In Search of a Better Mouse Trap

Dennis Heidner
Boeing Aerospace

ABSTRACT

This paper covers basic concepts of "expert systems” and their use in business data
processing. The author discusses several examples of in-house applications which
have been implemented on an HP3000. The cases discussed disprove the beliefs that
artificial intelligence systems must be programmed in PROLOG or LISP, and that
performance is marginal on a small stack machine.

INTRODUCTION

Why Artificial Intelligence? The current
demographics have been radically changing. The
post World War II employees are now nearing the
age of retirement. When they retire, years of
expertise will leave with them. This loss of
knowledge and expertise will have staggering effects
on companies that are unprepared. Artificial
Intelligence (Al) is an attempt to mimic the human
brain with highly processed sand (computer chips)
and retain valuable expertise! In their book
"Artificial Intelligence: Underlying Assumptions and
Basic Objectives” Nick Cercone and Gordon McCalla
identify the roots for Al as being ‘psychology,
philosophy, linguistics, electrical engineering, and
computer science[1] (After dabbling in Al for
several years I believe that they left off the most
important root - sheer madness!) The term Al
often causes a considerable debate over what really
constitutes a "smart" system. Currently the field
which has captured the interest of many
researchers is neural nets. Research into neural
networks has been as diverse as attempting to simulate neurons in software or
developing special hardware which actually uses individual brain cells from slugs and
snails. The more traditional areas of Al are expert systems, search and problem
solving, theorem proving and logic programming, knowledge representation, learning,
and miscellaneous game playing.

In Search of a Better Mouse Trap 0044-1

One exciting area of Al research is the study of new man-machine interfaces. A
considerable amount of attention is now being spent on creating programs which
communicate with users on the users’ own terms and do not require specialized
training. It is possible to buy pocket chess or backgammon games which demonstrate
a high level of expertise and yet a very simple and clean man-machine interface. This
should be a goal for any expert system. With many newer programs the manual is
built-in as part of a very complete help subsystem. The more sophisticated programs
even provide context sensitive help; the more errors and more trouble you are in, the
more assistance they automatically provide for a specific area.

Expert systems are computer programs whose behavior duplicates, in some sense, the
abilities of a human expertin his/her area of expertise.[2] Expert programs are
considered to be a knowledge base. This knowledge base generally includes any rules
of thumb (heuristics) and production rules, facts and relations, and special logic used
to present the assertions and questions (the inference engine).

Production rules are similar in appearance to the conditional statements used in
existing third generation languages like FORTRAN, BASIC, and COBOL. For
example:

RULE 1: IF ANIMAL HAS FEATHERS THEN ANIMAL IS BIRD
. RULE 2: IF ANIMAL FLIES AND ANIMAL LAYS EGGS THEN ANIMAL IS
BIRD

Facts and relations may be implemented in production rules (as above) or contained
within "frames". Frames allow the knowledge engineer to add an hierarchical
structure to the knowledge, allow inheritance of traits, and provide slots for data,
attributes and rules for interpreting the knowledge. The frame for a bird might look
something like:

Frame name: Bird
Inherited from: Animal
Slot: Skin covering
Type: Feathers
Do-procedure: none
Slot: Reproduction
Type: Eggs
Do-procedure: none
Slot: Extinct species
Type: Dodo
Do-procedure: Take picture

The knowledge acquired by the expert is of little value unless the computer can
effectively question and apply the knowledge. This is accomplished with an inference
engine. The engine is the "control tower" for the expert system. It is responsible for
taking the given facts, applying the assertions and deducing the conclusion. With
traditional software systems, the compiler acts as an expert system interpreting the
rules (source code), optimizing the object based on expert knowledge, and generating

In Search of a Better Mouse Trap 0044-2

output suitable for use by the CPU. There are two very basic types of engines.
These are the forward chaining and backward chaining engines.

The forward chaining engine applies the first rule to the known conditions
(antecedents); if it is successful then a conclusion (consequent) is accepted. The
engine then takes the consequent and looks forward for another rule which may be
applied. This chaining of antecedent to consequent and consequent to antecedent
continues until there are no more rules to apply or we have reached a goal (the
answer). Sometimes it is possible that all rules have been applied (asserted) but a
goal has not yet been reached; this is the result of either missing information or
inaccurate facts.

A backward chaining engine starts with a goal and, using the known facts, it verifies
that the conclusions are supported by the facts. This is accomplished by checking the
antecedents in the goal for facts that match. If the facts are unknown then the
current antecedent becomes a "sub-goal" (assumption) which the engine tries to prove
or disprove. If there are no facts to verify the antecedent then the user is prompted
for additional facts.

So far our discussion on the expert system assumes that we live in a perfect world
where all facts are known or readily available. However, in the real world, we must
often make a decision without all the facts. Experts are able to apply heuristics and
make educated guesses for their answers. A good expert system also accommodates
missing knowledge or uncertainty.

Missing knowledge or uncertainty in expert systems may be addressed in several
ways. The first is to ensure that there is a redundancy of facts. This helps assure
that there are fewer holes and provides alternate paths to a solution. A second
method is through the use of fuzzy logic. With fuzzy logic there is no longer a simple
true or false answer but instead "most likely false", "most likely true," and a large grey
area between. When the expert collects the necessary facts to implement the expert
system, he/she also tries to determine a default answer and the probability that it
will be correct if it must be used in place of an actual fact.

We become experts through a cognitive process in which new facts and techniques
are added to our existing knowledge and later reinforced as they are applied to new
tasks. Very few expert systems exist which can learn through the same process.
Instead, as the knowledge expert becomes aware of deficiencies in the knowledge
base, he/she must adapt the knowledge base. The knowledge base for a good expert
system is very dynamic. For this reason it is important to involve the end user early
in the project, and prototype the system whenever possible. (This is a strong
argument for PROLOG and LISP: knowledge prototyping in these languages is
immensely easier than in traditional business languages.)

When developing inference engines using COBOL, BASIC, C, SPL, PASCAL or

FORTRAN, it is imperative that the engine be simple and modular. Concentrate
instead on developing a good user interface, and look for ways to provide redundancy

In Search of a Better Mouse Trap 0044-3

of facts in your knowledge base. Doing so allows your engine to cope with missing
data in an easier manner.

In this paper we will cover three different expert systems. The first is a forward
chaining engine, with a discussion about how it was implemented. The second
example demonstrates how several independent expert systems can be connected to
provide an even smarter system. The third case is a backward chaining inference
engine.

THE SEARCH

Within Boeing Aerospace we have an organization responsible for operating a resource
library which contains general purpose test and measurement equipment. The
customers (pool users) are the other Boeing organizations which need equipment for
engineering design, manufacturing, facilities maintenance, or calibration of other
equipment. When a pool user has a need for some test equipment, he/she typically
either asks for a specific manufacturer and model number or requests an alternate
item which can be used for the test. This search for an alternate model led to the
title of this paper - “In Search of a Better Mouse Trap".

Types of test and measurement equipment range from the simple balance scale to
highly sophisticated logic analyzers and computer systems. The expert system needs
to be able to recommeiid an alternate for a logic analyzer as quickly as the solution
for a scale. The design of the expert system begins by trying to replicate the thought
process that an expert instrumentation engineer uses when selecting or looking for
an alternate. This process begins with a specific need - "I must weigh a box 4 inches
by 5 inches, with a weight between 1 and 5 pounds. The measurement must be
accurate to within an ounce." The second step in the process is to identify the
manufacturers of scales. The third step is to review the manufacturer literature
looking for a scale which is suitable in dimensions, weight range, and accuracy. If step
three fails, then a fourth step is to look for alternate weight measuring devices which
might be able to perform the measurement with a slightly degraded accuracy.

An early review of our needs identified several basic requirements. First, the expert
system for alternates must be very fast (we already had literature libraries and were
quite adept at manually locating alternates.) Second, because our computer users
varied significantly in education level and typing skills, the user interface must be
friendly and easy to use. Third, we want to be able to print a catalog (wish list)
containing all the models ir our inventory, with specifications, which could be
distributed to our pool users. 'ihe last requirement is that the engine be flexible
enough to support knowledge for many diverse types of test equipment.

The Mouse Trap

The most difficult task in implementing an expert system is acquiring knowledge from
experts. Many experts must first visualize a problem before they can begin to solve
it. How visualizing helps in resolving problems has been studied in great detail by
psychologists studying information processing. Their conclusion is that the knowledge

In Search of a Better Mouse Trap 0044-4

engineer must "ask theexpert to mtrospectabout the internal processes, to report on
inner experience.[3] Thus the knowledge engineer must elicit knowledge by asking
the expert to describe what thoughts and feelings were used to reach the conclusion.
The knowledge engineer must be constantly alert for buzz words which result in
missing or uncertamty in the knowledge base. ‘References for comparative words like
‘better," 'easier,” and 'cheaper" sometimes are not qualified. If an expert states:
"This is the better system, "clarification is required. Appropriate responsesare: "How
do you know tnat?" "Better compared to what?" "What, specifically, is better about it?"
"Betterfor what purpose?"14]

The experts that we used to collect our knowledge database were our own internal
equipment engineering technical staff. The technical staff comprises four people
(including myself) with more than 100 years combined experience in the field of test
and measurement equipment. Our knowledge engineers were college students on a
summer break or new engineering graduates. The knowledge engineers were given
a list of models for which we wanted specifications and the vendors’ literature, then
encouraged "pick our brains." They were told to restrict the amount of information
they amassed to seven or eight of the most critical specifications (COLUMNS) for
each class (NOMENCLATURE) of instruments. An early review of the selection
process showed that most instruments are selected on the basis of only four or five
specifications. We recognized that by restricting the number of fields to only seven
or eight there would be instances in which the inference engine could not definitely
recommend one model over another. In real life that same uncertainty is often
present, even for an experienced instrumentation engineer. Often much more
detailed research must be done in order to finally choose an alternate. Therefore, if
the expert system is able to reduce the field of items to five or six from one hundred
or more, it still can be considered a success!

Each family of instruments is placed into a larger super-class (GEN NOM or
CHAPTER). For example BALANCE SCALES, BATHROOM SCALES, and POSTAGE
SCALES are all collected into a super-class called SCALES. The knowledge engineers
were also requested to identify other classes of instruments which were related or
should be checked if a suitable alternate was not found in the original class. (We
collected this information in the SEE NOM dataset.)

The collection of super-class (GEN-NOM), class (NOMENCLATURE), and slots
(COLUMNS) form a frame, the basis of our expert system. The information for the
frame is contained within four separate datasets. The first dataset, called
CUSTOMIZE, is an array which contains global information and strategies to be used
by the inference engine. An example of a global rule is whether or not the expert
engine will allow "vendor loyalty" to be considered when looking for an alternate. The
second dataset, called NOMCL-DETL, contains the class name, fields to identify the
super-class and any alternate classes, and eight fields which contain pointers to the
definitions for up to eight slots. The definitions for the slots, their units and

In Search of a Better Mouse Trap 0044-5

associated rules are contained in a dataset called NOMH-DETL. The facts which are
unique to each vendor’s products are contained within a dataset called SPEC-DETL.
Our frame of knowledge looks like:

facts assertions

SPEC-DETL: MODEL-CODE, X14
NOMEN-CODE, I <=> NOMCL-DETL: NOMEN-CODE, I
LINE-NUMBER, 1 NOMENCLATURE, X16 -- class name

COLUMN1, R2 GEN-KOM, 1 -- super-class

COLUMN2, R2 SEE-NOM, I -- alternate class

COLUMN3, R2 HEADING1, 1

COLUMNG, R2 HEADING2, 1

COLUMNS, R2 HEADING3, 1 ==> NOMH-DETL: TAG#, 1 -- rule#

COLUMNS, R2 HEADING4, 1 AD_NAME, X8

COLUMN7, R2 HEADINGS, 1 UNITS,

COLUMNS, X8 HEADINGS, 1 BETTER-IF, I ==> global
HEADING7, 1 scoring rules

from CUSTOMIZE
dataset

A requirement for our expert system is that it be easy to use. A brief glance at the
knowledge frame above shows that we have several complex relationships which
confuse most non-data-processing personnel. It was for this reason and to ease the
acquisition and implementation of the éxpert system that the frame was broken into
the four datasets previously shown. Separate data entry routines were provided for
each dataset. These routines provided the means to add, delete, or revise facts and
assertions. The assertions for the frame must be entered first. The rules are
assigned a unique number and may be used by many different frames. A sample
dialogue for adding a new rule is:

Add/Delete/Revise ? ADD
ENTER TAG NO. 9999

ENTER HEADING WEIGHT

ENTER UNITS POUNDS

BETTER IF (=<>X) ? =

*% TRANSACTION COMPLETED *%*

A dialogue revising the assertions for a BALANCE SCALE looks like:

Add/Delete/Revise _REV

ENTER NOMENCLATURE BALANCE SCALE

Working with nomenclature: SCALE,BALANCE

NOMENCLATURE GEN-NOM SEE NOM TOTAL COLl COL2 COL3 COL4
SCALE, BALANCE =120 1515 0 3 2 4 6
ENTER FIELD NAME? HEADINGS

ENTER COL 1 9999

Heading: WEIGHT Units: POUNDS

ENTER COL 2

ENTER COL 3

ENTER COL 4

ENTER FIELD NAME

% TRANSACTION COMPLETED **

In Search of a Better Mouse Trap 0044-6

After the rules and class have been established, it is now possible to add the actual
facts into the knowledge base. The inference engine bases its decision on the lowest
axf:? highest ranges specified by the engineer. A sample dialogue for the acquisition
of facts is:

Add/Delete/Revise ? ADD

ENTER MFG NONIN

ENTER MODEL INTEREX

ENTER NOMENCLATURE SCA LANC
ENTER DESCRIPTION It's really neat

ENTER COST 10
Specification line#: 1

ENTER WEIGHT IN POUNDS 1
ENTER Height IN inches
ENTER Width IN inches
ENTER Length IN inches
Specification line#: 2
ENTER WEIGHT IN POUNDS
ENTER Height IN inches
ENTER Width IN inches
ENTER Length IN inches
Specification line#: 3
ENTER WEIGHT IN POUNDS
QUIT (Y/N)? ¥

** TRANSACTION COMPLETED *%*

]

()]

Once the knowledge has been entered it may be viewed from any terminal connected
to our HP3000. This is an example of what the user sees when viewing the facts just
entered.

ENTER MFG NONIN
ENTER MODEL interex

MANUFACTURER MODEL DESCRIPT NOMENCLATURE NEWCOST
NONIN INTEREX It's really neat SCALE,BALANCE $10.

WEIGHT Height Width Length
POUNDS inches inches inches

1 1
2 5
It’s Fuzzy

With the knowledge base assimilated, it is now possible to request the expert system
identify alternate make/models. When the inference engine is used, it prompts the
inquirer for a manufacturer name and specific model number. The engine retrieves
the facts for the specific make/model - then by using the nomenclature code (part of
the facts for the model), it connects into the NOMCL-DETL and the NOMH-DETL
to load the appropriate assertions. The engine then reads the global rules stored in

In Search of a Better Mouse Trap 0044-7

the CUSTOMIZE dataset so that it knows how to treat missing facts and what
strategy to use. After the assertions have been loaded onto the stack, the engine
begins to examine other make/models in the same class (nomenclature) as the one
specified by the inquirer. Our engine uses the forward chaining technique for
applying the assertions that it has loaded. The potential capability of each model is
"scored” using a point system. Only the scoring results for the top one hundred
make/models are saved. While examining each model the reason why each has
received its high marks is saved with the score. Later when we display the results
we can also display the reason why.

In the score card that we use, a perfect match is worth 100 points and is indicated as
"GOOD." A near match (within 10% of the desired range) is worth 80 points and
remembered as a "FAIR" match. An instrument which comes within 20% of our
original instrument is considered a "POOR" match and receives only 60 points. An
instrument which falls short is given no points for the specific slot unless the slot is
empty because of missing information. In this case 10 points is assigned. Each slot
has a multiplier associated with it. The first column, considered to be the most
important, is worth five times more points then the last column. This results in the
following point system:

Column Multiplier

IO CON -
- DN W OTD

The thresholds for poor, fair, good as well as the multiplier values are stored in the
global rule set (CUSTOMIZE) and can be adjusted independently of the facts in the
SPEC-DETL or the assertions in the NOMCL-DETL or NOMH-DETL.

Eeek! A mouse!

The visual format for product comparisons is generally a table which lists the
specifications and features for each selection. Comparisons of this type are seen in
almost every magazine and many newspaper advertisements. Because this is an
accepted method for comparisons with which most people are already familiar, it was
the method that we chose for the inference engine’s presentation of equipment
alternates. The only information that the engine needs from the inquirer is a
manufacturer name and the model number. For example:

In Search of a Better Mouse Trap 0044-8

ENTER MFG Heidner

ENTER MODEL B723

There are 2 Heidner B723C

MANUFACTURE MODEL DESCRIPT NOMENCLATURE NEWCOST NEWDATE
Heidner B723C 100Hz-22GHz ANLYZ, SPECT $55,555. 01/01/89
NATIONAL STOCK NUMBER: - - -

Freq Resoltn Shape Ft MaxAC In In Pur In Accu Swp Time Unit

Hz Hz Type dbm dém +/- &8 Sec Requires
1 100 10 15 30 -134 .6 1.0u Stand
2 226 3000k 1 30 3 1560 Alone

ME, LP, NITE, QUIT? ME

The engine first displays the specifications of the item for which you are seeking an
alternate. The inquirer is allowed to choose whether the results of the search are
listed to the CRT (ME), sent to the line printer (LP),or submitted as a job to be run
at night (NITE); to quit altogether, he/she enters QUIT. Choosing ME causes the
following to be displayed.

ALT FOR coL1 coL2 coL3 coLé coL5 coLé coL7
Heidner Freq Resoltn Shape Ft MaxAC In In Pur In Accu Swp Time
B723C Hz Hz Type dbm dBm +/- dB Sec

2 MFG MODEL COL1 COL2 COL3 COL4 COL5S COLé CcoL7
1 ELKTRONIX 8M12 GOOD
2 ELKTRONIX 8M13 GOOD GOOD GOOD
3 ELKTRONIX 8M18 GOOD GOOD GOOD
4 ELKTRONIX 892A GOOD GOOD
5 ELKTRONIX 8M5 GOOD GOOD
6 ELKTRONIX 892P GOOD GOOD
7 ELKTRONIX 892 GOOD GOOD
8 ELKTRONIX 894P GOOD GOOD
9 ELKTRONIX 8M14

GOOD
Press [RETURN] to go on, 200M number or 'QUIT' to stop: Zoom 1

The engine then proceeds to display the more detailed specifications for the item
chosen by the inquirer.

MANUFACTURER MODEL DESCRIPT NOMENCLATURE NEWCOST NEWDATE
ELKTRONIX 8M12 2GHz ELKB00O PI ANLYZ,SPECT $5,000. 01/01/73
NATIONAL STOCK NUMBER: - - -

Fr Resoltn Shape Ft MaxAC In In Pur In Accu Swp Time Unit
eq

Hz Hz Type dbm dBm +/- d8 Sec Requires
1 100K 300 8000
2 1800M 3000k Mframe

USE WITH:8813 8803 8854

The software required to collect or edit the facts and assertions requires three code
segments, each about 6K words. The inference engine requires two segments each
approximately 8K words long. The stack size used is approximately 5K words. This
is quite small compared to what would be expected for a PROLOG or LISP
implementation. However, in exchange for the smaller size and faster execution, we
were required to forego the extra flexibility offered by PROLOG or LISP.

In Search of a Better Mouse Trap 0044-9

THE SCROUNGER

The test equipment pool has almost one thousand customers who use tens of
thousands of items spread throughout western Washington state. The equipment
pool is very dynamic with equipment moving approximately every 50 days. As a
resource organization we are committed to serve our customers with fastest possible
response time at the lowest possible cost. This requires the assistance of master
"scroungers” (like Radar O’Riley from the television program "M.A.S.H.") Radar’s
uncanny ability to "perceive” events about to happen provided him with an edge he
needed to cope with the war, perform his routine activities, and maintain the stock
of supplies for the unit. The ideal expert system "scrounger" should have many of
these same attributes. The scrounger must be able to find "who’s got it", ask "can I
get it?", and then try to "grab it!"

Who's got it?

The location of all the test equipment in the equipment pool is contained within a
TurboIMAGE database on our HP3000. With access to this database the scrounger
is able to locate all items. That is the easy part! If we have 500 or 600 items of one
make/model, we do not want to make 500 or 600 telephone calls while trying to
negotiate a loan or swap of an item. (This is even more important if there is one
sitting in a stockroom someplace!) We have solved this problem by implementing an
expert system which locates the items and assigns a probability that we can borrow
or loan the item out. The procedure RATEQUIP is a forward chaining inference
engine that also loads rules and strategy from the CUSTOMIZE dataset. The engine
examines all items of the specific make/model, checking to see if the item is currently
assigned to a user, if it has been reserved for a future test, if the current schedule is
about to expire, if the current user of the item has many like items, and whether or
not the current user has a history of not fully using the equipment. RATEQUIP
returns the asset identification numbers and the score to the procedure
FINDMFGMODEL. If an inquirer wishes to see what is available, FINDMFGMODEL
displays more detailed information, with the item which should be picked first at the
top of the list.

Can I get it?

After a list of potential items has been created, it can then be passed on to the next
expert system. This next system uses an engine called CHECKSCHEDULE.
CHECKSCHEDULE takes each item and looks to see if we can "squeeze” another use
in for this item. If we cannot, CHECKSCHEDULE returns an error, along with the
date when the item will be available. If the item is available, then a flag is returned
to indicate we can proceed to schedule this item.

Grab it!
The function which grabs the items has not yet been completed. The procedures

have been tried manually and are straightforward: take an item which can be
scheduled, and lock it in.

In Search of a Better Mouse Trap 0044-10

Trade?

Remember the real world? More often than not, the specific item is not available to
be "grabbed’. In that case, the inference engine from our specification expert system
is invoked to identify other possible models which could be used. The engine
SCOREMODEL returns a list of up to 100 possible alternates. Each model can, in
turn, be sent back to the RATEQUIP engine which provides a list of items with the
most likely to be loaned at the top of the list. CHECKSCHEDULE is invoked for each
item, those which fail are dropped off the list. Finally the several remaining items
are passed on to the "Grab it" process with the request that soft schedules be placed
on them. ("Soft" means that a firm request for that specific model will take
precedence.) The "Grab it" process is instructed to send an electronic mail message
to the inquirer who requested the make/model explaining what has been done.

Will it work? The modules RATEQUIP, SCOREMODEL, CHECKSCHEDULE,
FINDMFGMODEL, and SENDMAIL have been in production for several years. They
are fast and trouble free. Of all the expert systems discussed so far, the "grab it"
module appears to be almost trivial. The concept of coupling the engines together is
not new - we "experts” currently perform related tasks by hand every day.

THE DOCTOR

Controlling the cost of software development and maintenance is a major concern of
data processing managers. Software maintenance is labor-intensive work. Anything
which can be done to improve the productivity of the maintainer will, in turn, reduce
support costs. One technique that we have employed is extensive built-in diagnostics
and debugging tools. The programs have been written so when an error is detected,
information is collected which will assist the maintainer in quickly locating and
correcting the problem.[5] A special program called ADPAN reads the information
"snapshot” and attempts to identify where the error occurred.[6] ADPAN acts as a
specialized "doctor” for software. In the process of diagnosing the error ADPAN must
locate the last valid stack marker, play the part of the MPE loader and locate all
subroutines which created stack markers, look for transitions between user-code and
system-code, check trap Plabels, and finally check the status of all files open at the
time of the snapshot. ADPAN contains several inference engines which cooperate
while making the diagnosis. We will concentrate on the simplest, the process used
to find the stack markers.

When we first began implementing snapshots into our programs, we used the MPE
intrinsic STACKDUMP to collect and format the process stack. This originally
provided us with a solution which did not require privilege mode and was supported
by H-P. When a program encountered an error, it entered a procedure which opened
a snapshot file, then directed STACKDUMP to copy the entire stack into it and
format the program’s stack markers. Later an analyst could simply use FCOPY to
print the snapshot. Reading the formatted markers required some effort, but at least

In Search of a Better Mouse Trap 0044-11

there was documentation on how to interpret them[7]. That was life with MPE III
and early versions of MPE IV.

Then sometime around MPE IV D-MIT, several bugs were introduced with new
versions of the operating system. The first was somewhat humorous (but a
significant security risk). STACKDUMP allowed the calling procedure to specify a
range to dump. If the range specified was beyond what the user really had -
STACKDUMP should dump only up to the limits of the user’s stack. The new
undocumented "feature” instead dumped the entire 64K word memory page, complete
with other users’ data and passwords! After reporting the problem H-P provided a
patch. The patch corrected the security problem; however, the stack markers were
no longer formatted!

Without formatted markers the post mortem dumps appeared to be worthless, until
we realized that we could manually look for the pattern which appeared to be a
marker and verify it by hand-tracing back to the initial marker. This required some
effort and was difficult to teach. Unfortunately the new version of MPE which would
contain the correction to STACKDUMP (Q-MIT) was months away. After a little
deliberation we decided to write a program which would replicate what we were doing
manually. This program later became the basis for our backward chaining inference
engine.

The stack for the "classic” HP3000 contains a dynamic region between "DL" and "DB";
the area above DB is called the global area and ranges from DB up to the first stack
marker Qi. Every call to a subroutine (or COBOL PERFORM) causes a new stack
marker to be created and added to the stack. The stack on the HP3000 appears to
"grow" downward until a maximum limit of Z has been reached. The "Top-of-Stack"
(TOS, shown at the bottom of the figure) is called S. The procedure’s dynamic local
variables are located between the last stack marker and S.

Stack markers have four special values in them. The first, located at Q, is called
displacement (or delta). The next stack marker can be located by taking the current
address location of Q and subtracting the displacement from it. The second word (Q-
1) contains the status of the CPU at the time of the subroutine call. The third word
(Q-2) is called the "P_Relative" value. P_Relative is the word location in the program
to which the program will return when the current subroutine completes. The last
word (Q-3) is an index register. This word can contain any value. For the
experienced gurus out there, this may be quite boring; however from the neophytes,
I can already hear the demands to stop. It should be now apparent why we want an
expert system to assist us in locating the markers.

In Search of a Better Mouse Trap 0044-12

DL

+
i

DB |———cccmmaaaaaa = beginning of global
data

Qi | mmm————— = initial Q "marker"

Qi+l | —emmmemee = second marker

(03 B T [——— = third marker

Qi+n | —-mmmeeeee-

8§ |ememmmmmme——— = "TOp—Of-StaCk"

b4 + + = Maximum data limit

The method we use to find all the stack markers is:

1. Start by checking the value at S. If it is not the marker then decrement
the address count by 1 and check this new value.

2. We can prove or disprove that word is Q in a stack marker by applying
the following rules.

A The Delta Q must always be a positive number greater than 4 but
less than the address location of Q.

Check P_Relative. It must range between 0 and 16384.
C. The value of STATUS (Q-1) may not be 0.

D. The value pointed to by the address of @ minus the displacement
must be a stack marker.

E. If Q=4 and P_Relative=0, we are at Qi and have located all the
stack markers.

We can more clearly see why this inference engine which locates the markers is
considered to be backward chaining by carefully looking at rule 2D. This requires
we not pass judgement on the starting value we are examining until we have chained
backward and verified each "sub-goal”. The FORTRAN source code which is used to
implement the inference engine is listed next.

In Search of a Better Mouse Trap 0044-13

SUBROUTINE FIND MARKERS(Q, IDUMPFILE,START,END,LASTREC,DB OFFSET,S, INBUF,1ERR,MPE V)

The purpose of this routine is to try to find the stack markers in the dump file, when the marker
display has been damaged.

Error codes returned are:

1ERR=0 - OK

1ERR=-1 - Problems encountered trying to read dumpfile
1ERR=1 - Unable to locate a good marker!

oOoO0O0nN0O0O00

INTEGER*4 LASTREC,START,END
INTEGER Q,S, IDUMPFILE, IERR,Q TEST,DBOFFSET
LOGICAL INBUF(128),MPE V

The algorithm used to find @ valid marker is as follows.

1. Set the absolute maximum number are words we will try to 2048.
2. Set QTUEST =S

Q TEST = §

3. VERIFY MARKER using the value of Q TEST. If ok then IERR = 0, and @ = @ TEST, then RETURN.
Else....

o000 aonOo0o0

DO 100 1=1,2048

CALL VERIFY MARKER(Q TEST,IDUMPFILE,START,END,LASTREC,DB OFFSET,S, INBUF, IERR,MPE V)
IFCIERR.EQ.0) GOTO 200

4. Decrement Q TEST.

Q TEST = Q TEST - 1

5. Proceed to step 3.

000 o000

Q
o

CONTINUE
1ERR=-9
RETURN

WE FOUND A GOOD MARKER

nOoOoOo

00 @ = Q TEST
RETURN
END

In Search of a Better Mouse Trap 0044-14

SUBROUTINE VERIFY MARKER(Q, IDUMPFILE,START,END,LASTREC,DB OFFSET,S, INBUF, IERR,MPE V)

4
[The purpose of this routine is to take a given value
c for Q@ and prove or disprove that it is a stack marker.
c
c Error codes returned are:
c IERR = 0 Okay. Hypothesis proven
4 IERR = 1 Bad marker, Hypothesis is false
c 1IERR =-1 Problems encountered in GETWORD, Hypothesis false
c
INTEGER*4 START,END,LASTREC
INTEGER DB OFFSET,Q, IDUMPFILE, IERR,S,Q TEST,P RELATIVE,DELTA Q
INTEGER STATUS
LOGICAL INBUF(128),MPE V
[
Q TEST = Q
c The rules for checking for a valid stack marker are:
c
[1. Take the value of @ it must fall between DB OFFSET and S.
[4 1f not then IERR=1 and return. If ok proceed...
100 IERR=1
1F((Q TEST.LT.DB OFFSET).OR.(Q TEST.GT.S)) RETURN
c
(4 2. GETWORD at address of Q. If error encountered in GETWORD then IERR=-1, and return
c If ok proceed....
c
1ERR=-1
CALL GETWORD(Q TEST,DELTA Q, IDUMPFILE,STARTEND,LASTREC,DB OFFSET, INBUF,NERR)
IF(NERR.NE.O) RETURN
c -
[4 3. Check value at address of Q, it must be in range of 4 to address of Q.
c 1f not then IERR=1 and return. If okay proceed...
4
1ERR=1
IF((DELTA @ .LT.4).0R.(DELTA Q.GT.Q TEST)) RETURN
c
4 4. GETWORD at Q-2. This is P'RELATIVE. The value for P'RELATIVE must be
c between 0 and 16384. If not then IERR=1, and return. Else proceed....
c
IERR=-1
CALL GETWORD(Q TEST-2,P RELATIVE, IDUMPFILE, START ,END,LASTREC,DB OFFSET, INBUF,NERR)
IF(NERR.NE.O) RETURN
1ERR=1
MPE V = .FALSE.
IF (P RELATIVE .EQ. %40000) MPE V = .TRUE.
P RELATIVE [0:2) = O
c
c 4B. GETWORD at Q-1. This is STATUS. The value for STATUS must not be zero! If it is then IERR=1,
[and return. Else proceed....
[4
IERR=-1
CALL GETWORD(Q TEST-1,STATUS, IDUMPFILE, START,END, LASTREC,DB OFFSET, INBUF,NERR)
IF(NERR.NE.O) RETURN
IF ¢ STATUS[8:8] .EQ. 0) RETURN
c
c 5. save value at @ Derive deltaQ. Teke Q and subtract value at Q from Q.
c
Q TEST = Q TEST - DELTA Q
4
4 6. 1f value of Q =4 and P'RELATIVE = 0 then IERR=0 and RETURN! (WE HAVE FOUND Qintial).
4
1ERR=0
IFC(DELTA Q .EQ. 4).AND.(P RELATIVE.EQ.0)) RETURN
c
[+ 7. Use the value of the @ - delta Q and a new address for Q. Then proceed to step 1.
c
GOTO 100
END

In Search of a Better Mouse Trap 0044-15

CONCLUSION

Dr. David Hu characterizes the expert system as:

" An expert system mimics experts or specialists in a specific field - for
example, medicine or computer configuration.

* The power of an expert system lies in knowledge and how it is represented,
not in programming technique.

* The principal components of current systems are knowledge base, inference
engine, and man-machine interface.

* The knowledge base contains facts and rules that embody an expert’s
expertise.

* The three commonly used methods for encoding facts and relationships that
constitute knowledge are rules, frames, and logical expressions.

* Inference engines are relatively simple. The most commonly used methods
are backward chaining and forward chaining.

* User interfaceis a weak but critical element of expert systems. Many current
expert systems are equipped with "'menus” and explanation modules to allow
users to query expert systemsand examine their output statements'(8]

We have seen three examples of applications which are expert systems in their
narrow field. These systems are been written in the traditional third generation
languages of FORTRAN and SPL. They are fast, use little stack and code space, yet
provide functions which otherwise would consume an expert’s time. In the first two
applications the database management system is TurboIMAGE and the third is
accomplished using ordinary MPE file 1/0.

REFERENCES

f1]

[2]

(3]

[4]
[5]

Cercone, Nick and McCalla, Gordon, Artificial Intelligence: Underlying
Assumptions and Basic Objectives, from Journal of the American Society for
Information Science, Volume 35, Number 5 September 1984 pp 280-290

ibid.

Evanson, Steven E., How to TALK to an EXPERT, AI EXPERT, February 1988
pages 36-41

ibid.

Heidner, Dennis L., The Bug Stops Here, Paper presented at the 1987 HP3000
International Users Group Conference, Las Vegas, Nevada

In Search of a Better Mouse Trap 0044-16

[6] ADPAN is in the public domain contributed software library available from
INTEREX, 680 Almanor Ave. P.0O. Box 3439, Sunnyvale, California, 94088-3489

[71 Hewlett-Packard, MPE Debug/Stack Dump reference Manual, part number
30000-90012

[8] Hu, David, Programmer’s ReferenceGuide to ExpertSystems, (Indianapolis, IN:
Howard W. Sams & Co., 1987) page 10

BIOGRAPHY

Dennis Heidner received his BSEE degree from Montana State University, Bozeman,
Montana. Mr. Heidner has written and presented numerous papers at the HP
International User Group Conferences. Mr. Heidner is a co-author of The
IMAGE/3000 Handbook and the TurboIMAGE Supplementpublished by WordWare,
Seattle, Washington. He has written technical articles which have been published in
several magazines. Mr. Heidner is a member of the Association for Computing
Machinery (ACM) and the Institute for Electrical and Electronic Engineers (IEEE).

In Search of a Better Mouse Trap 0044-17

	In Search of a Better Mouse Trap

