Addressing the Problems of Program Documentation

Claire M. Perkins
Kaibab Industries
4602 E. Thomas Rd
Phoenix, AZ 85018

Documentation has long been a thorn in the side of many data processing
departmerits. . Tedioys to prepare, it is often left until the last stage
of system developmefit and done sloppily, incompletely or not at all.
Major maintenance problems -occuy when thé,only‘documentation for a sys-
tem exists in some programmer’s head -- ard he is no longer around.

As programmers, we have all felt the lack of quality documentation at
one time or another when we were expected to maintain a system with
which we were totally unfamiliar. We probably did everything short of
creating a voodoo doll of the programmer who left us this mess of
spaghetti code with not so much as a data flow diagram for a roadmap.
Unfortunately, someone somewhere out there was probably thinking much
the same thing about the systems we left behind.

As programming managers, we have felt the lack of quality documentation
each time we’ve watched minor maintenance requests evolve into major
time consumers. We have sweated over deadlines and smoothed users’
ruffled feathers as time ticked away while our staff struggled to find
the right source code, the right compile job and all the relevant parts
and pieces that make up the system. And we have sworn that we would
put an end to the problem by creating the missing documentation, or up-
dating and organizing what little documentation we had. But not this
time, not this project, because we were already pressed for time.

As end-users, we have often thought we might just as well have asked
for a new system when we asked for maintenance work from the DP depart-
ment. We just couldn’t understand why a simple request should take so
long and cost so much. When the programmer in charge of the project
suggested that we should allow even more time for the project so that
documentation could be created, we were convinced that the DP
department’s motives were completely self-serving.

Everyone, it seems, has felt the effects of the problem, but like the
weather: "Everyone complains, but no one does anything about it."

While the weather is something beyond our control, the documentation
problem is not. [Each of us; programmer, programming manager and

Addressing the Problems of Program Documentation
0063--1



end-user, has the power to improve the situation. Okay, :so where do we
start? Well, like all good analysts and programmers, welstart with the
basics: defining terms and defining the problem. ’

WHAT 1S DOCUMENTATION ?

Documentation is a collection of documents. Getting out my good old
Funk and Wagnalls I see that a document is “something written or print-
ed that furnishes conclusive information or evidence.” Conclusive
means "putting an end to the question.” I guess that means that those
old binders full of paper which usually create more questions than they
answer don’t qualify as documentation.

There are many categories of documentation to be found in the typical
DP shop. Some categories of documentation and the things they may con-
tain are as follows:

Policies and Procedures--used to define the guidelines under
which the department should operate.

Project Documentation--includes project plans, estimated time
and cost for project completion, critical path diagrams,
status memos and meeting minutes.

System Documentation--includes high level HIPO charts, a nar-
rative system overview, and a list of all the programs, job
streams, data files and reports contained in the system.

Program Documentation--includes a narrative description of
the program, some kind of flowchart or other diagram il-
lustrating logic flow, a maintenance history, and narrative
descriptions of any complicated sections of code.

Operations Documentation--includes instructions for streaming
and/or monitoring jobs, instructions in case a job aborts,
report distribution instructions, and a 1list of contact
people for each of the systems maintained.

User Documentation--includes instructions for data entry,
pictures of screens used and reports generated by the system,
and helpful hints for problem resolution.

Different DP shops will have different combinations of the kinds of
documentation listed above. This is due, in part, to a different style
of work and a different range of needs from shop to shop. It is also

Addressing the Problems of Program Documentation
0063--2



due to the fact that programming is a relatively high turnover field.
As your programming staff changes and evolves, so does the prevelant
style of documentation.

This trend seems to continue because documentation is often considered
to be the sole responsibility of the programming department. No one
has attempted to standardize the process, so the content, accuracy and
format of the documentation is left to the discretion of the
programmer.

WHOSE DOCUMENTATION 1S IT, ANYWAY ?

Documentation belongs to everyone in the company. End-users,
operators, managers and programmers all benefit when the documentation
of DP systems and procedures is accurate, current and complete. Since
most smaller companies cannot afford to staff a full-time technical
writer, the actual creation of documentation may fall to the program-
mer(s). But the entire responsibility for defining documentation stan-
dards and absorbing the cost of creating and maintaining quality
documentation should not rest with the DP department.

Everyone who benefits from good documentation has to commit to the idea
of defining and enforcing documentation standards. Each part of the
company needs to realize how they would benefit in the long run by
taking the time and effort to confront the problem. If your DP depart-
ment consistently supplied quality documentation for all DP systems,
these are some of the ways that everyone would benefit:

Policies and Procedures--would ensure that all necessary
documentation was being created and maintained.

Project Documentation--would provide ongoing communication
about the resources required to carry out a request, as well
as a historical record on which to base future time
estimates.

System Documentation--would provide an overview of each sys-
tem, giving new programming staff a shorter learning curve
toward efficiently maintaining those systems.

Program Documentation--would make minor maintenance requests
the short and simple things they should be, and make major
modifications less complicated than they might otherwise
become.

Addressing the Problems of Program Documentation
0063--3



Operations Documentation--would allow the operations staff to
do their job more quickly and efficiently.

User Documentation--would provide end-users with quick
reference information, allowing them to solve some of the
problems that come up without having to incur the cost of
programmer or operator time.

Generally speaking, better documentation would lead to faster, better
service from the entire DP staff. Whether you work in an environment
where DP costs are billed directly to each department, or absorbed as
overhead, time savings will always mean money savings.

Virtually every DP shop has some level of documentation available, yet
often that documentation is not doing its job of "putting an end to the
questions”.

WHAT ARE THE PROBLEMS ?
I’ve run into all of the following problems to some degree:

Paper Overload-- This is when the documentation for the sys-
tem you have just inherited consists of six three-inch bind-
ers, thirty-seven assorted manilla folders and a box or two
of program listings. Every note that was ever taken during
the life of the system has been saved...somewhere. Good luck
finding anything that makes sense!

Inaccurate Information-- This includes misinformation, mis-
leading information and obsolete information. The scary part
is, this kind of documentation often looks very complete,
very organized and very "official”. It may have been top
quality documentation at one time, but unfortunately it was
so pretty that no one wanted to mess it up by updating it as
the system changed.

Missing Pieces-- Somehow, the one piece of information that
is vital to your understanding of the system is not avail-
able. Either it did not seem important at the time the
documentation was created, or it seemed like the kind of
thing that was just generally understood, or it used to be
there but it disappeared at some time and was never replaced.
By the time you figure it out you are so frustrated, you
probably won’t add your discovery to the existing

Addressing the Problems of Program Documentation
0063--4



documentation. Let the next guy struggle through it like you
had to!

Unorganized Information-- Lack of organization can cause the
same problems as missing documentation. The information may
all be there, but if you can’t find it, it still doesn’t do
you any good.

Unstandardized Documentation-- When generations of program-
mers and analysts have created documentation when and how
they saw fit, you may end up with a wealth of perfectly valid
documentation that is simply impossible to digest. The for-
mat, content and style of the documentation is upredictable
from system to system. The lack of consistency prevents any
intuitive familiarity with a system you’ve not worked with
before. Every new system you are assigned to maintain is
going to have its own set of problems. Does it have to have
its own style of documentation too?

No, it doesn’t. None of the problems listed above are unsolvable.
Actually, they are all related. They are all surface problems,
symptoms of a set of deeper, interrelated problems. They stem from the
lack of defined documentation standards, which in turn stems from the
unwillingness to invest the necessary time and money in first defining
the standards and secondly living by them.

WHY STANDARDIZE ?

Many people fight standardization. They feel that it stifles their
creativity, or they equate standardization with bureaucracy. This is
especially true of programmers and analysts whose job is to creatively
solve problems.

But let’s face it. Documentation is supposed to be a factual represen-
tation of our systems, not an exercise in creativity!

The real reason most people resist standardization is because it is
forced upon them. If you don’t give people any say in the rules they
have to live by, they are going to fight tooth and nail against them.
They are going to fight whether they agree with the rules or not, sim-
ply because they feel imposed upon.

Involve the people who will create and use the documentation in defin-
ing the documentation standards. This approach fosters cooperation and

Addressing the Problems of Program Documentation
0063--5



commitment. Also, these are the people who can best define exactly
what it is that is needed.

Build a team of qualified "experts", pulled from the programming staff,
the operations staff, DP management and the end-user population.
Assign them the task of defining documentation standards. The project
should basically follow these steps:

I Define your needs

II Explore your options

III Detail your requirements
IV Select your tools

V Streamline

VI Write it down!
VII Put it to work

IX Revise and refine

Defining your needs is a critical first step. Appendix A lists the
components we felt were important to include. This may give you a
starting point, but it is essential to the success of the project that
you define your own needs as clearly and completely as possible.

What is important from the user’s viewpoint may be quite different from
what is important to the programmer. The first time through, don’t
overlook anything. Keep track of all the ideas that come up. It may
be helpful to group the ideas into categories like system documenta-
tion, program documentation and user documentation.

Exploring your options means looking at all kinds of available tools.
Tools range from paper and pencil to sophisticated case tools and PC
packages. Your shop may already have some forms that have been used
successfully, but maybe they would be easier to use if you set them up
as Vplus forms on the HP3000. Or maybe there is a PC package out there
that produces the same kind of document, but provides some additional
benefits like an integrated data dictionary system. Your final
documentation system could be completely on paper, completely on-line
on the HP3000, completely on floppy disk, or any combination of the
above.

Detail your requirements. Now that you have a list of general needs
and an idea of the tools available to you, you can become more specific
about the form your documentation will take. There are many difficult
choices involved, but the object is to match the right tool(s) to your
requirements. At this stage, you want to define the essential in-
gredients for your shop’s documentation. You want to define not only
the general areas of documentation, but the actual details required in

Addressing the Problems of Program Documentation
0063--6



each of those areas. For instance, if you have decided that you need
documentation on data files you may decide that that will include
record layouts, blocking information, cross-referencing to all programs
which update the file, or many other possibilities.

Selecting your tools now becomes much easier, because you can eliminate
any that will not support your requirements. Having narrowed your
range of choices, you must now find a balance between such considera-
tions as ease of use, cost, training requirements and effectiveness.
These choices apply whether you are comparing one PC package to
another, an automated tool to paper and pencil methods, or anything in
between. Pick the single tool or combination of tools that best meets
your requirements.

Streamline. Review the list of requirements and the selected tool(s).
Now is the time to take a hard look at your decisions. It would be
nice to have every one of your documentation needs met, but is it prac-
tical? The reality is, if your standards are too cumbersome they will
be worked around. Make some compromises, if mnecessary, so that you
. don’t doom the standards to failure even before implementation.

Write it down! Your team has done a lot of work to define these stan-
dards. Don’t leave their implementation to chance. Prepare a document
that explicitly defines the new standards. Provide samples where pos-
sible. Provide instructions for using all the tools you have selected.
Publish the standards and distribute them to everyone who is expected
to follow them.

Put it to work. You need to plan for the implementation of the new
standards. If they represent a major change from the old style, you
may need to ease into the changes. People will have questions, and you
will run into situations that have not been planned for and don’t quite
fit into your guidelines. It’s not a bad idea to hold some status and
review meetings to keep things on track.

Revise and refine. Keep in mind that just because you have defined
some standards, you have not set anything in concrete. You’ll need to
work with the new standards on a day-to-day basis for quite some time
before you can really see what’s working and what’®s not. Don’t
paralyze yourself waiting for the perfect tool or the perfect solution.
Give it your best shot, then work with it for a while. Over a period
of time, the standards will be revised and refined until they really
are meeting your needs.

Once you have a really good, workable set of documentation standards
and guidelines, you will begin to see real gains made in the area of

Addressing the Problems of Program Documentation

0063--7



quality documentation. That first step leads to increased programmer
and operator productivity, increased program and system quality, and
better user support from the entire DP staff. Appendices A and B have
been designed to give you some ideas and to help you get started. Keep
in mind that the documentation effort needs continuing support from
everyone involved: DP staff, management, and end-users. Given that
support, you can break out of the cycle of:

poor documentation

I
v

high-cost, low-quality system support
|

|
v

poor documentation
and into the more desirable cycle of:

good documentation
|

I
v

high-quality, low-cost system support
|

|
\/

good documentation

Addressing the Problems of Program Documentation
0063--8



APPENDIX A
Documentation Requirements

Policies & Procedures

* Documentation Standards

* Coding Standards

Production Account Standards

Project Management Guidelines

Administrative Policies

Project Documentation

* Service Request

* Statement of Scope

* Project Plan

Defining the required documents

Mainly used for COBOL, defining
standards like paragraph numbering,
format of IF constructs, use of in-
trinsics, copylibs and macros

Defining security conventions,
naming standards, account structure

Guidelines on making time es-
timates, recording progress, making
status reports

Policies regarding things like work
hours, vacation, sick leave

Every request for service from the
programming, operations or tecnical
services staff is recorded on a
numbered service request. The
request is used as a vehicle to
record estimated and actual time
spent on a project, and to record
the project sign-offs.

A narrative on the scope of the
project, used mainly on larger
projects

Includes plan of action, time and

cost estimates for the project.
Can be free form, or follow a pre-
printed outline of the typical
project phases (analysis, code,

test, etc...)

Addressing the Problems of Program Documentation
0063-A-1



APPENDIX A

Documentation Requirements

* Project Log

* Status Memos

* Meeting Minutes

System Documentation

* System Flow Diagram

* Cross-reference of Jobs,
Programs, Files, Reports

* System Problem Log

* Contact List

Program Documentation

* Flow Chart, Warnier or
HIPO

* Program Narrative

* Maintenance History

* Imbedded Narrative

Details action taken by date and
amount of time spent

Required on a regular basis for any
substantial project

Minutes for any meeting involving
the user and/or the project team

High level input/process/output

Defining the interdependence of
processes and files

Includes date and time of problenm,
who reported it, who worked on it
and how it was resolved

List of contacts for the system in-
cluding programmer and/or analyst,
main user contact, controller

High level illustration of main
logic flow

Narrative description of purpose

A running report of changes made
including date, version number
programmer and one-line descrip-
tion. Should include reference to
the service request number.

Imbedded comments anywhere they are
needed to clarify the code

Addressing the Problems of Program Documentation

0063-A-2



APPENDIX A

Documentation Requirements

* Compile Instructions

* Current compiled listings

Operations Documentation

Job Descriptions

Job Run Instructions

Job Restart Instructions

* Report Distribution List

System Contacts

User Documentation

User Manuals

On-line Documentation

* Data Services Handbook

Which production compile job should
be used and/or related copylibs,
macro files or special prep
requirements

Stored in hanging folders, sorted
by system

Narrative of job purpose

Operator instructions for streaming
and/or monitoring the job

Operator instructions in case of
job abort or system failure

List of who is to receive report(s)

List of contacts for the system in-
cluding programmer and/or analyst,
main user contact, controller

Include system overview, data entry
instructions, sample screens and
reports, help section

Where possible use self-explanatory
input screens and/or on-line help
facilities

Defines who’s who in the DP what
services are offered, and how to
get help

Addressing the Problems of Program Documentation

0063-A-3



APPENDIX B
Pitfalls and How to Avoid Them

Programmer Resistance--First, be sure to involve the programmers in
defining the standards. Secondly, select the tools carefully to en-
sure ease of use. Avoid defining standards which appear to be no
more than red tape to the people who must create and maintain the
documentation. Keep the programmers involved in fine-tuning the
documentation process.

Management Resistance--Sometimes it’s the programmers who feel the
problems of unstandardized documentation the most. Management may
not be terribly cooperative, however, if they are approached only
with complaints about the current state of things. Do some of the
ground work before approaching management. Define the problem(s) in
detail, look into some of the available tools and solutions. Go to
management with a plan for change, well outlined and thought
through, not simply another complaint.

End-User Resistance--In our shop, the users pay cold, hard cash for
our services. They resist the idea of paying for more programmer
time to create documentation. You need to involve the users in the
definition of the standards so that they understand what you are
asking them to pay for. You need to foster the idea that they are
investing time and money now in order to save time and money later.
Perhaps you can compromise by billing for only half the time spent
on documentation.

Overkill--Once you have decided to define standards where there have
been none, it is easy to get carried away. Everyone involved in the
process of defining standards must keep in mind that in order for
the standards to work, they must be easy to follow. Having end-
users on the team will help in this respect because they will
require that you explain exactly why each document is needed. They
will not want to pay for busy work.

Reinventing the Wheel--The Jdefinition of standards is important, and
for the most part your needs will be unique. It is possible,
however, to spend far too much time defining your standards and
developing processes to support them. One thing to keep in mind is
that the goal is not perfection, or even excellence. The real goal
is to make steps in that direction.

Addressing the Problems of Program Documentation
0063-B-1



APPENDIX B
Pitfalls and How to Avoid Them

Anything can be designed to death, including standards. Set a time
limit at the outset of the project. Set a date by which you will
have the Documentation Standards document complete and stick to it.

It is also possible to spend more time than you anticipated in the
implementation stage if you decide to design your own forms or, as
we did, your own on-line system. Be sure you take enough time up
front to investigate the tools that are already available before you
decide to design your own. The Data Processing field is notorious
for reinventing the wheel. If that leads to a new and improved
model, that’s great! But it’s awful disappointing to spend months

in development and then discover there was a good solution already
available.

Addressing the Problems of Program Documentation
0063-B-2






	Addressing the Problems of Program Documentation

