Using COBOL II's Facilities Page 0038-22

SOME ADDITIONAL INTRINSICS

Creating and/or activating a process is not difficult. NOTE that the %101 parameter
(fiags, as defined in the Intrinsics Manual) tells MPE that the created process should
usethe NOCB parameter; it has stack size problems and needs the space this frees.

444.8 CREATE-AND-ACTIVATE-TSUPVCAX .
444.9
S wp program pame 445.1 MOVE *‘TSUPVOAX.group.acct’’ TO CREATE-PROG-NAME.
445.2
oy i nol previously 445.6 IF CREATE-PIN = ZERO,
orenled mill le 445.7
process be crealed &45. CALL INTRINSIC “‘CREATE’’ USING CREATE-PROG-NAME,
W eoliy painl name 445.9 \\,
W oumber redurned 446 CREATE-PIN,
Ao A= passed 446.1 \\,
MTB & resclivle 446.2 X101.
lalber when new process 446.3
lominales 446.4
X errars found, et lo 446.5 IF CREATE-PIN < 1 OR > 1024,
canman digenasiic 446.6
rolie 446.7 MOVE ‘‘CREATE FAILED’’ TO STD-CALL-RESULT-MSG
446.8 MOVE CREATE-PIN TO STD-CALL-CONDTN-WORD
446.9 MOVE ‘‘CR‘’ TO STD-CALL-RESULT-CODE
&7
&47.1 PERFORM DISPLAY-RESULTS-UPON-CONSOLE
&47.2
447.3 TO END-OF-PROGRAM.
&4T.4
Actiole le Tensnl &47.5 CALL INTRINSIC ‘‘ACTIVATE'’ USING CREATE-PIN,
Sypernser; expecling lo 447.6 2.
e activsled by it 7.7
X errvs found, exit 447.8 IF C-C < ZERO,
447.9
448 MOVE ‘‘ACTIVATE FAILED'’ TO STD-CALL-RESULT-MSG
448.1 MOVE CREATE-PIN TO STD-CALL-CONDTN-WORD
448.2 NOVE ‘‘CR’’ TO STD-CALL-RESULT-CODE
448.3
448.4 PERFORM DISPLAY-RESULTS-UPON-CONSOLE
448.5
448.6 GO TO END-OF-PROGRAM.

Continued on Page 24. ..

Page 0038-23 Using COBOL II's Facllities

SOME ADDITIONAL INTRINSICS

When theTenant Supervisor returns control to the Main Supervisor, the passed, and
maybe changed, parameters are restored using DMOVIN. Its operation is just the
reverse of the DMOVOUT intrinsic; it moves data from the Extra data Segment into
the program’s Working Storage.

448.8 MOVEIN-DSEG.

448.9
Use WX from GETOSEG 449 CALL INTRINSIC ‘‘DMOVIN’’ USING DSEG-INDEX,
Sarting jocslion in BEC 449.1 DSEG-DISPLACEMENT,
Number of words lo move 449.2 DSEG-NUM-TRANSFER,
Tped in working starage 449.3 WSCTLREC.

449.4

& errors found, et 449.5 IF C-C NOT = ZERO,

449.6

&49.7 MOVE ‘‘DI’’ TO STD-CALL-RESULT-CODE

449.8 MOVE ‘‘DMOVIN FAILED’’ TO STD-CALL-RESULT-MSG

449.9

450 PERFORM DISPLAY-RESULTS-UPON-CONSOLE

450.1

450.2 GO TO END-OF-PROGRAM.

450.3

450.4* Restore parameters here

-

The Main Supervisor code to replace control data base open, gets, and puts was
easily replaced by the GETDSEG, DMOVOUT, DMOVIN, and FREEDSEG intrinsic
calls.

But what about the Tenant Supervisor ?

What changes did it require for an Extra Data Segment?
And how could we eliminate its startup overhead?

Using COBOL II's Facllities Page 0038-24

SOME ADDITIONAL INTRINSICS

The initiated program needs to do some
of the same things as the initiator. It must
use GETDSEG to acquire access to the
ExtraData Segment, andit uses DMOVIN
and DMOVOUT to receive and return
parameters in the Extra Data Segment.

However, to avoid startup overhead, it
needs some slight modifications. First, it
needs to have a way to suspend itself,
rather than completely terminate.

67.5 PROCEDURE DIVISION.
57.5
57.6 TSUPV-START.
57.7
57.8 IF DSEG- INDEX = ZERO,
Ceck 227 WY for 57.9
st e if 5o soquire 58 PERFORM HOUSEKEEPING
A3 and ab olher 58.1
italiliog lasks 58.2 CALL INTRINSIC “'GETDSEG’’ USING DSEG- INDEX,
58.3 DSEG-LGTH,
58.4 DSEG-1D.
58.5
58.6 IF DSEG-INDEX > X1777 AND DSEG-INDEX < X2005
U errors found, enit 58.7
58.8 WOVE “'Ds* 10 STD-CALL-RESULT-CODE
58.9 WOVE ‘“'BUILD DSEG FAILED’’ TO STD-CALL-RESULT—NSG
59 TO END-OF-PROGRAN.
59.1
e iz parameters 59.2 CALL INTRINSIC *‘DMOVIN' USING DSEG- INDEX,
59.3 DSEG-DISPLACEMENT,
59.4 DSEG-NUM-TRANSFER,
59.5 WSCTLREC.
59.6
X errors found, enit 59.7 IF C-C NOT = ZERO,
59.8
59.9 NOVE DN ¢ TO STD-CALL-RESULT-CODE
60 NOVE “'DMOVIN FAILED’’ TO STD-CALL-RESULT-NSG
70 END-OF-PROGRAN.

QJ

This allows it to be re-activated in the
same state that it was in when it sus-
pended. Thatmeansthat anyfilesopen at
the time it suspended will still be open
when it is re-activated.

It must, therefore, be able to recognize
whether the current activation is an initial
activation, or a reactivation. This is an
easy task, since the DSEG-INDEX itself
becomes the switch; if non-zero, then the
program was just re-initiated.

Page 0038-25

Using COBOL II's Facllities

SOME ADDITIONAL INTRINSICS

The housekeeping routines, which are only executed on the first activation of the
program, include terminal and forms file opens, as well as a data base open.

On second, and subsequent initiations, these routines are bypassed. The GETDSEG
isn’t extremely time consuming, but the file opens create tremendous overhead.

The normal proc-
essing can now con-
tinue asif thiswere a
dynamically called
subprogram; if the
currently open data
base is the correct
one (baseduponthe
passed parameters
in the DSEG), the
program can pro-
ceed with the next
VPLUS screen to be
displayed to the
user.

There's one last
thingwe havetotake
care of; ensuring
that when the pro-
gram is ready to re-
turn control to the

67.1
67.2
67.4
67.6
67.7
68.1
68.2
68.3
68.4
68.5
68.6

68.8
68.9
7.3
70.4
70.5
70.6
7.7
70.8
7.9

4B
n.2
ns

61.8

HOUSEKEEPING.

NOVE AN’/
MOVE ‘N’

HOVE *‘*AM3000F.group.account’’
PERFORM VOPENFORMF .
IF NOT V-0K,
MOVE *‘VOPENFORMF Failed’’
MOVE ‘‘VF’/
MOVE V-STATUS
GO TO END-OF-PROGRAM.
MOVE 9
PERFORM VOPENTERM.
IF NOT V-OK,
MOVE ‘‘VOPENTERM failed’’
MOVE V-STATUS
m l\"l'
PERFORM VCLOSEFORMF,

GO TO END-OF-PROGRAM.

PERFORM OPEN-PROPER-DATA-BASE.

TO DSEG-1ID-X.
TO DB-OPEN-SW.

TO V-FORMS-FILE-NAME.

TO STD-CALL-RESULT-MSG
TO STD-CALL-RESULT-CODE
TO STD-CALL-CONDTN-WORD

TO V-TERM-CNTL.

TO STD-CALL-RESULT-MSG
TO STD-CALL-CONDTN-WORD
TO STD-CALL-RESULT-CODE

Main Supervisor, it suspends itselfrather than completely terminating. Thisis handled
through a small change to the end of program routine.

Using COBOL IiI’s Facliities

Page 0038-26

SOME ADDITIONAL INTRINSICS

Theend of program routine has checks for errors discovered by processing routines,
and a call to intrinsic ACTIVATE. Calling ACTIVATE with a PIN number of 0 (ZERO)
indicates to MPE that you want to activate the Father of the current process.

SPAGE ‘‘CLOSE ROUTINES’’
76 END-OF -PROGRAM.
7.1
Cectk for subroiulive 7%.2 IF (NOT RESULTS-OK),
o 7.3
6.4 PERFORM DISPLAY-RESULTS-UPON-CONSOLE .
74.5
S yp relurn parameters 7.6 MOVE STD-CALL-RESULTS TO TSUPV-STD-CALL-RESULTS.
%.7 MOVE WSAPTCD TO CR-WSAPTCD.
7.8 MOVE TSUPV-USER-PARMS TO CR-USER-PARNS.
7%.9
¥ no 5% errvrs, move 4] IF STD-CALL-RESULT-CODE NOT = ‘DS’’,
lhem oul inlo lhe B52G 5.1
5.2 CALL INTRINSIC ‘‘DMOVOUT/’ USING DSEG-INDEX,
.3 DSEG-DISPLACEMENT,
5.4 DSEG-NUM-TRANSFER,
.5 WSCTLREC.
5.6
X error in BYVAT, sef .7 IF C-C NOT = ZERO,
o perameters kr .8
disgnastic displsy 7.9 MOVE ‘'DS’’ TO STD-CALL-RESULT-CODE
76 MOVE *‘DMOVOUT FAILED’’ TO STD-CALL-RESULT-MSG
76.1
76.2 PERFORM D1SPLAY-RESULTS-UPON-CONSOLE.
76.3
Aclivale Palber process 76.4 CALL INTRINSIC ‘‘ACTIVATE’’ USING 0,3.
76.5
(ot fr arors 76.6 IF C-C NOT = 2ERO,
76.7
76.8 MOVE “‘AF’’ TO STD-CALL-RESULT-CODE
76.9 MOVE ‘‘ACTIVATE FATHER FAIL’’ TO STD-CALL-RESULT-NSG
(4 PERFORM DISPLAY-RESULTS-UPON-CONSOLE
7.4
m.2 GOBACK.
™4
@ lo start of progrem ns GO TO TSUPV-START.

The ACTIVATE of the Father suspends the current process; when re-activated, it
continues with the next instruction, which takes it back to the start of the program.

Page 0038-27 Using COBOL II's Facllities

SOME ADDITIONAL INTRINSICS

The following summarizes some of the key differences between called dynamic

subprograms and created processes.

CALLED PROGRAMS

Subprograms may reside in Segmented
Libraries (SLs), or be prepped with the
main program.

Shared data bases and other files elimi-
nate overhead associated with opens
and closes.

Parameter passing techniques are famil-
iar to most programmers.

Programs execute serially; that is, the
calling program suspends until the called
program returns.

CREATED PROCESSES

Programs are prepped as main pro-
grams.

Initial activation requires opening any re-
quired files. If not suspended upon com-
pletion, this is repeated for each crea-
tion/activation.

Parameter passing requires additional
design work, but is relatively easy once
mastered.

Created processes may execute serially,
or may be executed in parallel with the
creating process.

Each can be an effective technique when properly applied; the analyst must be
familiar with multiple techniques to create applications that meet the user’s require-
ments and effectively utilize the hardware/software environment of the HP3000.

Using COBOL H's Fachities

Page 0038-28

SOME ADDITIONAL INTRINSICS

There are a few additional comments regarding these techniques:

s

/

7
a1

///- ¢ Z4-{eiifa 3

9.7 SPECIAL-NAMES.
9.8
9.9 CONDITION-CODE IS C-C.

///J
.

s/é'/ 3 y sp 0}:‘ (g U/: - 250 B S
i 116se Spesial Capbiltes {ndicated, 7o prop a
i //////////’/////{ o

o capabies,

As s true of so many design/programming techniques, the more you use them, the
easier they become. And the more you learn, the more you find there is to learn.

Today’s COBOL on the HP3000 provides many ways for the inventive analyst to
achieve things that previously were reserved for 'Systems Programmers’.

Page 0038-29 Using COBOL II's Facilities

COPY
LIBRARIES

FILE
STATUS &
DECLARA-
TIVES.

OTHER
INTINSICS

SUMMARY

COBOL II's Copy Library facility makes the use of common working
storage and common procedure division routines easy. In addition to
assisting in the development of error free programs, it enhances the
speed of development.

The multiple library capability not only simplifies maintenance of librar-
ies, but also eases the task of updating programs for new versions of
compilers and operating systems. For example, changes to parameter
sizes associated with the new intrinsics in the XL operating system can
be easily accomodated in a new copy library, allowing programs to be
compiled for either with minimum change.

The use of File Status items and the Declarative section give the
programmer complete control of file system error handling. This, com-
bined with the ability to call file system Intrinsics using the COBOL
filename in place of the normal Intrinsics’s filenum parameter allow for
’elegant’ error handling, as well as provide access to many facilities
previously considered too esoteric for COBOL programmers.

Special Capabilities such as Process Handling and Extra Data seg-
ments can be easily utilized in COBOL . A careful reading of the
Intrinsics manual will open many doors for the creative analyst/pro-

_grammer.

| hope these ideas have spurred your imagination. Hewlett Packard has given us a
powerfultool for business programming in COBOL Il. One of our tasks is to recognize
the facilities available to us, and make use of them to provide quality systems to our

users.

Using COBOL II's Facllities Page 0038-30

	Using COBOL II's Facilities

