
POVE1UlOUSE STANDARDS

Christopher D. Brayman
Brant Computer Services Lfmited
2605 Skymark Avenue, Suite 400

Hississauga, Ontario CANADA L4W 4L5
Telephone: (416) 9790

INTRODUCTION

During the years that COBOL became the standard of third generation
languages (3rd GL's), the industry adopted many standards in structured
programming and system design methodologies as MIS departments
scrambled to protect themselves from the whims of creative, but
inconsistent, computer professionals. The "techies" of this language
generation were forced to standardize to protect companies' often huge
investments in computer systems.

Standards were developed, such as "Structured Warner-Orr", for writing
COBOL applications. In addition, much attention was placed on design
methodologies resulting in a multitude of textbooks describing the best
approach to systems analysis and ~esign. Certain leaders emerged, such
as "Yourdon", who managed to capture all components of the system
development lifecycle (SDLC) in a fashion we could understand.

Today, we are still struggling to understand and deal with the impact
of fourth generation languages (4th GL's) on traditional programming
standards. Certainly, 4th·GL's have changed and have eliminated many
of the problems found in 3rd GL environments. The inherent organiza­
tion and Js.tructure of the POWERHOUSE products, the leading 4th GL on
mini-computers world-wide, have reduced significantly the risk that a
creative "techie" will build an application that no one else could
possibly maintain. However, even with this structure, I have seen some
radically different looking POWERHOUSE code over the past five years.

In our company, we have a variety of projects ongoing in different
computer languages. As a professional service organization offering a
variety of solutions to businesses in the HP environment, we employ the
"old" and "new" schools of computer professionals. Applications are
being developed or maintained in low-level languages such as ASSEMBLER,
in 3rd GL's (COBOL, RPG, FORTRAN, PASCAL), and 4th GL's (POWERHOUSE,
SPEEDWARE). Regardless of the level of programming language, one
constant remains:

POWEllBOUSE STANDARDS 0145-1



Standards in program development are necessary to
ensure consistancy between programmers. No matter
how well structured the language, "techies" will
always find a way to impose their creativity and do
it differently.

The intent of this technical paper and subsequent presentation at the
lUG in Orlando is to discuss some of the internal standards we have
adopted in our POWERHOUSE applications on HP3000 MPE boxes. Some of
these standards you may agree with, others you may not. We make no
claim to know the "best way" since, by their very nature, standards are
simply that -- "standards".

I. POVERIIOUSE PRODUCTS

POWERHOUSE is a family of fourth generation language products authored
by Cognos of Ottawa, Canada. The software is comprised of a
dictionary, a report writer (QUIZ), a menu and screen generator (QUICK)
and a transaction processor (QTP). In addition to these development
products running on a variety of hardware platforms, Cognos offers the
following applications: POWERHOUSE Graphics, an end-user Report Writer
(The Expert); a financial accounting package (Multiview); a spreadsheet
program (Powerplan); and, a development and documentation tool (The
Architect) .

General Standards

1. A minimum level of source program documentation is required for
all QUICK, QUIZ, and QTP programs. This includes:

o name of program (MPE filename, group account)
o version number
o name of programmer
o title of program
o expanded description
o dates created and modified
o explanation of major changes

NOTE: Use the DESCRIPTION verb for expanded descriptions in QUICK
screens.

2. If KSAM records are not very static, the binary trees must be
frequently rebuilt which is CPU-intensive. As well, file-locking
is handled differently for KSAM files (in comparision to IMAGE)

POVEIUlOUSE STANDARDS 0145-2



since locks occur for the file around a write, update, and read.
As such, KSAH Eiles are only used Eor generic keyword searches.

3. Security specified at the file and element levels inside IMAGE is
restrictive and costly to change as data must be unloaded and
reloaded to a rebuilt database. Therefore, file and element level
security should be kept as simple as possible. Apply security
using POWERHOUSE application security.

4. Any incoming data from external systems should go through a set of
validation checks prior to entry of the production database. The
following steps are typically performed:
o run QTP batch edits against data
o add good records to production base
o report rejected records
o add rejected records to a correction database and use QUICK

validation screens to modify and edit rejected records
o rerun QTP batch edit against data and add corrected records to

production base.

NOTE: We try to encourage corrections at the source from external
systems.

s. The use of USE files inside source progr:ams for handling standard
system-wide calculations or global hilite options 1s encouraged.
The most common example is for screen hilite options maintained in
one source file:

example:

HILITE DATA INVERSE UNDERLINE
HILITE ID INVERSE
HILITE MESSAGE INVERSE UNDERLINE AUDIBLE

In this way, the hilite options for a system of screens can be
changed by modifying the one USE file source statements and
recompiling all the screens in the system.

This feature is not a new one. The COPYLIB in COBOL environments
provides a similar capability.

6. When constructing DEFINE statements in QUIZ and QTP where the
value of the defined item is calculated based on the values of
multiple items or expressions, use the "IF... ELSE" structure. If
it is based on the value of only one item, use the "CASE...WEN"
form.

POWERHOUSE STANDARDS 0145-3



7. Benchmark testing has shown that it is typically faster to extract
data into subfiles by QUIZ rather than QTP. Therefore, use QUIZ
for creating subfiles where possible.

8. In large systems, it can often become difficult to differentiate
among database files and elements and other temporary variables,
defined expressions, and alias files. Therefore, we use standard
prefixes as follows:

T for temporary variables
D for defined variables
A for alias files

QDD Standards

1. Increase the blocking factor on QSCHEMAC's.

2. Include global options for things like date formats at the
beginning of QDD source files.

3. Use RELEASE and VERSION verbs to control
This is especially important in large,
applications.

enhancement releases.
complex and dynamic

4. Include descriptions for all files.

·5. Include descriptions and help messages for all elements.

6. Any logical edits and display functions for elements should be
included in the dictionary.

example:

ELEMENT CASH-AMOUNT 9(008)V9(002) &

HEADING "CashAAmount" &
LABEL "Cash Amount" &

SIGN LEADING "." &
PICTURE "AAA,AAA,AA" &

FLOAT "$" &
VALUES - 100 TO 100000 &
HELP "this field represents the cash"

"amount of order detail transactions

POWElUlOUSE STANDARDS 0145-4



7. Use common element names for like items.

example:

DESCRIPTION

rather than always creating unique items with names such as
INVOICE-DESC, PRODUCT-DESC, etc.

QUICK Standards

1. Major verbs in QDESIGN should be placed in the following order in
source programs:

SCREEN
TEMPORARY
FILE
TEMPORARY
DEFINES
ITEMS
GLOBAL HILITES (use file)
TITLES (as they occur)
FIELDS (as they occur)
PROCEDURES (recommended order from QUICK manual)

2. The QKGO file establishes a wide range of run time parameters for
the QUICK screens. Default values are set for all parameters with
the ability to increase or decrease values according to the
application requirements. System programmers must analyze the
machine enivronment for available memory, input/output limitations
and CPU power. In larger complex POWERHOUSE applications, para­
meters should be tuned to ensure optimal use of st:ack, int:ernal
buffers and extra data segments.

As a general rule, the programmer should analyze each user group
in an application for resource requirements and establish separate
QKGO files. Different users will access only a few screens and
others may access many. Different screens may have very different
requirements for work areas in stack.

Special attention should be given to the following parameters:

A. Application Lines

This parameter involves the stacking options of the SCREEN
statement, the application lines QKGO parameter and available

POWERHOUSE STANDARDS 0145-5



terminal memory. The parameter controls the number of lines
of simulated terminal memory used for stacking QUICK screens.

If a user moves be~een a small number of screens, stack all
the screens on different 24-line blocks of terminal memory.

In large application systems where a user moves unpredictably
through screens, map screens according to levels. The master
menu is mapped onto application lines I to 24. All menus and
screens at level two are mapped to application lines 25
through 48. This is repeated to the deepest level in the
system.

B. Procedure Code

This parameter sets the number of 256-byte pages reserved for
procedure code in the user stack. Procedure code records from
the compiled screen file on disc are read when an associated
function is requested (i.e. the user types "E" in the ACTION
FIELD and QUICK moves the Entry Procedure into stack).
Records are moved into this allocated space according to a
paging system maintained by QUICK.

If the parameter setting is less than the number of required
procedure code records for the activity on the screen (the
threshold level), subsequent activities will require at least
the threshold level of reads to the screen file on disc.
Therefore, it is essential that user's busiest screen be
analyzed Eor its threshold level and the parameter for proce­
dures code be set to this value.

C. Rollback Buffer. Secondary Blocks. Segment Size and Screen
Table

These four parameters work together to control a secondary
"paging system" maintained by QUICK in extra data segments.
The paging system is used to store spillovers from stack when
rolling back updates and screen table information. It is
much faster to load screens from extra data segments rather
than the original compiled screen file on disc. As such,
performance can be improved in on-line applications where
large "paging systems" can be maintained.

Therefore, if the machine environment has sufficient memory,
increase the size of the npaging systemn , as required by the
application. Typically some form of stack monitoring tool
will be necessary to analyze this environment.

POWERHOUSE STANDARDS 0145-6



3. Use default screen processing where possible. Avoid unnecessary
procedure code that must be paged in and out of stack as part of
the procedural code "paging system". Apply editing to fields with
verbs such as VALUES and PATTERN directly.

example:

When doing a conditional lookup to a reference file, use an
associated DISPLAY or SILENT field to perform the conditonal
processing with a VALUES verb, this technique could be used rather
than writing procedural code with GETS, etc.

FIELD CUSTOMER-NO OF PROJECTS &
LOOKUP ON CUSTOMER-MASTER

FIELD CUSTOMER-STATUS ID SAME DISPLAY &
VALUE "A"

NOTE: This approach would be appropriate where a custom e~ror

messages was deemed unnecessary by the designers, and excessive
volumes of procedural code was otherwise required in more
essential processing on the screen.

4. Where thf! logic of the QUICK screen requires that procedural
control over reading and updating of a file must occur, use
DESIGNER files. Avoid declaring files as SECONDARY when none of
the fields appear on the screen and accessing the files only need
occur under certain circumstances.

5. Use REFERENCE files only for LOOKUP ON. If a procedural GET is
required, use a DESIGNER file.

6. Use the DETAtL file for one-to-many relationships on a single
screen format, rather than two screens with the second screen
declaring the primary file of first screen as a MASTER, etc.

DETAIL files avoid the unnecessary loading of a separate screen
into the user stack and extra data segments.

7. Use the ALIAS file in the following circumstances:

o accessing a file on a different path or mode
o changing multiple key vlaues in IMAGE chains

8. Use the DELETE files with caution because of the application
implications of automatically deleting detail transactions. As
well, these deleted records must be rolledback into the Rollback

POWElUIOUSE STANDARDS 0145-7



Buffer in primary stack, then to extra data segments or temporary
disc files as necessary. Negative performance may occur with
large DELETE files.

9. It is important to understand the field processing cycle within
QUICK as well as the use of FIELDTEXT and FIELDVALUE during this
cycle. Four QUICK procedures are used to control the cycle in the
following order:

INPUT ----> EDIT a> PROCESS a> OUTPUT

i) Input. This procedure is used to manipulate data before any
editing is performed by the EDIT procedure. Any changes to
the user-entered value should be made to FIELDTEXT.

ii) ~ This procedure is used to perform any additional
editing after those performed by field verbs such as VALUES
and PATTERN as part of the ACCEPT verb. There are two values
associated with the field. The new value entered by the user
should be referenced by FIELDTEXT (for character items) or
FIELDVALUE (for numeric and date items). The old value should
be referenced by OLDVAlDE (fieldname) to address the value in
the record buffer.

iii) PROCESS. This procedure is used to perform calculations
after the newly entered value has been placed in the record
buffer. It immediately follows the EDIT procedure. The value
of the field should be referenced by the actual name of the
field.

iv) OUTPUT. This procedure is used to modify data between
storage in the record buffer and output back to the terminal
screen. The screen display is altered by modifying the value
of FIELDTEXT.

10. Proper qualification with Eile reEerences using ·OF filename· Eor
all fields in FIELD verbs and procedural code items should be
done.

POWERHOUSE STANDARDS 0145-8



example:

FIELD AMOUNT OF CASH-RECEIPTS

PROCEDURE PROCESS AMOUNT OF CASH-RECEIPTS
BEGIN

IF AMOUNT OF CASH-RECEIPTS > 1000
THEN BEGIN

END
END

Proper qualifications as described will avoid errors for ambiguous
file references when adding new files to the processing of
existing screens.

11. Include PUT verbs for DESIGNER files in the UPDATE procedure to
ensure that the DESIGNER file is rolledback automatically by
QUICK, if an error occurs during the PUT to the database. When
performing these PUTS outside the UPDATE procedure or when
modifying the UPDATE procedure directly, use the STARTLOG and
STOPLOG verbs (as QUICK normally does in the default UPDATE
procedure) to control IMAGE logging if it has been enabled.

12. Very complex screens using numerous file structures and lots of
procedural code for processing and edits will perform more poorly
than simple screens. Therefore, adopt the XIS principle (Keep It
Simple) in the design of individual screen progr&m$. Spread the
processing of multiple files over multiple screens where possible.

13. The design of a QUICK screen hierarchy should balance the logical
requirements of the application with the size of the stack
required for deep structures. Some logical structures may
encourage a very deep hierarchy and conflict with the stack
limitations of the machine environment.

If the logical structure does not demand a deep hierarchy,
consider building shallow structures. The savings realized by this
design approach can be used to increase work areas in stack and
improve system performance.

14. Consider using an external call to a 3rd GL subroutine in the
following circumstances:
i) when on-line edits and/or procedural processing involves very

large volumes of procedural code;

POWERHOUSE STANDARDS 0145-9



ii) Where a standard routine is accessed by many users
concurrently and requires immediate response.

QUIZ Standards .

1. Major verbs in QUIZ should be placed in the following order in
source programs:

ACCESS
DEFINE
CHOOSE
SELECT FILE
SELECT IF
SORT
REPORT
NOREPORT
FOOTING (in order of control breaks)
FINAL FOOTING
INITIAL HEADING
HEADING AT
PAGE HEADING
(MPE FILE STATEMENTS)
SET
BUILD

2. Production reports should be kept in compiled form.

3. Fully qualify all linkages in ACCESS statements and all elements
used in the report.

example:

ACCESS EMPLOYEE-MASTER LINK EMPLOYEE-NUMBER TO &
EMPLOYEE-NUMBER. OF TIME-RECORDS

SORT ON EMPLOYEE-NUMBER. OF EMPLOYEE-MASTER &
ON FUNCTION-CODE OF TIME-RECORDS

REPORT EMPLOYEE-NUMBER OF EMPLOYEE-MASTER &
FUNCTION-CODE OF TIME-RECORDS &
HOURS-WORKED OF TIME-RECORDS

BUILD

4. Wherever possible, use "SELECT file IF" rather than "SELECT IFn ,

since fewer evaluations must be performed to decide if the record
complex should be kept or the individual file read.

POWElUlOUSE STANDARDS 0145-10



5. Divide complicated reports into two passes.
minimum set of records in the first pass.
report information as appropriate.

Extract and select a
In the second pass,

6. Logical element characteristics such as headings, picture clauses,
and floating dollar signs should be included in the dictionary.

7. When using "SELECT IF", specify selection based on items higher up
in the ACCESS statement first (primary file first). This allows
QUIZ to eliminate records based on partially satisfied selection
conditions.

example:

ACCESS EMPLOYEES LINK EMPLOYEE-NUMBER TO &
EMPLOYEE-NUMBER OF TIME-RECORDS

SELECT IF EMPLOYEE-STATUS OF EMPLOYEES.."A" AND
FUNCTION-CODE OF TIME-RECORDS - "77"

In this way, records from TIME-RECORDS will only be read if the
first condition is met; that is, if the Employee Status of
Employees is equal to "A". As well, when multiple conditions are
on the same file level, they should be placed according to the
most likely condition.

8. Always include a NOREPORT verb in QUIZ reports to specify the
report contents if no record complexes are reported.

9. Conditional expressions in DEFINE statements should be organized
so that the most likely conditions are evaluated first.

QTP Standards

1. Major verbs in QTP should be placed in the following order in
source programs:

RUN
GLOBAL TEMPORARY
REQUEST ONE
ACCESS
TEMPORARY
DEFINE
CHOOSE
SELECT FILE
SELECT IF

POWERHOUSE STANDARDS 0145-11



SORT
OUTPUT
ITEMS
SUBFILE
MPE FILE STATMENTS
SET
REQUEST TWO

BUILD

2. All QTP programs should be tested using a QUIZ program equivalent
to ensure the proper understanding of record complexes that are
constructed for the OUTPUT phase.

3. Production QTP runs should be kept in compiled form.

4. Fully qualify all linkages in ACCESS statements and all elements
used in the run.

5. Conditional expressions in DEFINE or ITEM statements should be
organized so that the most likely conditions are evaluated first.

POWE1UlOUSE STANDARDS 0145-12


	Powerhouse Standards

