An HP 3000 Approach to IBM's LIBRARIAN Techniques

Betsy Leight
OPERATIONS CONTROL SYSTEMS
560 San Antonio Road
Palo Alto, CA

As HP data center become more sophisticated, users are attempting to
introduce more standards and controls into their enviromments.
During the early stages of growth, the need for controls resulted in
automated batch processing, access restrictions, menu drivers, and
non-user scheduling. In today's enviromment more sophisticated
concepts such as file management and accountability are beginning to
come under scrutiny. File management concepts are not new. 1In
fact, IBM mainframe users have been controlling their development
files for years with the aid of PANVALET and ADR/LIBRARIAN. These
products separate test and production files, control source code
libraries, archive modules, and perform audit functions. Many HP
users now recognize the benefit to be derived from these techniques.

In this paper I will discuss the problems inherent in current
control techniques and describe possible solution pathways,
however, it is essential to establish unequivocally that the current
approach to development tracking is inadequate. Whether it is
recognized as such or not, one of the major functions of any data
processing department is the creation and maintenance of software.
This is not a process confined to development houses alone. Every
day, any MIS department could receive requests to modify software
and data. The efficiency and cost of development are instrumental to
the corporation's success because computer applications have become
an integral factor in the competitive struggle for market position.
The software alone can represent corporate assets valued at hundreds
of thousands or even millions of dollars.

Surprisingly, there are many environments that have no source access
or change restrictions. Programmers can access production source
directly. This approach should never be allowed, for two reasons:
First, the original source code can be destroyed. If a production
error results from programmatic changes, the original version is not
easily restored. Therefore, production can be delayed for several
hours, or in the worst case, for days. Second, there is no audit
track. Programmers are not restricted from making unauthorized
modifications directly to production files. Doesn't this
possibility worry you?

Even in cases where some restrictions exist, other problems can
arise.

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-Page 1



Current development procedures often result in a discrepancy between
source and object code. In other words, the master source file does
not recompile into the production object file. Since it is
extremely difficult to recreate source code from a load module,
there is no way to ascertain that all the object code features exist
in the source. Should the source require a change, there is no
guarantee the resultant object will have the same functionality as
the original load module. Production can and does often fail as a
result.

Another common scenario involves multiple programmers who make
change simultaneously to the same source module. In this case, the
last programmer to update production wins because previous fixes are
obliterated. The net result is wasted effort and invalid object
code.

Although these and other problems are obvious to many, a dichotomy
begins to appear when it is discovered that many HP 300 centers
continue to operate in a reactive mode without introducing
standards. Direct user support is considered the primary function
of development and operations. This translates to a daily goal
centered on processing user-requested jobs, completing batch
production, and distributing reports. Although these functions are
routine tasks of operations, one should not overlook the basic fact
that the efficiency and accuracy of operations' output rely upon the
cohesiveness of the software components. Just as a solid house
cannot be built upon shaky foundations, reliable computer processing
cannot be achieved wunless the associated code shows internal
integrity.

The component integrity problem is one HP 3000 centers are not
managing effectively. Instead, the issue is currently relegated to
the "wish list" and usually escapes notice. This policy is not a
solution. Although operations can proceed error-free for months,
inevitably a simple oversight snowballs into a catastrophe.

The important point is that software development and file
maintenance procedures directly affect operations. Should programs
fail, run out of order, or produce invalid data, the operations
department will be required to rerun procedures. To avoid erratic
production problems, file management issues need to graduate from
the "wish list"™ to the "current projects list"

It would be inaccurate to give the impression that HP users are not
addressing this problem at all. Some are, but the degree and depth
of resolution vary widely. Let's examine some checkpoints along
this range.

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-Page 2



Various Approaches

The simplest procedure is no procedure. In other words, programmers
merely log directly into the production account, modify the code,
test it, and recompile. All three steps occur within the production
location. As mentioned earlier, this method has no safeguards and
is extremely risky.

A slightly more sophisticated approach requires programmers to FCOPY
or CHECKOUT source code from the production account and move it into
a development location. Unless stringent controls exist, there is
no guarantee that only one individual has checked out a particular
module. Furthermore, programmers are not restricted from accessing
production accounts, nor is there any way to audit their access.

The production-to-development strategy Jjust described can be
envisioned at three levels. At the lowest 1level, the development
area may be nothing more than an amalgamation of programmer groups.
In this case, each programmer copies, develops, and tests in his own
group. There is no standardized testing environment. A second
level maintains a development account that duplicates the production
account. Thus, each programmer can be confident that alpha testing
is occurring in an enviromment that closely resembles production
with accurate, up-to-date object and load modules.

Ideally, production and development accounts should exist on
separate CPUs to eliminate completely the possibility of direct
access to master files. Of course, this approach is not always
possible and separate accounts on one CPU will produce adequate
results.

Once the development effort has been completed, what happens to the
code? My experience suggests the same developer simply overlays the
original production files with the enhanced code. Such alpha
testing does not represent adequate control because the programmers
who test their own work can easily overlook bugs. Besides, they tend
to test what works rather than attempting tests to "break the code".
For this reason, it is strongly suggested that a Quality Assurance
(QA) process be initiated.

There are several ways to initiate such a procedure, depending upon
company size and resources. Smaller companies may have alternate
programmers QA test their colleagues' development efforts. The
retests are usually performed in the development account. Larger
organizations may hire an individuval or staff whose sole function is
QA testing. When the process develops to this extent, there is
generally a separate QA test account that reflects both the

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-Page 3



production and development environments.

Should a QA process exist, it is vital that the developer relinquish
all claim to the code when it moves to the QA phase. Only one copy
of the developing code should reside in either the development or QA
area. If both accounts contain separate copies, undocumented changes
to the development files may not be incorporated in the QA version.
Thus, the final production version would not include all code
changes. This safeguard is commonly overlooked. Similarly, if the
QA analyst locates a discrepancy in the modules tested, the code
should be returned to the original developer for revision. It is
now QA's turn to relinquish all eclaim to the code until it is
returned by the programmer.

At the conclusion of QA analysis, another step can exist. A higher
level manager should perform a final approval on the development
effort to ensure all checkpoints and tests have been satisfactorily
completed.

Followed final approval, the enhanced code is ready to be moved into
the production location. An FCOPY or move will overlay the original
modules. The destruction of the earlier version could be
detrimental if the revised code contained errors and no backup copy
of the original files existed. Therefore, the original modules must
be stored to tape prior to enhancement installation.

The update step can be both time-consuming and error prone,
especially when 1large numbers of files are involved. To make
matters worse, a compile step and JCL update must also be
coordinated. Standards cannot be eliminated at this final stage.
If they are, production may be under old JCL or inaccurate object
code resulting in production that aborts in the middle of the night.
Sound familiar?

When they exist, the aforementioned procedures are usually tracked
on paper with a form. An originating service request often moves
with the code from production to the programmer to the QA analyst.
Each step along the process is signed off on the form. Such a
tracking method is inadequate for several reasons. Most simply, the
paper can be lost or misplaced, or any member of the chain can fail
to record his involvement. Most importantly, there is no assurance
that the form really reflects what has occurred.

Individuals have been known to misrepresent information for a
variety of reasons -- often in the name of speed. A manual paper
tracking method can be synonymous with no tracking method. An
appropriate, complete, and accurate tracking procedure should be a
primary concern to the development and audit staff.

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-Page 4



Obviously, development solutions are very flexible. They can evolve
through a number of steps and can encompass varying levels at each
step.

An idealized strategy

It is possible at this point to extract an idealized development
strategy based on the previous discussion. Needless to say each
environment will require additions to or deletions from this ideal.
However, the following does describe a general goal based on my own
experience.

In this idealized scenario, three accounts exist: a production or
master, a development, and a test account. Each account structure
is a carbon copy of the others to the extent that files moved from
location to location retain their original jobname and group
designators. Only the account names change. In this way, it is easy -
to visualize the 1link between a developing program and its
originating master.

When files move between the production location and the development
area, a copy should be made. The original source should never be
destroyed. However, movement between development and test should
result in only one copy at either location.

Once QA has approved all changes, a project leader or manager should
verify that adequate and accurate test procedures have been
followed. Only at this point should code be moved into the
production library. Such updates could occur once a day if desired
and should be performed by operations or a production librarian.
The latter is my recommendation as it restricts the responsibility,
control, and audit functions to one individual.

Prior to update, the original production should be verified and
stored. Without this step it is much more difficult to return to a
prior version in the case of error.

Software tools that perform file tracking and auditing procedures
automatically without information 1loss are available. The tools
also force participants to conform to structured rules to ensure
steps are performed in sequence along the development pathway.

In order to implement a structured development strategy with some
components of the idealized route in your enviromnment, it is vital
to define goals. Possible goals include but are not limited to:

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-Page 5



1. Establishing controlled access of production modules.

2. Creating a set of rules to minimize file transfer and
maximize efficiency.

3. Ensuring a link between compatible object and source
code.

4. Verifying all associated files, such as JCL and
databases, are saved and moved to production
concurrent with source and object updates,

5. Developing a methodology to track file movements
accurately.

Development strategies, an idealized solution, and the goals to
consider in achieving the ultimate solution have been described. To
configure your site along the ideal path, four steps are necessary.
First, identify and flowchart the specific attributes of your best
solution to software development based on your needs. Second,
assess the components of the development strategy that are currently
employed. Third, compare the current stiucture to your idealized
goal and prioritize change requirements. Fourth, develop a project
plan from the priority list and implement the necessary changes.

Unfortunately, it is not possible to provide flowcharting
assistance in this article. Each development effort is unique.
However, the scenarios previously described should provide hints and
suggestions for the first step.

Several areas of concern can be identified during the evaluation
process of current strategies. Questions that should be asked during
this analysis are included here.

After these data are collated, it is possible to perform a
comparison between current methodologies and the site specific
optimal development path. This third or comparative step is, once
again, subjective. Each individual must determine for himself where
the current procedure diverges from the idealized goals.

Prioritization of differences is dependent on site-defined needs.
For example, the auditors may be clamoring for file movement
control. Thus the implementation of tracking procedures would be the
primary concern. On the other hand, QA testing can be the vital
link. In either case, auditors can prove to be a wonderful resource
in this evaluation process. The comparison step is often the
easiest in the four-step strategy. It draws results from the
analysis required to accomplish the previous steps.

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-Page 6



analysis required to accomplish the previous steps.

Following prioritization, implement a project plan to attain the
stated goals. Generalized solutions should have evolved through the
process of current assessment, goal derivation, and priority
setting.

To summarize, the need to control and track the software development
cycle in becoming increasingly apparent. Without standardized
controls it is virtually impossible to establish the validity of
software modifications. This is most important in larger
environments, especially those that manage enhancements for remote
locations.

Therefore,it 1is important to move toward an idealized software
development process. This goal can be accomplished by comparing
the optimal solution to present controls and implementing plans to
minimize strategy gaps. Manual tracking procedures can be used for
this purpose, if necessary. Fortunately, the industry also offers
software tools for an automatic solution.

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-Page T



5.

10.

Evaluating Software Development

FILE LOCATION: Where do the production files reside?
Are all files contained in one account? Several
accounts?

DEVELOPMENT ACCOUNTS: How are the development areas
configured? Does each programmer maintain a unique
development group or does all development occur within
the same group?

ACCESS RULES: What rules are implemented to control
file movement between production, development, and
testing? Who has access to these locations? When
does access occur? Are there any preconditions, such
as management approval?

ACCOUNT STRUCTURE: What is the structure of the
production, development, and test accounts? Are they
duplicates of one another?

VISIBILITY: How much visibility of file movement
exists? Can only one programmer gain access to-a
file at any time? Can all changes made by each
programmer be verified in the content of the final
code? Does a validation check for compatibility of
source and object occur?

QA ANALYSIS: Is there an established need for
separate Quality Assurance testing? Does the current
development effort include QA testing? Are there
plans to move in that direction? Where will QA
testing occur? Does the account structure duplicate
production and/or development accounts?

FINAL APPROVAL: Does tested code pass through a final
checkpoint prior to re-entrance into the production
account? Who is responsible for this final check?
UPDATE STEP: Who is responsible for moving tested code
into the production account? At what time(s) does
this occur? How much error exists within the current
strategy? What can be done to reduce inaccuracies at
this step?

VERSION CONTROL: Are original production files

by newly modified code? Where do copies of old
versions reside? Are all versions verified and
tracked? What type of recovery procedure is available
if new code fails? How does this occur? How complex
is the recovery?

AUDIT TRACKING: How are file movements tracked? Is
there visibility of when, why, how, and by whom files
are moved? Can inadvertent purges be identified?

An HP 3000 Approach to IBM's LIBRARIAN Techniques
Paper 0068-Page 8



	An HP 3000 Approach to IBM's LIBRARIAN Techniques

