
Software Quality

Let's Discuss This "Can of Worms"

Robert Mattson
9545 Delphi Road S.W.

Olympia, Wa 98502

:t=ntroduction

I assume everyone developing software wants it to be of
the "highest quality." Recently, I've focused my attention
on this goal, what it means and how to move toward achieving
it. This has led me to some insights about some key
concepts that affect the achievement of the goal "high
quality software." Further, I've developed a practical
technique for "defining" and "measuring" quality. I wish I
had understood these concepts and this technique years ago.
It would have improved a lot of software with which I've
been associated. I hope the following discussion provides
"food for thought" and a technique you can apply. My goal
is to contribute something that will be used to improve the
"quality" of software.

Why Care About Quality?

It seems that our lives are filled with the "reasons" for
producing high quality products. Publications, television
and people appear to be constantly communicating the reasons
for and exhortation to the production of high quality.

The storyline is the same related to systems/software.
There are numerous books and technical articles which tell
of the high cost of "poor quality" and the savings from
"high quality" systems work. The cost of poor quality in
terms of system development cost, development time, user
dissatisfaction and software maintenance is today stagg­
ering, if one extrapolates from the published numbers.

Yet, what would we find if we could "magically" measure
the "quality" of all the software produced this last year
with that of ten years ago? Have we made significant gains
in the "quality" of software? I imagine that we could find
some examples of higher quality software than that of ten
years ago. But what about the average piece of software
from last year? I'm afraid I'd have to say that, in my

Software Quality - Let's Discuss This "Can of Worms"!
0079-1

opinion, on average it isn't significantly better than ten
years ago. The literature tends to support this opinion.

I heard a well traveled "guru" of this business recently
state that "the majority of systems people haven't read a
systems related book since they got out of school." If this
is truly the case, is it any wonder our software isn't of
the highest quality or at least getting better.

If this is the case, why is it? Partly, I believe it
stems from the "cultural attitudes" of the people developing
the software. Systems workers in this regard have been
influenced by the same "cultural attitudes" as the "blue
collar" worker or any other worker in our country. The
average worker in the u.S. today would not rate "producing
what they produce at the highest quality" as even close to
their most important goal in life or more significantly "at
work." They might pay lip service to it but you probably
wouldn't find it rated very high if you could tap their true
value system.

There are other reasons that software is not of the
highest quality. Many times we are not asked to produce
high quality. Or we are asked but not given the resources.
Or we see that what is rewarded is not high quality, so we
"play the game." There are numerous other "environmental"
causes.

In spite of the gloom, there is a brighter view. There
are people and groups of people who greatly value the goal
of excellence and believe in producing high quality products
including software. These people want to and, in some
cases, are producing top quality software. Others want to
increase the quality but aren't sure how. Hopefully, it is
to this latter group that the rest of the concepts and
techniques outlined will be of the greatest benefit.

Why is "Software Ouality" a "Can of Worms"?

This issue of "software quality" is a "can of worms" ...
because there seems to be so many rigid "beliefs" about what
is "True". As I started to explore this issue, I asked a
number of people to tell me what makes for "high quality
software". The answers were anything but in agreement.
Some people said "maintainability", some "efficiency", some
"meeting the users expectations". Some even talked in terms
of the fact that there are "probably a number of things".

Software Quality - Let's Discuss This "Can of Worms"!
0079-2

But the general trend was definitely toward one or two
strongly felt parameters.

Additionally, this area is one that has a lot of "nerves"
attached to it. If you want verification of the sensitivity
of the subject, try leading or doing some code/software or·
design "walkthrus." Such discussions can easily and quickly
degenerate into heated arguments if someone happens to touch
another persons pet quality belief (nerve).

The literature I found didn't seem to add much enlighten­
ment to the issue of software quality. There seem to be a
number of "camps" or "approaches." Probably the most
visible approaches are the "better testing" and "structured
analysis" ones. As an aside, what is most surprising is how
little one can find on the SUbject that goes beyond vague
generalities.

A significant consequence of this disagreement and lack
of attention about what constitutes software quality is
either lower software quality or at least not much
improvement. Why is that? Well first of all, two people
with rigidly held opposing views seldom talk or learn from
each other. And we know, when people can't or don't discuss
an issue they seldom can learn much from each other. It
follows that if we aren't learning we aren't improving.
Additionally, people pay lip service to "quality" without
realizing the fuzziness of their meaning. This lack of a
clear "model" and definition many times results in each
person "doing their own thing."

So, what can we do to get control of this "can of
worms?" I believe the first step is to look at the whole
issue in a new way. The second step is to apply the new
techniques that flow from this new view.

Software Quality Viewed as Ouality Parameters and Values

The key to understanding software quality is to apply a
new "model" to it. This nMattson Model of Quality" starts
with an understanding of the mUlti-dimensionality of the
"quality parameters" related to software. Additionally, one
needs to understand the concept of "values", or the "weight"
placed on a parameter. Then to complete the model we need
to understand about the differences between the "judges."
Finally, for greatest benefit, we need a technique to apply
the "model." Let's take each in turn.

Software Quality - Let's Discuss This "Can of Worms"!
0079-3

Quality Parameters

What do I mean by "quality parameters" or "QPs" if you
will? "QP"s is a description for all the categories or
areas of measurement by which one might jUdge software
quality. For example a common QP is "speed". Another
common QP is "documentation." Following is a reasonable
list of the QPs for a "program".

Program Quality Parameters:

Functional Specifications
Suitability / Job Effectiveness
Speed / Responsiveness
Resource Impact
Robustness / Forgivingness
Adaptability / Flexibility
User Acceptance / satisfaction
Business Cost Effectiveness
User Independence / Support
User Documentation
Ease of Learning
Ease of Use / User Efficiency
Implementation / Installation
User Interface Uniformity
Development Task Management
Cost to Develop
Time to Develop
Test Plan / Testing
Technical Review / Walkthrus
Defects / "Bugs"
Maintenance Time/Cost
Maintainability
System/Internal Documentation
Adherence to Standards
Integration

The most important thing to notice is that there are
many different "quality parameters" by which we can measure
software. conversely, there is not just a single measure.
In other words, "bugs/defects per line of code" or
"structured code" or "maintainability" are only one of many
possible QPs. Notice also that each of these QPs has itself
potentially "sub-QP". In other words, "documentation"
might be divided into "user" and "system" documentation.

Software Quality - Let's Discuss This "Can of Worms"!
0079-4

Part of the challenge in this approach is coming up with a
list of Qp that is comprehensive without being unmanageable.

How then do we measure each QP? Some QPs such as
"speed" may have quantitative measures. But for most QPs
there is no clear quantitative measurement. For example
what is the quantitative measurement for the "quality" of
"system. documentation". The strategy that seems to work best
in these cases is to discuss the parameter in terms of three
levels: unacceptable, ok, excellent. Thus, taking our .
example of the QP "system documentation" we can usually
define what is unacceptable, what would be ok, and what
would be excellent. Many times it helps to use examples or
references to standards to communicate these levels.

Ah, but you say, what is not acceptable "speed" for one
program is excellent for another. That is why there is no
such thing as THE quality way, technique or point. Rather,
excellence must be defined for each situation. That is why
we must discuss and come to agreement as to what the various
levels are for each particul~r piece of.software (for
example each program). This discussion helps define the
different views of quality for each QP. This is.very
important. We assume too often, I'm afraid, that each party
involved in the development of software have the same'
measure of excellent quality for any particular QP.

How does one start to apply this concept? Refer now to
Exhibit #1. This is a "Software Quality Form" that is used
for documenting "quality" for a program. This form shows a
reasonable set of QPs for writing a program and has room for
documenting key points related to the different quality
levels. See Exhibit #2 for what this form would look like
when we fill out the "Quality Level" fields.

This form is filled out before a program is developed.
Let's focus for the moment of the columns labeled "Quality
Parameters", "Unacceptable", "Ok" and "Excellent". The·
person who is responsible for doing a program fills out the
"Quality Level" columns on the "standard" program version of
the form. In addition, they add any other QPs that might be
of special significance. The description of the levels for
each QP is discussed with the persons project leader and/or
supervisor. Some of it can be discussed with the user. The
purpose of the discussion is to get an agreed understanding
between the parties as to the definition of levels of
quality for each QP for this program.

Software Quality - Let's Discuss This "Can of Worms"!
0079-5

You may have noticed some other columns on the form. To
understand the reason for these and their use we need to
address the next dimension of the problem••• that of "value"
ratings.

The concept of "Values".

I've describe above how to establish the QPs and specific
quality levels by which we can jUdge the software. Now we
need to discuss the concept 'of how much "value" we place on
each.

The concept of "value" has to do with the "weighting" we
put on achieving the "excellent" or "ok" level of "quality"
on any QP for this program. In this technique a "value" is
placed on the achieving of the "ok" and "excellent" level of
each QP defined. These are "relative" values. In other
words giving one QP level a 10 and another a 20 means that
achieving the second(20 pt value) is twice as important as
achieving the first (10 pt value).

Why do we need/want to do this? First, because sometimes
the aChieving of an excellent level in two QPs are counter
to each other. For example code size and user flexibility
are usually mutually exclusive. In this case the developer
needs to know which QP to emphasize. other times the QPs
are not counter to each other but there is simply not enough
"time" or "resources/dollars" to achieve excellence in all
areas. In this latter situation, we must know where to
place our emphasis.

The numeric "values" also give us more information than
such statements as "speed is important" or "I want us to
emphasize maintainability". The relative values of the
numbers provide us with much better information on "how
much" we want to emphasize one QP over another.

Let me give you an example. I want to develop a program
that makes a "fix" to my database and I know I'll only use
it one time. This database has 100 million records. I
define the QP "speed" in terms of unacceptable, ok, and
excellent. I define the QP "system documentation" in terms
of'its three levels. Note: I'm only using two QPs for
clarity but one would have "defined" many QPs and placed
"value" on aChieving their different levels of quality.
Here's how those "values" might look.

Software Quality - Let's Discuss This "Can of Worms"!
0079-6

----- Quality Level -----
"OK" "Excellent"

Speed
System Documentation

10
5

50
10

Now if I had to make a choice between achieving the
excellent level in "speed" or "documentation" which would I
want? What if chasing one means the other QP will only be
achieved at the "OK" level?

I believe software professionals make these kind of
trade-offs in their head. At the same time I've found that
far too many times the trade-offs made by one person are in
disagreement with those another might have made. This
model/technique allows for the good communication of the
possible trade-offs. This model/technique will help avoid
the frustration, conflict, wasted dollars and effort
associated with making the "wrong" trade-offs.

Implied in this technique is an associated rule. The
rule is that unless agreed to by the "players" in the
process (i.e. user, manager, project leader, programmer team
associates, etc) it is not acceptable to achieve the
"unacceptable" level for any QP. This is true even if this
QP has little value. If the "significant others" agree to
achieving the "unacceptable" level then it is alright to do
this. Note, this new agreement has really just been to
define "ok" to mean whatever "unacceptable" had been. A
special case is when a QP is valued at zero. This means
that no value is placed on this parameter and anything is
probably acceptable.

Now, the reason for the "value" columns on the Software
Quality Form is clear. This is where the "values" can be
"set" for a piece of software. The doer assigns "values"
after filling out the description of the quality levels.
These are also discussed with the supervisor and/or leader
and where appropriate with the user. All parties come to
agreement on what the relative values of each achievement
for each QP will be. Notice, there is not a value column

. for the "Unacceptable" level; this is because there is NO
value in doing this!

Software Quality - Let's Discuss This "Can of Worms"!
0079-7

A Word About IIJudgesll

There are a number of people who will ultimately jUdge
the "quality" of a piece of software. These "judges"
include the "builder", the builder's associates, the users,
the builder's manager, "outsiders", etc. We may not wish to
have it jUdged but it is a "fact of life."

It may be obvious by now, two different people ("judges")
would probably do the following differently if asked to do
it "separately".

1) Describe the QPs by which to jUdge software Quality.
2) Describe what "unacceptable", "ok" and "excellent"

levels of achievement are for a particular QP for a
particular piece of software.

3) Rate the relative" importance (values) of the QPs and
their levels for the piece of software.

The important thing to understand is that this happens
all the time in the "real world." What confounds us many
times is that we unconsciously assume that the result of the
three steps above is same for both parties. Then we wonder
why our supervisor is less than happy about the "excellent"
work we just completed. Or if we are a supervisor we wonder
about the "competence" of our employee who completed such
"poor quality" work. Further, because we have no formal and
written quality specification we have to rely solely on our
memories of whatever discussions we might have had about
this program. If it is obvious that the parties "disagree"
on the "quality" of the software, relying on memories will
usually not lead to a productive and positive resolution.
Rather, what usually happens is either no discussion takes
place or one does but it results in emotional e~changes.

It is very enlightening to take a Software Quality Form
for which we've completed the quality level specifications
only and give it to all "interested" parties. It will be
enlightening to see how the different people will value the
different QPs and levels of quality.

Is there a better way to deal with the differences that
so commonly arise currently? Yes, the better way is to
apply the "model/technique" I've outlined.

Software Quality - Let's Discuss This "Can of Worms"!
0079-8

using the Technique --- The Software Quality Form

You've already been introduced to the Software Quality
Form. The use of it is fairly straight forward but there
are a few additional steps in its use. Here are the steps:

1) Discuss, decide and list the QPs that you want to use
in the jUdging of this type of software.

2) Discuss, decide and document what each level of
achievement for a QP would be.

3) Discuss, "agree on" and document the relative "values"
to place on each level of achievement for each QP.

4) Add up the Excellent column of "values"
5) Have the builder and one or more of the other "judges"

rate each QP for achievement of the goal.
6) Total the rating points for each "jUdge" and calculate

the percent of "Excellent" achieved.
7) Discuss the difference in ratings and the ways to

increase the "excellence" (percentage) next time.

It sounds simple, doesn't it? And really it is! It does
take a little time. But the time is very small compared to
most software development efforts. The second time it is
done will be faster than the first, the third time faster
than the second, and so on. The QPs will tend to be
established and not changed for each new program. What will
change is the definition of "Ok" and "Excellent" levels of
achievement as well as the value placed on each. But even
there, you'll see a lot of re-use of descriptions and
similar values for somewhat similar software.

The use of this form will improve the quality of
software. Why? First, just using this technique will be
helpful in discovering how often "quality" is poorly
defined. Everyday, you'll see the "word" quality used as if
its meaning was unmistakable. Having a better understanding
of the nature of "quality" will allow one to handle this
fact. Secondly, people will spend time thinking about what
excellence is. Consequently, they will have clearer goals
for achieving quality. Therefore, they will be much more
likely to develop the features that result in "quality."
Conversely, less time will be spent doing the wrong thing or
emphasizing the wrong QP.

Software Quality - Let's Discuss This "Can of Worms"!
0079-9

Conclusions

There is no "absolute", "universal", and "always" way to
measure the level of achieved software quality. Neither,
however, is quality only in the eye of the beholder. There
is a middle ground. The quality of most software can be
jUdged on the basis of some "quality parameters" or QPs.
For each QP there are unacceptable, ok and excellent levels
of achievement. Each of these levels has a relative
importance to the various "judges" of the software. The
QPs, levels, and values can be established for any piece of
software. The product produced can then be evaluated
against these pre-established measures. We can then
calculate the "level of excellence" achieved as a percentage
of total excellence conceived. This model/technique makes
significant improvements over the simplistic and/or poorly
defined methods commonly employed.

This conceptual model can be applied to the "real world".
The use of the Software Quality Form is an efficient way to
do this. The benefits of applying ,this model are easily
worth the time/cost spent. "Quality" will improve because
we will have a clearer picture of what it is. what we want
and whether we are attaining it!

Software Quality - Let's Discuss This "Can of Worms"!
0079-10

The Goal IS Excellent Systems

Software Quality Form
System Name: Est. Time:
Program Name- Actual Time:
Date: / / Assigned To: Reviewed By:

Quality Quality Level Rating
Parameters Unacceptable OK lIalue Excellent lIalue Doer Rev.

F-.n:tional
Specif i eat fens

SUi tabi l f ty
Job Effectiveness

Speed
Respons Iveness

Resource I~t
Overhead

Robustness
forgivingness

Adaptebi l I ty
Flexlbtl ity

User Acceptance
Satisfaction

BusIness Cost
Effect iveness

User Independence
SUpport R~i red

User Doamentation

Eese of Leomlng

Ease of Use
User Efficiency

laplementatfon
Installation

User Interface
Uniformity

Developnent Task
Management

Cost to Develop

Time to Develop

Teat Plen
Testing

Technical Review
Walkthrus

Defects
uBUIIS"

MaIntenonee
Time & Cost

Maintafnabil ity
Int. DocUDentat ion

Acl\erence to
Standards

Integration

Comments: TOTALS

% of Excellent
Copyright 1988 By R. Mattson

Exhibit #1

---~-- ------
Software Quality - Let's Discuss This "Can of Worms"!

0079-11

. Software Quality Form
System Name: ~$/AJG- Symm Est. Time: tJo nIlS.
Program Name·I?4iSOOa -:TN1J01C.e Ai9(e$,$O(' Actual Time::Ir,.~,I:\::h:I":'~:~=::====:=====~
Date: .,. lu IS8 Assiqned TO:S.1'At«6/e. Reviewed By: 7?lYIa'/kbJ

Quality Quality Level Ratinq
Parameters Unacceptable OK alUE Excellent alUE Doer Rev.

s~~~~~~ Mr«18. D.""~])eLI Q~Q tSA:l!. 2.0 ••ro;,:l!E.~S~~e.. ~ 40 40

uss~~~ ~:~.::- tot ~eQ. ~C£rUJ. rAWr..~ 5 t-.~~:, '-l~r'S /0 5 S
User Doc&lllentation No Ul!l.~ c:,~ l...I.t!ln 1=,lJp 2 ~:::~ M&!L~nl.c ell 4 2. Z

Ease of Learning ~~~~" L T: 'b~' G.T. INIl. 2 l~:~~~q;~~1dI 4 4 4

Deve..=n~alk 'iio~~:~,t.:; ~ ~:~::I!.~Z· 10% /D ~~~~&J)~~=: 20 ID /0
Coat to Develop _... -.... ~ ;-'.It.A &'O~-20~ 10 l .7••'000 2D JD 10

Time to Develop G.T. 8b I\L~ I 4D-R~ Jab.. 10 1...7. 4D I\~ 20 If:) 10

1--------+---"-----c""\"'"'7""'zt\tr>'O. .\J),~ ~J.-~ ~

Copyrtght 1Y88 BV R. Mattlon \ The Goal is Excellent SyatCllS

Exhibit #2

--
Software Quality - Let's Discuss This "Can of Worms"!

0079-12

	Software Quality - Let's Discuss This "Can of Worms"

