An Evaluation of Data Base Performance Tools
Thomas Gosnell

Infocentre, Montreal, Canada

Overview

Fourth generation languages have become a common
toolset, if not the toolset of choice, for most HP3000
development shops. The increase in use of fourth generation
language and the large amounts of systems which have been
built have resulted in the need for not only more
functionality but greater performance.

During the early years of fourth generation language
use, the need of data processing management was to increase
programmer's productivity, release systems to the users
faster and reduce the backlog of application systems. At
the time, the driving force for leading fourth generation
language vendors was to provide greater functionality and
more productive means. Thus, succeeding in helping data
processing departments deliver more application systems
faster, more attention has been focused on optimising the
runtime performance.

Leading fourth generation language vendors have in the
past, and continue to address, the need for improved systenm
performance by investing research and development resources
in advanced alternate processing technologies. Two
methodologies which have had success in improving Turbo
Image../ Image throughput and performance are high speed
indexing and fast serial read technology.

Turbo Image/3000, hereafter called just Image, has
proven itself to be a reliable, flexible, efficient, and in
many ways a very fast data base management system. Used by
the majority of HP3000 application system users, Image
access is a fundamental part of most fourth generation
language's and can be arguably attributed to the success of
many applications on the HP3000.

Image however has 1limitations and bottlenecks which
limit fourth generation language processes from achieving
maximum performance in both interactive and batch
processing. Image's speed in interactive access can be
excellent by using hashed master files to quickly retrieve
data entries with complete key values. Yet, limitations
exist preventing the rapid retrieval of data by secondary
key value in the master sets, partial key retrieval in the
master/detail sets, and relational conditions. Such
constraints are addressed by building indexes on top of the

existing Image structure to provide increased functionality
and higher speed of retrieval.

0100-01

Batch processing typically involves reading data sets
serially, extracting the records meeting various selection
criterias and subsequently processing the valid entries.
This procedure is often restricted to the speed at which the
records are accessed and read from the data base. There are
parameters in both Image and MPE which may be changed to
tune performance. These include buffspecs, blocksize, cache
block size; all can make a significant improvement in
performance or degradation but cannot overcome the overhead
associated with Image serial read performance. However,
fast serial read technology addresses the problem with
impressive results. The present paper will review these
complementary technologies in a generic fashion, providing
the reader with some general guidelines for the best fit
scenarios.

Capability sets and performance will differ between
vendors of similar products. It is the purpose of this
paper to illustrate the comparative advantage of the
different technologies and not provide product comparisons
or definitive statements on performance. As such not all
listed capabilities will exist in similar products, nor will
performance figures be the optimal available. All tests
were executed on a HP3000/930 running MPE/XL A.01.20 in
compatibility mode.

Indexing Systems

There exists many types of indexing techniques and
technologies which increases the speed in which data may be
accessed. Every viable algorithms possesses characteristics
which assists in defining performance and functionality
versus resources consumed . Hashing techniques, such as
used by Image master files are arguably the fastest least
consumptive methodologies available, but require that key
items will hash evenly and will be suitable for retrieval by
their full key value.

In the real world of data processing, many situations
arise whereby user retrieval requirements dictates a data
model which does not correspond to a proper fit to the Image
data base management system technology. There are without
questions, techniques and tricks which have been used to
force fit Image with application systems. Such methods are
not always efficient or easy to program using a fourth
generation language.

An alternative data indexing technique to hashed master
files is the binary tree concept, used with KSAM on the
HP3000 and HPIMAGE on the 9000/8XX machines. B-Trees
possess many characteristics which make them a very good
alternative and- an excellent complement to hashed master
files.

0100-02

B-Trees, unlike hashed techniques keep key values in
sorted order with index blocks and pointers to quickly
locate key items with partial as was well as full key
values. Such characteristics allow B-Trees indexes to serve
as foundation to full feature data indexing and enhanced
data base management system functionality.

Implementation of the technology differs for enhanced
Image/fourth generation language data base access, but
typically they consist of various programs and intrinsics
which support the complete development and runtime
environment. Such routines allow the definition,
installation, maintenance, programming and runtime support
needed for external access.

Capabilities

Data entry retrieval for indexed data items are
possible by:

item value;

partial item value;

key word;

partial key word;

multiple item;

multiple item, multiple values;
relational conditions between items;
multi set retrieval;

field grouping

Implementations

Index data structures are built using vendor specific
techniques, but typically:

- contain a B-Tree structure for partial value indexed
item retrieval;

- build data structures within standard Image data
sets;

- create an index root file to describe indexing
characteristics;

- provide transparent and non transparent support
from fourth generation languages;

- installation programs for configuring and
reconfiguring indexing requirements:

- maintenance programs to rebuild indexes on new
or old data bases;

Operational characteristics

- Automatic recognition of indexed data sets by
fourth generation language processor.

0100-03

- During inquiry or modification mode, indexed
data items are prompted for, at which point any
combination of the retrieval capabilities can be
used.

- Entries are qualified from indexes and not
retrieved from data sets during inquiry
processing producing a very responsive
interface.

- Qualified entries can be 1listed data using
relational conditions, displayed and modified if
required.

- Qualified entries can be passed to reports for
printing or complicated outputs.

- Indexing cannot easily span data bases without
the use of regular image keys.

Programming Effort

- Indexed data sets are automatically recognized
and require no effort to maintain from a
programming stand point.

- Advanced reporting on multiset displays
typically have to be coded in the reporting
language.

- Existing screen displays will typically benefit
from retrieval capabilities with no
modifications.

Performance Characteristics

-Retrieval from Data Base

- Qualifies entries very quickly; example: Master
data set 8192 entries, 18013 capacity:

single item value 160 records < 1 second

three values using "or" 370 records < 1 second

single partial value 212 records ~ 1 second

- Multiple items from single data set;

single item 160 records < 1 second
and

second item 160 records < 1 second

TOTAL TIME < 1.5 second
- Qualification and Retrieval

single item value 160 records 4.5 seconds
(1.8 seconds)
multiple item value 370 records 10 seconds

(4 seconds)

- Average Rate of Retrieval 37 records/ 91 records/
seconds CPU second

0100-04

- Adding to Data Base

Indexed data items require significant amount of time
to be placed into a data base. The number of index data
sets which need to be updated for each new entry can be as
little as one and as many as four for each indexed item!
Therefore, the performance of adding to a data set can vary
and be significant. Typically in on line entry with four or
five items indexed, the time to add to the data base will be
less than 1.5 seconds. This amount of time is very often
acceptable for low volume of fairly static information. 1In
high volume data entry applications, the time to add may be
too great to sustain an acceptable level of performance. 1In
general, each item indexed will have a cost similar if not

slightly greater then adding a chained item in a detail data
set.

In addition to the performance cost of adding records
there exists a cost in disk space. The data base in which
the performance data was extrated was originally contained
within approximately 34,000 sectors. After a moderate
amount of indexing, 4 items totalling 50 bytes in a master
of 8930 records and one 82 byte field in a detail data set
of 62,190 records the data base required an additional 7100
sectors of disk space or approximately 25% more. It should
be noted however, if the application did not use indexing,
it may not have been possible to implement with a fourth
generation language or Image.

Using the Technology

Index systems offer functionality and performance which
is very appealing. The ability "to find the blue needle in
the hay stack" in under a second is very attractive. cCare
must be taken however, not to try and replace all Image
search items with indexed data items or index
indiscriminantly.

Image search item structure are efficient and provide
excellent performance, where full key values are known or
vwhen the data base is being accessed programmatically.

Index data structures are less efficient in CPU and
disk space usage, but provide a more flexible and improved
responsive user interface. These characteristics indicate
that using indexes should be viewed as a complement to Image
search structures and not a replacement.

Good candidates for using index data items are master
type files where data is relatively stable and textual
information is present; two examples of such files are the
customer master and part master.

In both of these data sets, numbers and/or codes are

0100-05

typically assigned to each record. These represent a unique
occurrence of data and represent an item with textual
information.

Without indexing an interactive user would normally be
required to know the unique record identified, be it part
number or customer number to access stored information.
Using indexes, users may dquery the data base with more
meaningful data items such as names, cities, or part
descriptions and interactively retrieve the information
required without knowledge of codes or numbers.

Poor example of using index data items would be high
volume transactions data sets, such as an order detail or
inventory transaction file. While their may very well be
data that would benefit from indexing, performance of
maintaining index data's structures, in high volume
agpiications, may slow data base performance to unacceptable
limits.

Reporting on data sets which have been indexed may
benefit from using the indexes, but care must be taken as
the maximum throughput of reading data with indexes is less
than with other techniques. Maximum rates qualifications
and retrieval are about 70 records/second. Other
techniques, such as fast serial read can be processed at a
rate of over 2000 records/second. Indexing however, does
not require that the entire data set be read and can
therefore offer superior performance for small subsets of
data.

High Speed Serial Read

High speed serial read technology enhances data base
access from fourth generation languages by increasing the
rate at which data can be extracted. Using a set of
decision rules, the language processor will invoke special
data base access routines when possible to dramatically
increase the speed at which data can be read from a master
of detail data set.

Requiring no prior configuration or set up, high speed
serial read is very easy to use and to benefit from.
Maximum optimization of the technology requires that the
user clearly comprehends both performance characteristics
affecting the data as well as the data itself.

Implementation

- High speed data access intrinsincs use
privileged mode to open data sets.

- Data access intrinsincs are typically contained
within the system segmented library, thereby
eliminating the need for privileged mode
compatibility on the fourth generation language

0100-06

processor.

- Language processor has knowledge of processing
context and with built in decision rules can
activate high speed routines if needed and
available.

- Access intrinsics routines use multi record
NoBuff IO.

- Access routines may be disabled by system
manager or programmers.

Operational Characteristics

= Forward serial read only (DBGET mode 2);

= Data cannot be updated while being read;

- Verifies and respects Image security;

-~ Bypasses Image control blocks to reduce overhead
and increase speed;

- Requires a minimum of 4,000 words of stack
space.

Performance

- As no data modifications must be performed,
there is no effect on adding data to the data
base.

- Indirectly using fast read can reduce the need
of search items, or indexed data items by
providing alternate means to access data.

- Forward serial read is approximately 6 items
faster than a regular serial read.

Set Capacity Entry Reading Elapsed CPU Records/

Type Size Technique Time Time Second
Master 8930/18013 101 Tmage 29 20 307
Master 8930/18013 101 Fast Read 42 3.9 2126 (6.7 times)
Detail 62190/91008 51 Image 126 124 493
Detail 62190/91008 51 Fast Read 22 18.5 2826 (5.7 times)

Using the Technology

The raw speed of fast read technology is impressive
and useful by itself, but to gain maximum benefit, some
thought must be given to reading algorithms for the given
structure a data base.

To maximise the gain of using fast read technology,
data sets which require 1lengthy processing should be
reviewed so as to decide whether serial read may be
implemented. An example follows which illustrates three
different approaches, with and without fast read to help
comprehend the performance characteristics in reading a
master and detail data set.

0100-07

- Data base Layout (subset):

Set Type Capacity Entries Seconda Average
~-ries chain
M-Product Master 18013 8930 21 1.25
D-Description Detail 91008 62190 - 7

The processing objective is to read each master record
and its related detail. In the first two cases, for each
master record a chained read is performed on the detail
data set. In cases 3 and 4, the detail data set is read
serially and for each record, a calculated read is performed
on the masted data set. In tests 5 and 6, the detail data
set is again read serially , but a calculated read is
performed when the current master record does not have the
same key value as the current detail.

Cases Elapsed CPU % Casel % Case 2
Time Time

1 Read master chain detail 186 178 100 105
2 Fast read master chain detail 177 174 95 100
3 Read detail-calculated read

master 318 315 171 179
4 Fast read detail-calculated read

master 225 220 121 127
5 Read detail-calculated read

master-break 213 211 115 120
6 Fast read detail-calculated read

master-break 109 108 59 61

The best results illustrate the potential of using
alternate processing methods. Case 6 in which the detail
data set was read serially with fast read and the master
data set read for each new key value resulted in a
performance increase of 67% over case 2 where we read the

master serially with fast read and we chained to the data
set.

Their exists a particular data characteristics which
had an effect on the results that is, the packing of the
detail data set. This one fact resulted in the optimization
of cases 5 and 6 by eliminating over 53,000 calculated
reads. This same fact also greatly optimises cases 1 and 2,
by producing the nearly optimal chain read environment.

While the ideal packing skewed the results, it should
be kept in mind that all data bases have particular data
characteristics. The knowledge of data particularities and
of performance profiles of the various access techniques are
mandatory for achieving maximum performance.

0100-08

By retrieving the results, the following performances
profiles can be extracted:

Fast serial read

2100 records/second for master
data set at 50% capacity

2800 records/second for detail
set

307 records/second for master
data set at 50% capacity

= 493 records/second for detail

Regular serial read

set

Calculated read = 320 records/second for master
data set at 50% capacity

Chained read = 350 records/second for detail
set

Logic process for

conditional check = 1000 records/second

These results should not be taken to suggest that
detail sets should be read first but rather that details can
be read first and thus eliminate the need for a detail
search path and still be faster.

The replacement of detail chains used for reporting
purposes by run time access routines have the potential of
not only increasing the speed of reading data but also

decrease the overhead associated with adding records to the
data base.

In summary, fast read routines will improve the rate at
which data can be read from the data base. The passive use
of this technology will provide small gains in performance.
More conscious use however, will provide the analyst with
the possibility of gaining significant run time reductions
and the opportunity to decrease data base index structures.

Conclusion

Fourth generation language vendors are supplying
alternative ways of addressing the need for greater
input/output performance from Image data bases. Easy to use
interfaces and, in some cases fully transparent interfaces,
may use these techniques very easily. However, the numerous
performance parameters and the greater number of processing
options require that additional analysis be performed.
Informed use will increase system throughput and provide
more productive systems. Negligent use can result in no
improvements and even possible performance degradation.

With the maturing of fourth generation 1language
products, data processing system production is 1less time
consuming, however, to fully exploit their capabilities
requires very detailed analysis and excellent understanding
of the development tools.

0100-09

	An Evaluation of Data Base Performance Tools

