
DEVELOPING A FASTER IMAGE

Charles Sullivan
RunningMate Software

3001 I Street
Sacramento, California 95816

INTRODUCTION

This paper examines some performance concerns most of
us have about TurboIMAGE. I have tried to examine topics
which have not been empirically studied, such as the degrada
tion caused by logging and the correlation between capacities
and DBPUT performance for master datasets.

ABOUT THE BBNCJIIIARKS

Any benchmarks shown here were run several times to
ensure that the results presented are reasonable. Unless
otherwise noted, the Series 48 and 70 had MPE disc caching
turned on. The Series 48 had 3 megabytes of main memory,
the Series 70 had eight, and the Series 950 had thirty-two.
Each system had two or three disc drives which were a combi
nation of 7933H and 7937H drives. The Series 48 and 70 were
using either UB-Delta-1 or V-Delta-1 of MPE V and the Series
950 was running the 1.0 release of MPE XL.

TRANSACTION LOGGING PERFORMANCE

Transaction logging has not been treated with a great
deal of rigor when discussing performance. For many years
the received wisdom was that transaction logging exacted a
severe performance penalty. Now the party line has become
that the overhead associated with logging every DBUPDATE,
DBPUT, and DBDELETE is negligible.

The database used to obtain the following results was
configured as follows. The master dataset had a 10-byte key
with a capacity of 9999, an entry size of 110 words and a
blocking factor of four. The detail dataset had an entry
size of 110 words, a blocking factor of four, and one search
path. In all tests, 5000 records were added, updated, or
deleted. Auto defer was off.

DEVELOPING A FASTER IMAGE 0083-1



TABLE 1: DEGRADATION CAUSED BY TURBOIJlAGE LOGGING

SERIES 70

MPE disc caching Karameters Degradation
Sequential fetc -96
Random fetch=32 CPU Wall
Block on write-YES Time Time

Master dataset DBPUT 18% 11%

Master dataset DBDELETE 20% 15%

Master dataset DBUPDATE 21% 19%

Detail dataset DBPUT 12% 5%

SERIES 48

MPE disc caching harameters Degradation
Sequential fete =96

WallRandom fetch=16 CPU
Block on write=NO Time Time

Master dataset DBPUT 18% 16%

Master dataset DBUPDATE 20% 15%

SERIES 950

32 megabytes main memory Degradation

CPU Wall
Time Time

Master dataset DBPUT 29-57% 36-59%

Master dataset DBDELETE 19-45% 34-48%

Master dataset DBUPDATE 28-50% 31-60%

The results on the Series 70 and Series 48 were easy
to reproduce. But tests run on the Series 950 had a wide
range of values. Logging degrades performance much more on
the Series 950 than on machines running MPE V.

Before you begin TurboIMAGE logging, the performance
penalty of ten to twenty percent for most DBPUTs, DBDELETEs,
and DBUPDATEs is worth pondering.

DEVELOPING A FASTER IMAGE 0083-2



SBLECTING A MASTER DATASBT CAPACITY

B. David Cathell presented at the Interex conference in
Los Angeles in 1984 a pioneering paper about master dataset
capacities called IMAGE: An Empirical study. He concluded
that capacities for master datasets based on a prime number
were not better (or worse) than non-prime capacities. He
examined the synonym distribution over different capacities
of the same data.

In the course of solving a severe response-time problem
that we experienced, I had occasion to write a program which
has allowed me to confirm Cathell's result and to extend it.
The program simulates taking the current entries in a master
dataset and loading them into a dataset of different capa
city. The program determines the number of synonyms that
will exist and a "clustering" index. This clustering index
is the number of 50-record chunks which contain 50 entries.
For example, a dataset which is empty except for entries in
the first 100 records would have a cluster index value of
fifty-one. The higher this value, the longer a OBPUT will
take to execute, on average. [See Identifying Opportunities
for Performance Improvement by George B. Scott in the 1986
Detroit Interex proceedings for data about clustering.]

On the next page you will find a sample of the values
that were obtained for a dataset with a 20-character (X20)
key and 29967 entries.

Cathell concluded that the only capacity to absolutely
avoid was one which is a power of two. Look at the result
for a capacity of 65,536. Here the cluster index becomes
the "Custer" index--whoever chooses that capacity is going
to get massacred by unhappy data-entry employees.

Given a partiCUlar set of data and a partiCUlar dataset
capacity, you cannot predict its DBPUT performance without
examining the distribution of ALL the data in the dataset.
Here are some guidelines I now use:

1. Half-empty datasets usually produce an excellent
cluster index. Oatasets which are 60% full are
acceptable,' but 70% produces OBPUT performance
which is erratic. Eighty percent and above is to
be avoided. Selecting a prime number guarantees
nothing.

2. Be very careful selecting capacities which are
very close to being a power of two. From the fol
lowing table, you can see that 65536 and 65537 are
execrably bad, but 65540 would be tolerable.

DEVELOPING A FASTER IMAGE 0083-3



TABLE 2: SDOIIYJI COUft AND CLUSTBR XNDBX VALUES
FOR SBLECTED MASTBR DATASET CAPACITIBS

KEY TYPE = 120 DATASET ENTRIES = 29,967

New Percent Cluster
Capacity Full Synonyms Index

40,007 74.9 8,977 883
40,008 74.9 9,847 1,129
40,009 PRIME 74.9 8,927 1,314
40,010 74.9 9,160 1,183

45,006 66.6 8,356 348
45,007 PRIME 66.6 8,268 225
45,008 66.6 9,608 239

49,998 59.9 7,825 54
49,999 PRIME 59.9 7,697 15
50,000 59.9 8,737 17
50,001 59.9 7,593 44
50,002 59.9 7,704 °
55,000 54.5 7,939 15
55,001 PRIME 54.5 7,130 8
55,002 54.5 7,281 °
59,998 49.9 6,803 °59,999 PRIME 49.9 6,613 °60,000 49.9 8,262 °
64,000 46.8 10,872 162
64,001 46.8 6,631 3
64,002 46.8 6,804 0

65,535 45.7 10,092 1,772
65,536 45.7 16,165 14,165
65,537 PRIME 45.7 11,366 11,751
65,538 45.7 8,479 986
65,539 PRIME 45.7 7,372 245
65,540 45.7 7,501 161

69,999 42.8 5,789 °70,000 42.8 6,897 °70,001 PRIME 42.8 5,802 0

DEVELOPING A FASTER IMAGE 0083-4



SELECTING A GOOD VALUE FOR BUFFSPECS

TurboIMAGE on MPE V machines allocates an entire extra
data segment for data bUffering. I tried to determine if
altering the number of buffers affected performance. My
working assumption was that, in a multi-user environment,
setting BUFFSPECS=16(1/120) would produce poor throughput
compared to setting BUFFSPECS=64(1/120).

My results showed no difference between such divergent
values for the BUFFSPECS parameter. I do not, however,
consider this result conclusive. More testing needs to be
done.

SINGLB THREADING

TurboIMAGE allows some mUlti-threading of database
intrinsics. The Hewlett-Packard reference manual states
that a "two level resource priority locking scheme is
used within the DBB to allow single-buffer operations to
access the control block concurrently. This involves
DBGET, DBFIND and DBUPDATE processes. DBPUT and DBDELETE
operations are unable to access the DBB concurrently. These
multi-buffer operations must hold a global lock on the DBB
throughout the operation." Although the wording is not
exactly clear, it does appear that serial read DBGETs also
lock the DBB until intrin~.ic completion.

Single-threading should only be a concern when most
of your programs access a single database and your CPU is
spending a good portion of its time paused for disc I/O.
Although each CPU essentially holds all data in a single
database, we have found that our CPUs are not often paused
for disc I/O despite single-threaded DBPUTs. The reasons
for this are three-fold: 1) MPE disc caching tends to make
a system CPU-bound rather than disc-bound; 2) Handling
terminal I/O for sixty users over an X.25 network consumes
any free time the CPU might have; 3) All our serial reads
bypass the DBB entirely (see the next paragraph), thus we
have essentially made TurboIMAGE multi-threaded.

If you have performance problems because of single
threading, I recommend that you invest in one of the several
software products available which executes fast serial reads
and use it with your reporting programs and job streams.
These MR-nobuff products do not lock the DBB and hence you
should experience more database concurrency and throughput.

DEVELOPING A FASTER IMAGE 0083-5



SPBBDIBG UP SBRIAL AND CHAlKED READS

Several software products are available which can speed
serial access to datasets by a factor of three to ten. An
early discussion regarding such MR-nobuff techniques can be
found in Overview of Optimizing (On-Line and Batch) by
Robert M. Green from the Interex 1982 proceedings in San
Antonio.

Speeding up non-serial access to TurbolMAGE databases
is less of a sure-thing. In developing I/O-Mate, it was
found that the best overall performance for a calculated
(mode=7) DBGET was achieved when just one block of data was
fetched at a time. On the other hand, it was found useful
to vary the fetch size for chained (modes=5,6) and random
(mode=4) DBGETs. I/O-Mate dynamically adjusts fetch size
based on the efficiency of recent fetches. I/O-Mate also
tries to do things only once. For example, it keeps the two
most recent lists for each dataset handy. I/O-Mate also
caches the two most recently accessed datasets for even
faster access. Finally, although it stores data in extra
data segments, it never performs an EXCHANGEDB procedure
call. All these optimizations allow I/O-Mate to outperform
a "vanilla" DBGET(modes=4,5,6) by fifteen to fifty percent.

DEVELOPING A FASTER IMAGE 0083-6



APPENDIX: BASHING ALGORITHM

DOUBLE PROCEDURE HASH(KEY, HASHEDKEY,KEYlENGTH,CAPACITY);
VALUE HASHEDKEY, KEYLENGTH, CAPACI TY;
ARRAY KEY; lOGICAL HASHEDKEY; INTEGER KEYlENGTH; DOUBLE CAPACITY;

BEGIN

PUSH(STATUS); ASSEMBLE(TRBC 2); SET(STATUS) ;

DECA;

HASH2:

HASH1:

HASH3:
END

ELSE
BEGIN

ASSEMBLE (LOAD KEY; LOAD KEYLENGTH; LADD, DECA;
LDD S-O I)-

IF KEYlENGTH = 1 THEN ASSEMBLE (ZROB)
ELSE ASSEMBLE (DLSL 1; DlSR 1);
TOS := TOS - 1D;
IF < THEN

BEGIN
ASSEMBLE (DDEL,DEL) ;
GOTO ALL'DONE;

END;
ASSEMBLE (CAB,DEL);

END;

TOS := CAPACITY;
I F HASHEDKEY THEN

BEGIN
ASSEMBLE (lDD KEY, I; lOAD KEYlENGTH; DUP, STAX;

BRE HASH1; DLSR 16;
DLSL 1; LOAD KEY; ADXA, lDXA; INCA, NOP;
lSR 1; DXCH, NOP;
DECM S-2; BlE HASH3; DECM S-3; DECM S-3;
lDD S-3, I; DDUP, NOP; lDI 31; LDIV, DElB;
STAX, DXCH; DCSL 1,X; DADO, NOP; BR HASH2;
DXCH, DDEL; DLSR 1);

ASSEMBLE (LOAD S-3; STAX);
IF <> THEN

ASSEMBLE (LDXA; SCAN 0; XAX, NEG; STAX, DOUP; DLSR 16,X;
DElB, lDIV; DEL, DUP; LOD S-5; CAB, LMPY;
DXCH, MPY; ZERO, DADO; DSUB, DZRO; INCA, DADD;
LOD S-3; DSUB;

CHECKCC: BE EQ; BG MORE; LDD S-3; DADD; BR CHECKCC;
MORE: OOUP; lOD S-5; DSUB; BL OK; DXCH, DDEL; BR MORE;
OK: DDEl; DXCH, DDEL)

ELSE ASSEMBLE (DXCH,DELB;
LOIV, ZROB);

ASSEMBLE (DZRO, INCA;
EQ: DADD);

AlL'DONE:
HASH := TOS;

END; «DWBLE PROCEDURE HASH »

DEVELOPING A FASTER IMAGE 0083-7




	Developing a faster IMAGE

