
MAKING SHORT SHRIFT OF SORTS

Charles Sullivan
RunningMate Software

3001 I street
Sacramento, California 95816

l:BTRODUCTION

This discussion examines the variables that affect sort
performance. Benchmarks will be presented which compare
both the hardware and the software of the various HP3000
systems. An attempt is made to compare HP3000 sort perform
ance to the Digital Equipment VAX 11/780.

ABOUT THE BENCHMARKS

Most of the benchmarks shown here were run several
times to ensure that the results presented are reasonable.
Unless otherwise noted, the Series 48 and Series 70 had MPE
disc caching turned on, the Series 48 had three megabytes of
main memory, the Series 70 had eight, and the Series 950 had
thirty-two. Each system had two or three disc drives which
were a combination of 7933H and 7937H discs. The Series 950
was running the 1.0 release of MPE XL and the other two were
using M~E V, either UB-Delta-1 or V-Delta-1.

KPE Dl:SC CACRl:NG

MPE disc caching, as implemented by MPE V SOftware, has
an interesting effect on sort performance. When there is
plenty of stack space for the sort intrinsics, disc caching
actually degrades performance. But when stack space becomes
relatively scarce, disc caching speeds up sort performance,
sometimes very dramatically.

For these tests, whose results are shown on the next
page, the parameters for MPE disc caching, when turned on,
were: sequential fetch quantum = 96 sectors; random fetch
quantum = 16 sectors; block on write = no. The computer was
a Series 70 and 100,000 records were processed.

MAKING SHORT SHRIFT OF SORTS 0082-1

TABLE 1: EFFECT OF DISC CACHING ON SORT PERFORMAHCE

CPU seconds
CPU TIME DATA

MPE disc caching
Words available for

Sort/V workspace OFF ON

24,40<;> 128 163
20,000 134 181
16,000 143 204
12,000 159 234

8,000 190 309
4,000 312 568

WALL TIME DATA
Elapsed seconds

MPE disc caching
Words available for

Sort/V workspace OFF ON

24,400 346 366
20,000 392 417
16,000 444 490
12,000 584 498

8,000 838 770
4,000 1886 1053

PROCESSOR COMPARISON

As you would expect, the more powerful the CPU, the
quicker the sort. At least this is true between the MPE V
computers. But the Series 950 is quite a contrast to the
Series 70. A sort running with no competing jobs will
usually finish sooner on the Series 950, but will consume
more CPU resources. One supposes that the "fault" for this
lies in the software of the 950, rather than in the hard
ware.

MAKING SHORT SHRIFT OF SORTS 0082-2

TABLE 2: BPFECT OF SYSTEM PROCBSSOR ON PBRFORMANCB

CPU Minutes
Number of 128-
byte records Series 48 Series 70 Series 950

10,000 0.74 0.22
20,000 1.61 0.49
30,000 2.52 0.76
40,000 3.51 1.07
50,000 4.48 1.40 2.02
60,000 5.45 1.72
70,000 6.54 2.03
80,000 7.49 2.35
90,000 8.54 2.67

100,000 9.56 3.01 4.20
200,000 7.00 9.21
300,000 10.54 14.15
400,000 14.60 19.83
500,000 18.05 25.08

CPU TIME DATA

Total Elapsed Minutes
Number of 128-
byte records Series 48 Series 70 Series 950

10,000 1.20 0.58
20,000 2.61 1.24
30,000 4.10 1.95
40,000 5.66 3.00
50,000 7.35 3.85 2.18
60,000 9.09 4.69
70,000 10.70 5.64
80,000 12.42 6.46
90,000 13.94 7.05

100,000 15.65 7.73 5.28
200,000 17.20 18.04
300,000 29.58 27.13
400,000 39.95 36.51
500,000 50.56 45.97

WALL TIME DATA

ALGORZTJDI COMPARZSON

Hewlett-Packard's standard sort package uses Floyd's
Treesort algorithm while SortMatePlus uses Singleton's
Quickersort variant. Another, equally important, consider
ation is that HP's sort confines itself to the user's stack
while SortMate uses extra data segments.

MAKING SHORT SHRIFT OF SORTS 0082-3

For these tests, 100,000 128-byte records were sorted
with MPE disc caching turned on. The sort was initialized
by calling SORTINIT, the records were sent to the sort with
the SORTINPUT procedure, and records were retrieved by the
SORTOUTPUT procedure.

TABLE 3: EFFECT OF ALGORITHM ON SORT PERFORMANCE

CPU TIME DATA CPU Seconds

Processor Work Space HP Sort SortMateP1us

Series 48 16K words 638 380

Series 48 2SK words 523 380

Series 70 16K words 204 114

Series 70 24K words 163 114

WALL TIME DATA Total E1apsed'Seconds

Processor Work Space HP Sort SortMateP1us

Series 48 16K words 1034 482

Series 48 2SK words 800 482

Series 70 16K words 490 189

Series 70 24K words 366 189

THE VAX, THE HP3000, AND BACK-END PROCESSORS

For better or worse, Digital Equipment's VAX 11/780
has become an industry-standard reference point. For years,
it was stated that the VAX 11/780 was rated at about one
million instructions per second (1 MIP). [I use the MIP
only because it is a widely-used way to compare different
computers.] Now most observers believe that the 11/780 exe
cutes at about 0.5 MIP in a commercial processing environ
ment. The upshot of all this is that the HP3000 Series 68
and 70, which were always considered merely the equal of the
VAX 11/780, can now be seen as clearly superior machines.

MAKING SHORT SHRIFT OF SORTS 0082-4

The VAX benchmarks are taken from the February 1, 1986
issue of Computer Design, Database Accelerator system
Relieves Sorting Bottlenecks, by Walter A. Foley. Mr. Foley
is president of Accel Technologies (San Diego). Accel makes
the DBA 1000, a specialized sorting machine which can be
used to off-load a host processor. In the following bench
marks, the DBA 1000 was attached to the VAX 11/780 via
Ethernet. According to Mr. Foley, the Ethernet connection
was not a bottleneck in the test, rather it was the speed
of the VAX file system which prevented even better results
for the DBA 1000 benchmark.

TABLE 4: VAX 11/780 VS. BP3000 SORT PBRI'ORlmlfCB

Host CPU seconds

HOST CPU TIME DATA Number of 20-byte records

Sort Environment 50,000 250,000 500,000

VAX 11/780 100 500 1150

VAX 11/780 and DBA 1000 20 30 50

HP3000/70 [Sort/V] 48 270 609

HP3000/70 [SortMate] 29 161 323

HP3000/950 [Sort/XL] 27 153 312

Total Elapsed seconds

WALL TIME DATA Number of 20-byte records

Sort Environment 50,000 250,000 500,000

VAX 11/780 550 2600 5700

VAX 11/780 and DBA 1000 120 225 600

HP3000/70 [Sort/V] 69 429 900

HP3000/70 [SortMate] 35 205 413

HP3000/950 [Sort/XL] 27 177 480

SORTIBG PECULIARITIES AND TIPS

Sort/V grabs all its necessary resources when you call
SORTINIT. If your system is out of disc space, you will
know immediately. This is better than having to wait for
two hours before finding out that you need to free up some

MAKING SHORT SHRIFT OF SORTS 0082-5

more disc sectors. However, this has an unwanted side-effect
which is caused by the way the file system allocates disc
file extents. When you allocate all the extents for a file
when it is created, all the extents must reside on a single
disc drive. Therefore, allocating all extents at once will
increase the probability of having your job flushed because
you are "out of disc space." To eliminate this problem with
the Hewlett-Packard sort, simply issue the following file
equation:

:FlLE SORTSCR;DEV=,32,1

The COBOL compiler, probably for simplicity and reli
ability, opens files for buffered access. This means that
the sort intrinsics will probably find enough room on the
stack for their work area, but it also means that a COBOL
file-to-file sort will almost always run slower than neces
sary. (SortMatePlus, which replaces the sort intrinsics,
will attempt to re-open buffered files for MR-nobuff access.
This can lead to a measurable speed increase.) If you can,
you should remove sorts from within COBOL programs and use
a sort utility program such as SORT.PUB.SYS or SortMate.

Sort/V allows you to alter the collating sequence. If
you need to sort upper- and lower-case letters properly,
using an alternate collating sequence is necessary. Here is
how you do it.

:RUN SORT.PUB.SYS
>DATA IS ASCII SEQUENCE IS ASCII
>ALTSEQ MERGE "A-Z" WITH "a-z"

Pretty simple, no? However, using an alternate collating
sequence does slow down the sort process, but that's another
story.

ANOTHER STORY

When developing SortMatePlus, I needed to allow for
alternate collating sequences. There is a powerful machine
instruction which is tailor-made for just such a purpose:
the "compare translated strings" [CMPT] instruction (Which
is probably used by Sort/V). After about 4 hours of puzzle
ment and growing frustration, I concluded that CMPT does
not work in split-stack mode. Knowing that I would en
counter difficulties trying to convince Hewlett-Packard to
modify the microcode on thirty thousand installed computers,
I began writing a software routine that emulates the CMPT
instruction.

On the next page you will find a program which makes
use of the final software routine which emulates the CMPT
machine instruction. Notice how cumbersome (and incompre
hensible) it appears.

MAKING SHORT SHRIFT OF SORTS 0082-6

SCONTROL USL I NIT,NOLI ST
BEGIN

I NTEGER INDEX,
KEY'POSITION:=O, «starting position of key»
KEY'LENGTH:=10i «byte length of key»

BYTE ARRAY BYTERECORD1(0:9) : =IICHARLI E001 11 i
BYTE ARRAY BYTERECORD2(O:9):="CHARLlE002I1 i
BYTE ARRAY TRANSLATIONTABLE(O:255)i

« Initial ize the translation table »

FOR INDEX:=O UNTIL 255 DO TRANSLATIOHTABLE(JNDEX):=INDEXi

ASSEMBLE (LDX KEY' FIRSTPOSITIONi
LRA BYTERECORD1, I,Xi
LRA BYTERECORD2, I,X)i

TOS := KEY'LENGTHi
GOTO ENTRYPOI NT i

LOOP:
ASSEMBLE (DABZ EQUALi LDXI 1i LRA S-2, I ,Xi STOR S-3i

LRA S-1, I,Xi STOR S-2)i
ENTRYPOINT:

ASSEMBLE (CMPB 0) i
IF = THEN GOTO EQUAL i
ASSEMBLE (LOB S-2, Ii STAX,NOPi LDB TRANSLATIONTABLE, I,Xi

LDB S-2, Ii STAX,NOPi LDB TRANSLATIONTABLE, I ,Xi
CMP,NOP)i

I F = THEN GOTO LOOP
ELSE IF < THEN BEGIN «record1 < record2» END
ELSE IF> THEN BEGIN «record1 > record2» END
ELSE

BEGIN
EQUAL: «record1 = record2 »

ENDi
ASSEMBLE (SUBS 3)i «ltlJst delete words left on stack »

END.

Now an example of a program which uses the CMPT machine
instruction. Notice how clear and simple the code appears
in contrast to the emulation code above.

$CONTROL USLINIT, NOLI ST
BEGIN

I NTEGER INDEX,
KEY'POSITION:=O, «starting position of key»
KEY'LENGTH:=10i «byte length of key»

BYTE ARRAY BYTERECORD1(O:9):=IICHARLIE001 I1 i
BYTE ARRAY BYTERECORD2(O:9):=uCHARLlE002I1 i
BYTE ARRAY TRANSLATIONTABLE(O:255)i

« Initial ize the translation table »

FOR INDEX:=O UNTIL 255 DO TRANSLATIONTABLE(JNDEX):=INDEXi

TOS := &lTRANSLAT I ONTABLE i
TOS : = QBYTERECORD1(KEY' FI RSTPOSIT ION) i
TOS := KEY'LENGTHi
TOS := GlBYTERECORD2(KEY'FIRSTPOSITION)i
TOS := KEY'LENGTHi
ASSEMBLE (CON %20477, %7)i «creates the CMPT code »
IF < THEN BEGIN «record2 < record1» END
ELSE IF > THEN BEGIN «record2 > record1» END
ELSE BEGIN «record2 = record1» ENDi

END.

MAKING SHORT SHRIFT OF SORTS 0082-7

The surpr1s1ng fact is this: the machine-level CMPT
instruction is faster than the software routine in only one
case--when the first characters are not equivalent. The
software routine gains its efficienty because it only goes
to the translation table when negessaryi the CMPT code goes
to the translation table for every comparison, eV$n when it
is obviously unnecessary. For example, there is no need
to go to the table if string1 is "CHARLIE" and string2 is
also "CHARLIE". Similarly, you do not need to go to the
translation table until the lOth byte if the first nine
bytes are exactly the same.

still, you might be wondering which way is better in
reality. If, during a sort, 75% of the comparisons need to
examine only one byte, then the CMPT instruction will
probably be faster. So here is some "real" data to examine.
I extracted all the keys from a master dataset where each
key was 12 bytes long. I sorted on the first 10 bytes so
some of the keys were "duplicates." These 23,553 records
required 375,453 comparisons before they were sorted. Here
is how the comparisons were broken down:

Comparisons decided by the 1st byte 114,383
Comparisons decided by the 2nd byte 86,971
Comparisons decided by the 3rd byte 65,911
comparisons decided by the 4th byte 28,593
Comparisons decided by the 5th byte 50,666
Comparisons decided by the 6th byte 10,152
Comparisons decided by the 7th byte 2,197
Comparisons decided by the 8th byte 492
Comparisons decided by the 9th byte 153
Comparisons decided by the 10th byte 2,984
Comparisons in which keys were equal 13,005

About 70% of the comparisons needed to examine more
than one byte, so in this case, using the CMPT instruction
would be slower than using the software routine. A large
proportion (probably 90%) of sorts encountered in practice
will run faster with the software routine. .

MAKING SHORT SHRIFT OF SORTS 0082-8

	Making Short Shrift of Sorts

