The role of Data Dictionaries in Application Development,
with an Emphasis on System Dictionary.

Raymond Ouellette
Infocentre Corporation
3100 Cote Vertu
St. Laurent, Quebec
Canada H4R 2J8

The idea behind a data dictionary is easy to understand. You create a
description of the data available on your computer system and store it on the
computer itself. In this way, programmers (or programs) can find out exactly
what information is supposed to be on the machine and where and how to find it.
This results in less error caused by confusion over the format of the data and
makes it possible for end users to create reports without prior knowledge of the
structure of the data.

Unfortunately the realities of implementing a working data dictionary
environment are much more complex than the basic idea would suggest. It is
therefore advisable to understand the general principles of data dictionaries
before closely looking at a particular product.

This discussion of data dictionaries is in three parts.

Firstly there is an analysis of the benefits possible when a dictionary is available
and the type of information which needs to be stored in order to achieve these
benefits.

This is followed by a description of the problems which must be considered
before implementing a data dictionary in a realistic environment.

Finally the ways in which System Dictionary can address these subjects in the
HP3000 environment are discussed.

Audience level of my abstract: 3+ years.

This paper would best fit in track 3.

The role of Data Dictionaries
0097-1



Introduction

Data dictionaries provide a means by which we can manage information.
Dictionaries are simply a tool that facilitate the management of data, and the
conversion of data into corporate information.

An effective implementation of a data dictionary can help manage this critical
corporate resource. An ineffective implementation will hinder more than it will
help.

Implementing a data dictionary is a major undertaking. A great deal of analysis,
design and planning is required to set standards and procedures regarding the
role and use of the dictionary. A number of technical and operational issues
must be addressed, such as: dictionary maintenance, security, version control, and
deciding on the number of physical dictionaries to be implemented.

The strategy chosen may be different for each of several uses of the data
dictionary. The dictionary may be called upon to serve different roles in
application development, end user computing, in conjunction with purchased
application packages as opposed to in-house systems.

Using Hewlett-Packard’s System Dictionary as a point of reference, let’s
concentrate on application development, and examine an approach to effective
dictionary implementation.

The role of Data Dictionaries
0097-2



1.1 Objective of Data Dictionaries
Data dictionaries are generally used for a combination of the following functions.
1) Centralized documentation of the data and programs on a computer.

2) Storing physical file specifications and record layouts so that programs
always address the data correctly.

3) Storing logical attributes of the data which can be used to generate programs
automatically.

4) Storing descriptions of the data on a computer which enable end users to
generate reports.

1.1.1 Documentation

In the old days, all good system analysts used to fill in special forms which
defined the record layouts for all of the files in the systems they were designing.
Each programmer was given a copy of any layouts which affected his/her
programs so that there could be no chance for confusion. Of course, in practice,
the analyst would change the layouts quite regularly with the result that each
programmer would end up with a different version of the file specifications.

The idea of data dictionaries emerged as a method of using the computer to
ensure that documentation is always up to date.

Data dictionaries are not, however, the only possible solution to the problem. One
of the most useful features of modern database systems is that they usually
include some form of self-documentation of their structure. For example, all the
vital information concerning an IMAGE database can be found by running
QUERY and using a simple command. To some extent this has delayed the
necessity to introduce data dictionaries since storing information in a dictionary
is rather pointless if the same information is easily available to everyone anyway.

However, it is unlikely that any database system will ever be able to contain
enough information about itself to make a dictionary totally redundant. An
important function of a data dictionary is to keep a record of which programs
process the various databases and data elements on the system. This information
is particularly vital for finding which programs will be affected by changes to a
database but cannot be obtained directly without checking every program on the
system indivually.

Whereas the definitions of individual entities in a system could theoretically
always be stored within the entity itself, the only way to effectively document
the relationships between the elements is in a dictionary. Unfortunately, this sort
of information is very difficult to maintain correctly since it is not easy to
ensure that all of the relationships are actually included in the dictionary. If

The role of Data Dictionaries
0097-3



there were some automatic way of verifying that the dictionary were complete,
there would be no need for the dictionary in the first place!

1.1.2 Storing physical file specifications

The most immediate benefits of a data dictionary almost always come from the
ability of programs to extract physical data attributes directly from the
dictionary.

This fact was realised long ago when it became popular to establish COBOL
COPY libraries containing the record layouts of the files on a system. Whenever
a COBOL program was compiled the relevant layouts were extracted from the
library by the compiler. This freed the programmer from worrying about the
hand-written record layouts mentioned above.

The system worked very well but was obviously limited by the restriction to a
single language and by having to recompile all programs every time the library
changed. Actually compiling the programs was no real problem but remembering
which programs needed to be compiled was much more difficult.

With a proper data dictionary it is possible to extract file specifications from the
dictionary every time the program is run so that any changes in the dictionary
are always reflected automatically without altering or recompiling programs. To
anyone who has used COBOL with copy libraries on a large system this sounds
marvelous but as we shall sce run-time access to a dictionary introduces all sorts
of other problems.

It is worth noting that database systems such as IMAGE have to some extent
reduced the benefits of extracting physical attributes from a dictionary since the
same information is readily available from the database itself. In fact, it would
probably be true to suggest that a program or compiler should never obtain
physical data attributes from a dictionary. In the ideal world a database should,
at the very minimum, hold a complete description of its physical structure and all
programs should use this description to get at the data.

1.1.3 Logical Data Definitions

As wecll as storing a description of how the data is physically held on a computer
we can also include the logical attributes of the data such as standard heading
text or edit masks for data elements in the dictionary.

It is very important to understand the difference between "physical" and "logical"
attributes.

As an example, consider the description of an IMAGE item in a dictionary. The
physical specification defines the length and type of the item. These are physical
facts which can never be sensibly contradicted by any program. The logical
attributes, however, are not absolute and can often be altered for an individual
program without obtaining invalid results.

The role of Data Dictionaries
0097-4



In some cases the logical attributes are merely suggestions for programmers who
need not take any notice if they do not wish to. In other cases, the attributes
may represent "standards" which a program must follow unless there are good
reasons for not doing so.

Just as the physical attributes of a database can be included in the database
itself, there is no reason why some of the logical attributes could not also be
included. But whereas the physical attributes of a database are finite, the
possible logical attributes are limitless and for this reason it is very difficult to
devise database systems which can fully cope with logical attributes.

Physical attribute definitions can be safely extracted from a dictionary
automatically during program development without necessarily informing the
programmer what is happening, however for logical attributes, the programmer
must be given the opportunity to ignore the attributes if he/she wishes.

In the context of application processing, three methods for extracting logical
attributes from a dictionary are possible:

1) Run Time. The logical attributes are freshly calculated every time a program
is run.

2) Compile Time. Alterations to logical attributes in the dictionary will take
effect only when a program is recompiled.

3) Development Time. The logical attributes are copied into the programmers
code automatically when the code is initially developed. Alterations to
attributes are not reflected in existing programs unless the programs are
actually altered.

In fact, it is not likely that we would wish for logical attributes to be decided by
a production program at run time. The effects of changing the edit mask for an
item might be disastrous on a report where the print positions had been carefully
counted by the original programmer.

The same sort of problems also arise when attributes are extracted automatically
at compile time. Programmers are forced to test their programs everytime they
compile them even if they haven’t actually changed the code.

1.1.4 Describing Data for End Users

Most application systems offer the user some helpful information about how to
operate the system and what data presented on screens or in reports represents.

A user trying to work with a report generator is not usually so lucky. The report
generator itself will of course be able to explain how to create reports but will
not know anything about the data being inspected or what it means.

Users can only look in the dictionary to try to find out what there is in the

databases available to them. It is quite possible that the physical and logical

The role of Data Dictionaries
0097-5



attributes described in the dictionary, together with the documentation intended
for the computer department, will be enough to get the intelligent user started.
However, the user needs information about the data which is of no use to the
computer staff and will not exist in the dictionary unless it is put there
specifically for this purpose.

1.2 Problems Associated With Data Dictionaries

Having looked at the uses of data dictionaries we now concentrate on the
difficulties which inevitably arise when attempting to actually take advantage of
the benefits.

These problems are described under the following headings.

1) Standardisation

2) Security

3) Conflicts between Applications

4) Version Control

5) Administration

6) Prototyping

7) System Performance/Reliability

8) Proliferation of Dictionaries

1.2.1 Standardisation

It is extremely unlikely that there will ever be a single standard for data
dictionaries even for one particular computer. Even if a such a standard were to
emerge, there would be features missing which someone would need to use.
Suppliers of 4GLs often provide their own data dictionary for use with their
product and are reluctant to base their language around any possible “standard"
dictionary which does not really fit their needs anyway.

The result is that there are often several varieties of dictionary on the same
machine all containing the same information but in a different format. Often
the dictionaries deteriorate from their role as a centre for data definition into
files which have to be maintained simply because 4GLs will not run if they are
not present.

1.2.2 Security

A data dictionary contains some extremely important information and a lot of
people are going to be legitimately inspecting and altering its contents.

The role of Data Dictionaries
0097-6



The result of someone accidentally changing something when he shouldn’t can be
extremely traumatic, especially if programs are accessing data definitions at run
time.

A dictionary therefore requires a security system which permits people to access
what is available to them but can stop anyone going where they are not allowed.
In fact, the security requirements for a data dictionary are much more intricate
than we would expect from a typical application system.

1.2.3 Conflicts Between Databases

On large computer installations where several different databases are present, it
can be difficult to represent all the databases conveniently in a single dictionary.

It is possible that each database uses a different name for what is essentially the
same thing or uses the same name for completely unrelated entities. Somebody
has to take the time to sort out the conflicts and however this is achieved, the
resulting dictionary is likely to be very confusing.

This problem is most likely to occur on sites which are trying to establish a
dictionary after many years of working without one. If a dictionary is used from
the start the need to avoid conflicts between databases can be turned into an
advantage.

1.2.4 Versions

It would be nice if it were always possible to establish a dictionary which never
changed once it had been set up. Unfortunately, computer systems usually
develop even after they are "live" and the dictionaries must also change.

When a change is required in the dictionary it is necessary to create a new
version or copy of the dictionary so that the amendments can be tested while the
old version is still in use. Once the new version is tested and the relevant
program alterations have been implemented and tested, the old dictionary can be
replaced by the new copy at the same time as the new versions of the programs
are moved into production.

Problems start when several unrelated amendments to a system are being
implemented at the same time and each programmer makes his own version of the
dictionary to test his changes. We have to be sure to control these test versions of
the dictionary very carefully and ensure that when a test version becomes the
production version, it actually includes all of the changes which may have been
implemented since the copy was originally taken.

A possible solution to this is to only allow one test version to exist at any given
time. However, this leads to a situation where there. is always something in the
test dictionary which is not actually working yet and so the dictionary can never
go live. In order to actually get the dictionary into production new developments
must be suspended until current work is completed.

The role of Data Dictionaries
0097-7



1.2.5 Administration

Any data dictionary needs an administrator to keep control of the contents of the
dictionary.

Without such control, a dictionary is liable to degenerate to the lowest state which
is capable of supporting the 4GLs which use it. It will probably become cluttered
with definitions which are not actually used but cannot be removed for fear that
they are.

The administrators main job is to ensure that the contents of the dictionary are
complete and correct. Given the diversity of information in the dictionary and
the range of people who will use it, this is not a simple job and usually requires a
dedicated (and expensive) individual.

1.2.6 Prototyping

Contrary to accepted opinion, using a data dictionary makes system prototyping
very difficult if the designer has to enter definitions into the dictionary before
he can get anything working. The modern approach to prototyping which
involves the programmer and end user working together is strongly inhibited
when the user cannot request immediate alterations and additions to data
specifications.

For successful prototyping with a dictionary, we need a development system
which can make changes to the dictionary immediately during the design process
or can temporarily function independently of the dictionary during the
prototyping phase.

Both these methods deviate from the standard approach of most 4GL systems
which regard the data dictionary as a relatively static predefined source of
information.

1.2.7 System Performance/Reliability

As we have seen there are an enormous number of potential users for a data
dictionary ranging from production batch programs attempting to obtain the
attributes of a file to end users trying to generate their own reports. At the same
time we also require that the dictionary should have a sophisticated security
system and be accessible in a friendly interactive fashion.

However good the software, there are bound to be problems with the speed and
reliability of such a complicated system.

Since everyone on the computer is theoretically connected to the dictionary, there
will be a bottleneck as all of the various programs atttempt to extract
information. Worse still, a failure in the dictionary will bring the whole
computer to a halt.

The role of Data Dictionaries
0097-8



Careful consideration must also be given when taking backups of the dictionary
or bringing a new version into use. These will be operations which may require
every single user on the machine to stop working and, on larger sites, this may
not be feasible.

Obviously, these problems can be reduced by ensuring that the data attributes are
extracted at compile time so that production systems do not access the dictionary.
Even so, program development and end user reporting systems will still be
vulnerable to weaknesses in the dictionary software.

1.2.8 Proliferation of Dictionaries

A simple solution to the many of the inherent drawbacks of data dictionaries is
to create several dictionaries rather than a single master dictionary.

Instead of keeping a centralized dictionary it may be better to provide a separate
dictionary for each application on the computer. A special dictionary for the end
user report generator would also normally be appropriate in this case.

Some control over the creation of dictionaries must be maintained because if
things get out of hand, it is likely that there will be a separate dictionary for
each program and each user on the system. Programmers may even keep dozens
of versions of different dictionaries on tapes in their desks!

Once this happens, the basic advantages of centralized documentation are lost.
There is no longer a single place which gives the correct definition of the data
and although the individual dictionaries may be useful for the functions that
they support the need for a "master" dictionary will inevitably arise.

2 SYSTEM DICTIONARY

System Dictionary is much more than a simple data dictionary since it is intended
to be used for many purposes other than the storage of data definitions. We
shall, however, concentrate on its role as a data dictionary in this paper.

2.1 The System Dictionary Database

System Dictionary is basically a database designed specifically to store
information about a computer system. As its name suggests, System Dictionary is
intended to be a central database and it is not expected that there will be vast
numbers of dictionaries on a single machine. It may be that the proliferation
effect will eventually overtake the initial aims but it is evident that many of the
features of the dictionary are intended to prevent this happening.

For readers familiar with IMAGE, a brief comparison of an IMAGE database
with System Dictionary is a good introduction.

The System dictionary contains ’entities’ and ‘’relationships’ which are very
roughly equivalent to the master and detail records in an IMAGE database. The
entities and relationships have ’attributes’ which are like the fields of an IMAGE

The role of Data Dictionaries
0097-9



dataset.

The key to an IMAGE Master set may be any length or type, but access to an
entity type in the System Dictionary is always achieved through a a 32 byte ’key’.

The names of relationship types in the dictionary are always formed from the
names of the entity types which they relate. This is equivalent to suggesting that
detail sets in an IMAGE database should contain the names of the master sets to
which they are chained. For example, a detail set representing an order line on
an invoice would be called something like "ORDER contains STOCK-ITEM" if it
were transformed into an equivalent relationship type in a System Dictionary.
This is more descriptive than "ORDER-LINE" (or even worse "ORDER-DETAIL")
which is the name usually selected for this purpose.

Finally System Dictionary allows variable length attributes to be assigned to
entities. Variable length fields are not supported by IMAGE and most modern
relational databases but this capability is vital for databases which are to be used
as a dictionary.

In summary the following expressions are roughly equivalent :

IMAGE SYSTEM DICTIONARY
Master Dataset Entity Type

Master Record Entity

Detail Dataset Relationship Type
Detail Record Relationship

Field Attribute

This new terminology may seem irritating but for once there is a good reason for
introducing new jargon. Remember that the dictionary will be used to store data
about data. We will have entity types called "RECORD" and "IMAGE-DATASET"
etc. and we can at least avoid some confusion by using new words.

2.2 Features of System Dictionary

In order to make the System Dictionary database suitable for use as a dictionary
several special features have been included which would not normally be
expected in a more conventional database system.

2.2.1 Extensibilty

Unlike IMAGE, there is no schema for a System Dictionary. It is fully flexible so
that entity types and attributes can be added or altered at any time. When a new
dictionary is created (using the utility SDINIT) it always contains a standard set
of entity and relationship types called the core set. You can then customize the

The role of Data Dictionaries
0097-10



dictionary for your own needs by adding new entity and relationship types or
changing the attributes of existing types.

The motivation for providing this exstensibilty in the dictionary is to overcome
the problem of standardisation which forces software suppliers to produce their
own dictionaries. Since the System Dictionary can be customized, it is not
necessary to rely on the original specifications of the core set and software
suppliers can add new features to the standard dictionary if they wish.

In reality, there is still great pressure on everyone to conform to the accepted
standards. It takes some courage to invent a completely new entity type
especially if it is likely that several other people will do exactly the same thing
but use a different name.

2.2.2 Programmatic Access

A command driven utility program is automatically supplied, to serve as a user
interface to the dictionary. This interface can be augmented or replaced with
user written programs that access the dictionary programmatically via a set of
documented intrinsics. In this way, special purpose user interfaces or utility
programs may be written with the capability to access the full set of dictionary
functions. This enables dictionary users to create their own customized interfaces
to the dictionary.

2.2.3 Security and Scopes

Any user or program which opens a dictionary must specify a SCOPE and the
relevant password before access is granted. The scope name is like a user name
which everyone has to provide when opening the dictionary in the same way that
as everyone has to give a name before logging on to MPE. Entities and relations
are always accessible to the scope which created them but can be secured against
read or modify access by other scopes.

Note that security works at the entity level. This is equivalent to being able to
secure individual records in an IMAGE database.

2.2.4 Domains

A single system dictionary may be split into several domains which are
effectively "logical" dictionaries within the same physical dictionary. This is
intended primarily for situations where many applications run on the same
computer but have very little else in common. Each domain behaves as an
individual dictionary and functions independently of the other domains which
reside in the same physical dictionary.

The aim is to avoid needless conflict while still keeping all the domains under the
control of the same dictionary.

All dictionaries initially contain a single domain called the common domain and
new domains are created as required by the dictionary administrator.

The role of Data Dictionaries
0097-11



2.2.5 Versions

System Dictionary recognises the need for different versions to exist at the same
time and permits creation of many versions of each domain within a single
dictionary. The versions are labelled "test”, "production”, or "archive" and the
software prevents you from updating production or archive versions.

This method of creating versions within the same physical dictionary ensures that
programmers cannot simply use COPY to create new versions at will but the
administrator must still overcome the inherent problems of version control
described earlier. System Dictionary allows several test versions to co-exist and
he must always ensure that when a test version becomes a production version it
includes any updates which have taken effect since it was originally created.

2.2.6 Aliases

An alias is an alternate name for an entity or relationship which is to be used
instead of the actual name in a particular situation. The most common type of
alias is the IMAGE-ALIAS for an entity which will be the name to be used when
the entity appears in an IMAGE database.

Typically it is preferable not to use aliases but there are circumstances especially
when databases have already been designed with no consideration for System
Dictionary, when it is appropriate.

For example, we may have a database where item names have been prefixed for
some reason so the item name for customer number is A100-001-CUS. This is not
really a suitable name for the element in the dictionary and it would be better to
call the element CUSTOMER-NUMBER and include the actual item name as the
IMAGE-ALIAS.

2.2.7 Synonyms

A synonym is an alternate name for an entity which is used for a completely
different purpose to the aliases. If the actual name of an entity is long, it is nice
to be able to supply a short name which may be used by anyone who accesses the
entity regularly.

If an element were called "INDIVIDUAL-CUSTOMER-NUMBER", the
administrator might supply "ICN" as a synonym to save typing the full name.
Any number of synonyms may be given to a single entity.

2.2.8 Internal and External Names

Every entity type and entity in the System Dictionary has an internal and an
external name. Normally these names are the same but it is possible to alter the
external names of entities or entity types.

When a program opens the System Dictionary, it specifies whether it will use the

The role of Data Dictionaries
0097-12



external or internal names to access the dictionary. By using internal names, the
program can ensure that the names in the core set have not been changed. This
mode is intended for standard software which will operate on many different
sites.

Programs developed for a particular dictionary can use the local external names
which will be known to the users of that particular dictionary only.

2.3 Representing IMAGE and MPE Files

Although the System Dictionary is totally flexible, the core set of entity and
relationship types imposes standards on how the structure of IMAGE databases
and MPE files should be represented.

The following list shows the most important entity and relationship types from
the core set which are used for this purpose.

Entities: ELEMENT
RECORD
IMAGE-DATASET
KSAMFILE
FILE
IMAGE-DATABASE

Relationships:
RECORD contains ELEMENT
IMAGE-DATASET contains RECORD
KSAMFILE contains RECORD
FILE contains RECORD
IMAGE-DATABASE contains IMAGE-DATASET
IMAGE-DATASET key ELEMENT
KSAMFILE key ELEMENT
IMAGE-DATASET IMAGE-DATABASE chains

The role of Data Dictionaries
0097-13



2.3.1 Representing an Image Database

Each item in an IMAGE database corresponds to an entity with type ELEMENT
in the System Dictionary. Although there is no single attribute which defines the
IMAGE item type, the attributes COUNT, ELEMENT-TYPE and BYTE-LENGTH
can be combined to form the IMAGE type. Other attributes of the elements such
as DISPLAY-LENGTH, DECIMALS, EDIT-MASK etc. enhance the item
specification beyond what is included in the IMAGE schema.

The datasets are represented by the entity type IMAGE-DATASET which has an
attribute called IMAGE-DATASET-TYPE to specify whether the set is a master
or a detail. It may seem reasonable to expect a relationship type called
'IMAGE-DATASET contains ELEMENT’ to be used to assign elements to the
datasets. In fact, we need to create another entity of type RECORD and the
elements are associated with this entity using the relationship type 'RECORD
contains ELEMENT’. The start position of each element within the record is
indicated by an attribute of this relationship. The dataset is then linked to the
record by establishing a relationship of type 'IMAGE-DATASET contains
RECORD’ between the dataset and the record.

The database itself is represented by an entity called IMAGE-DATABASE and
the datasets are assigned to the database using the relationship type
IMAGE-DATABASE contains IMAGE-DATASET.

Finally we need to indicate the keys and chains in the database. For master sets
the relationship type 'IMAGE-DATASET key ELEMENT’ is used to define one
element which is the key to the dataset. The chains to a detail set are
represented by a complicated relationship which links five entities and specifies
the dataset, search clement, sort element, master dataset and database involved in
the chain.

There are other entity and relationship types in the core set concerning security
classes and the devices used to store datasets but these are not described here.

You will notice that the method for representing a database is fairly flexible in
that it permits us to assign datasets to more than one database and to assign
records to several datasets. This could be useful in situations where two
databases contain copies of the same dataset or where two datasets in a database
have the same fields. It remains to be seen whether it will become common to
take advantage of this flexibility or whether people will prefer to create a
separate entity for each dataset.

2.4 Maintaining the System Dictionary
Several tools are available for maintaining the contents of the system dictionary.
Firstly there is a utility called SDMAIN which is a command driven tool for

directly accessing the dictionary. There are commands for adding, amending or
deleting entities and relationships as well as facilities for achieving

The role of Data Dictionaries
0097-14



administrative functions such as customisation or creating new versions and
domains.

The big disadvantage with SDMAIN is that it is cumbersome to use and extremely
unfriendly. It achieves for System Dictionary what QUERY does for IMAGE.

Another method of setting up a dictionary involves running a standard utility
program called SDDBD which loads the format of an existing IMAGE database
into a dictionary. The resulting definition only includes information which can
be extracted directly from the database so logical attributes such as standard
headings or edit masks are not loaded.

3.0 Utilizing the Dictionary in Application Development

Having identified the objectives of data dictionary use, and some of the common
pitfalls lets examine the role a data dictionary can serve in an application
development environment, using System Dictionary as a point of reference. When
integrating application development with a data dictionary, we should be careful
to capitalize on the strengths of the dictionary while avoiding its weaknesses,
such that we use the tool effectively. In this context two features of System
Dictionary are particularily intruiging: programmatic access, and extensiblity.

Programmatic access means there is a set of intrinsics making it possible for a
program to open a dictionary, read information from it, update information and
so on. This may not be of practical importance to many HP3000 shops, however
it presents an opportunity to software suppliers to interface application
development software with the data dictionary.

This opportunity is made even more attractive by the capability to extend the
structure of the dictionary. System Dictionary can be customized to fit the needs
of any application development effort. It does not have to be language,
application, or vendor specific. The possibility of having one centralized system
wide dictionary becomes a feasible reality.

To picture this opportunity envision your application development tools (text
editor, flow charts and diagrams, COBOL generators, COPYLIBS etc.) being
replaced by sophisticated application generator software. This software becomes
the analysts’ workbench, and it is actively involved in the definition of all
application system processing; ie: data entry and inquiry screens, reports, batch
processing, command procedures, security, and menus. The software also develops
and stores the underlying file structures (IMAGE, KSAM, MPE), and generates
source code for the application as a natural result of the development effort.

Application generator software represents the state of the art in fourth
generation development tools. Along with tremendous increases in system
development productivity, it also brings changes to the roles of application
developers, end users, and the data dictionary.

With the application generator automating the detailed programming tasks,

analysts are able to focus their energies on system analysis and design. Users can

The role of Data Dictionaries
0097-15



actively participate in the design phase, assisting the analyst in prototyping
sessions made feasible by the capabilities of the software.

As one proceeds through the design and construction of an application, the system
generator can be in constant communication with the data dictionary, offering
lookups to existing entity definitions, as well as the opportunity to load new
entities and relationships into the dictionary.

With this approach we create a symbiotic relationship between our application
development tools and the data dictionary. When working with the application
generator we retain full functionality of its native operating characteristics, but
at the same time, avail ourselves to the centralized store of existing data
documentation. The data dictionary can be maintained and updated
automatically in a consistent fashion by the application generator.

In this role, the data dictionary is accessed at system development time, of fering
time saving assistance to the system developers. Existing data definitions can be
extracted as programs are developed. Not to act as a constraint however, we can
also create new entities for this application as needed. This is crucial in order
for prototyping activities to succeed. When the development project is completed,
the software can update the dictionary automatically, loading the definitions of
any new entities created for the application. We can also load new relationships
into the dictionary, identifying the data entities accessed by this application.
These "where used" relationships will facilitate impact analyses required when
changes to data definitions are contemplated.

The programmatic interface between the application generator and the dictionary
can be implemented with the following objectives in mind:

1) The existence of the dictionary should be reasonably transparent to the
average user. The dictionary is there to assist in the development effort - we
should not be unduly tied to it or restricted by it.

2) Since the application generator holds all of the specifications of our
application - both data and processing - it should be responsible for loading
definitions into the dictionary.

3) The presence of the dictionary should not discourage or hinder application
prototyping.

4) The application generator already maintains information about the
application. There is no need to duplicate this information in the dictionary,
unless it would be of use in the development of other applications.

3.1 Accessing System Dictionary

When contemplating how the dictionary can best serve our interests in application
development, we must consider two general situations with respect to our data:

The role of Data Dictionaries
0097-16



1) The application database(s) already exist, and are defined in the dictionary.

2) The application database(s) do not yet exist, and are not defined in the
dictionary.

The term database as used above, refers to the aggregate of data processed by the
application. This data may reside in one or more Image Databases, KSAM, or
MPE files. The two general situations outlined above may be combined to
formulate additional situations; eg: some of the files already exist, but some do
not; of the files that do not yet physically exist, some of them are defined in the
dictionary; etc.

How we approach these situations with respect to dictionary usage impacts on our
development methodology.

If we adopt an approach that demands all data elements be defined in the
dictionary prior to being referenced in the creation of an application program,
then prototyping will be very effectively stifled. This approach requires a
development methodology that begins with a rigorous definition of all of the
application data. These definitions would be held in the dictionary and be
accessible during program development. This latter activity of designing the
application processing would need to proceed in a very predetermined fashion.

A development methodology centered around prototyping relies on the ability to
draw on existing definitions, amend existing defintions, and create new
definitions, of both data and processing, throughout the design phase. With the
proper tools and expertise, this methodology can result in an application
engineered to the customer’s needs.

A flexible approach to interfacing with the dictionary can accomodate either
development methodology. Accessing the dictionary can be approached this way:

1) Existing data definitions can be extracted from the dictionary as needed,
during program development. This applies to data structures (Databases or
files) that already exist, as well as new data structures that we need to create.
Consider that for a new file or Database under development, individual field
definitions or complete record layouts may already be defined in the
dictionary, belonging to another file or database.

2) New data definitions can be created "on the fly", as needed. This is required
in order to undertake effective prototyping. The new definitions would
initially be stored locally, specific to this application. At some point in time,
these new defintions can be uploaded to the dictionary.

Once the application is complete, it can be loaded into the System Dictionary so
that a complete list of the entities processed by the application is available.

3.2 Customizing the Dictionary
A certain amount of customisation may be required to a System Dictionary for it

The role of Data Dictionaries
0097-17



to suit our application development purposes. This cusfo.mization- can be
undertaken by using the "extensibility" feature, adding additional entities and
relationships to the core set.

Firstly, we may have a need for additional logical attributes, describing
individual data elements. The core set already provides several logical attributes
such as DISPLAY-LENGTH, DECIMALS, and EDIT-MASK. Depending on your
needs you may wish to extend this list with other attributes like
MATCH-PATTERN for example.

Another useful attribute can be attached to a number of entities, marking them
"Private" to this application. Elements or Records marked as "Private” would not
be accessable to other applications. Once the development effort is completed,
new entities created by the application can have their definitions marked
"Public", and hence be available to other development projects.

A number of customized relationship types might also be in order, such as:

* SYSTEM processes ELEMENT

* SYSTEM processes RECORD

* SYSTEM processes IMAGE-DATASET
* SYSTEM processes IMAGE-DATABASE
* SYSTEM processes KSAMFILE

* SYSTEM processes FILE

* SYSTEM owns ELEMENT

* SYSTEM owns RECORD

* SYSTEM owns IMAGE-DATASET

* SYSTEM owns IMAGE-DATABASE.

The first group of relationship types are used to identify the entities which are
processed by a particular application. The second group is used to indicate which
application was responsible for creating the entities in the database. Later on,
these relationships can be extracted from the dictionary, providing valuable data
administration information.

3.3 Loading Applications into the System Dictionary

At any time during development of an application, it should be possible to load
the application into the System Dictionary. Definitions of new data elements
created for this application must be loaded, as well as a complete set of
relationships, such as: which application created this element, which application
processes it.

The loading process is very important. It constitutes the updating of a valuable
corporate resource, and as such should be controlled under the data
administration function. It makes sense then to approach the loading in a batch
fashion, at the conclusion of the development project.

Having the application generator accomplish the loading of the dictionary is one
of the more important benefits of integrating development tools with the

The role of Data Dictionaries
0097-18



dictionary. It ensures that the dictionary will be updated automatically,
consistently, and accurately.

3.4 A Summary of the Dictionary Interface

The most important aspects of the dictionary interface can be summarized by the
following points.

1) There is no run-time access to the dictionary. The interface is entirely in the
application generator module. ‘

2) The presence of the data dictionary does not impose a development
methodology. One can choose to use the dictionary or not use it, draw
existing defintions from the dictionary, create new definitions as needed.

3) Once an application is complete, the following information can be loaded
automatically into the dictionary.

i) A complete definition including logical attributes of the data accessed by
the application.

ii) Relationships which specify the databases, datasets, files and elements
processed by the application.

Summary

A comprehensive dictionary product, such as Hewlett-Packard’s System
Dictionary, combined with sophisticated application development tools can go a
long way toward solving a number of traditional dictionary implementation
problems.

The features of System Dictionary make it possible to implement a single,
system-wide dictionary database. (What a data dictionary was meant to be in the
first place!) The dictionary administrator is provided with the necessary tools to
address security and version control issues. Extensiblity facilitates
standardisation - one dictionary can suit all (or most) purposes.

The new breed of fourth generation software can be interfaced to the dictionary
such that we obtain the benefits of a centralized repository of data definitions,
with few of the traditional problems. Prototyping is not stifled, the dictionary is
accessed neither at run time nor at compile time, alleviating some system
performance and reliability bottlenecks. The development software maintains the
dictionary automatically, consistently, and accurately.

The data dictionary assumes an unobtrusive, yet immensely helpful role in
application development.

The role of Data Dictionaries
0097-19






	The role of Data Dictionaries in Application Development, with an Emphasis on System Dictionary

