
Data Design Considerations for Distributed Applications
Leigh Sol :Land

Cognos Corporation
2301 E. Lamar Blvd~ Suite 416

Arlington~ TX 76006

Every company which uses computers is considering, and most
are already using, distributed data processing of some sort.

Large companies:

are connecting remote processors to mainframes
are decentralizing operational processing
are building more operation oriented~ mission critical

systems
are tying PC's and LAN~s together, which have been ac

qUired and developed in isolation
are standardizing and connecting decentralized process

ing

Midrange and small companies:

are building networks of minis~ LAN's and PC~s.

the Cl1st (3+ acquiring and operat:l l 1g mainframes is very
high

the cost 0+ communications for leased lines trom
mainframes to remote terminals is n1g1"1 and in
creasing rapidly

increased redundancy of equl~men~ achieves greater
overall uptime, Decause even it a part of the sys
tem j, ~5 :i nope'I'" i:~t. J. ,1(=, the r' (·?mc:t i, ndE~r 1 s st i 11 war king

reduced redundancy is possible in people~ data entry
anD data~ resulting in lower costs~ if the dis
tributed system is well designed

local control is desired wherever local management ac
tually has authority

hardware and software growth is more modular and more
incremental with networks of smaller computers~

and therefore not only less expensive but also
easier to manage.

Data Design Considerations for Distributed Applications
0149-'1

eXIsting equipment can often be incorporated into a new
network, and used until it is fully depreciated

diverse solutions may be integrated, incorporating
turnkey systems, purchased application software
packages, and custom development, even when pur
chased solutions are only available on
heterogeneous hardware or software environments

Data Design Considerations for Distributed Applications
0149·"-2

2. What is Distributed Data Processing?

Any or all of the following may be distributed:

the actual data (storage devlces and media)
the processing (CPU cycles)
the development effort <programming, report writing)
control (operational decisions)

Several configurations are available:

Centralize~ (one machine, often nearly large enough to
perform all processing)

UDistributed ll (decentralized authority,
widely dispersed equipment)

with diverse,

Brand
y

CPU

IBrand X cpul

lcpul

Hierarchical or Vertical (central computer connects to
remotes, which may be arranged along geographical,
tunctional or other lines)

D D D
\ /

Icpu]
/ \

0 0 0--0 (Secondary

: -0 Network)

0

Data Design Considerations for Distributed Applications
0149-:3.

Peer-to-peer or Horizontal (no
rather a connection
together, such as a LAN)

central computer, but
which links computers

c==J----c==J----c==J
(RING)

c==J----c==J----c==J

or •••

Combinations

D

D

D
\

D

I

D
/ \

D 0 0--0
I -0.

D

Data Design Conslderations for Uistributed Applications
0149--4

Multiple Processors or Clusters (redundancy fosters up
time and reliability, so this configuration is
particularly useful at central or otherwise criti
cal nodes>

!CPU 11=lcpu 21---68 /(1
= :3---l

D (Disk
Controller)

I \

~
ISK G;lsKl
#1 I #2

L---.....J

Data Design Considerations for Distributed Applications
0149-5

DDP writing has largely focused on the connection itself~ in
an attempt to get enough speed and bandwidth to be useful:

electrical interface (e.g.~ RS-232)
asynchronous vs. synchronous communications
hardware ys. software handshaking
ISO 7-layer protocols
DB and NS on the HP30~)~ other software layers else

where
modem engineering
LAN's~ WAN's and other basic platforms

Less emphasis has been given to the application issues:

what to distribute (data, processing~ deYelopment~ or
control?)

how to decide?
how to know when your DDP structure works?!
how to manage the transition from monolithic or chaotic

systems to useful DDP systems"?

Data Design Considerations for Distributed Applications
0149-6

3. What do we already know about data design?

one record type per file (or set)
all I"'ecord i terns dependent on "the key, the whol e key,

('and nothIng but the key!, so help me Codd ~ II

fewer keys mean better write performance in
Entry/Update

more keys mean better read performance in Inquiry and
ReportIng, by decreasing expensive serlal reads

get all locks before you start a transaction
hold the locks for as long, but only as long,

need them
always get lOCkS in the same order

as you

online processing needs to minimize elapsed clock time
batch processing needs to minimize resource consumption

b...OCklJ]9 goal s:

online processing needs maXImum concurrency (tending to
shorter transactions)

batch processing needs maximum consistency (tending to
longer transactions)

Data Design Considerations for DIstributed Applications
0149-1

~~1a..t....i§_ di+ferent in the DDF' environment'?

faster response is possible if the data file is local
local processing is insulated from down time on other

nodes if the data file is local

mUltiple copies of a tile invite unsynchronized changes
multiple input locations require synchronization

processing if multiple copies of a file exist and
must be updated immediately

there is a tradeoff between locking delays, delays for
synchrrn1ization of update processing, and out of
date information

Data Design Considerations for Distributed Applications
0149--8

5. 'fhere are only THREE possible designs for a distributed
file

one copy of file, often in central location
shared access to data of common interest

ADVANTAGES:
easy to update (one place for modifications)
easy to regulate (locking, duplication, data valida-

tion)
data is always up to date
-fast and easy i:or analysis and Ilglobal" reporting.
good for reference data which changes frequently(e.g.,

customer credit or accounts receivable check lists
or commodity product prices.)

good for data updated often from more than one place
often a very good solution for data which has become

"informational tl
, and is no longer of Iloperational"

value.

DISADVANTAGES:
will always be slower to access and update,

on a remote node, than local data.

Copied (or "cloned") data:

multiple copies of a file
local access to data of common interest

if located

ADVANTAGES:
fast access on reads (always local>
high network reliability (not dependent on any other

node)
must be modified in central location and redistributed

periodically, or else all modifications must be
propagated to every copy throughout the network

best fo,'" data which is very static, (e.g., lists of
credit terms, branches, state tables, zip code
lists) or where updates always come trom one place
(e.g., supermarket price lists).

could be appropriate for types of data such as customer
llsts, prices or inventory masters, if they
change infrequently.

Data Design Considerations for Distributed Applications
01. 49-<:J

DiSADVANTAGES:
may be very slow on writes, depending on " wr ite

thr'out~h II requi rements to Ltpdate copi es on other
nodes.

updates are generally difficult, with locking con
siderations and deadly embraces over multiple
CPU's, and dependence on other nodes' ~ptime.

may be out of date.

Split data:

local access to data of local interest
thi.s is what many people think ot: as "di.stri.butedll data

ADVANTAGES
fast and reliable for local dat~

for local transactions (orders, production) or
detail of interest only to local users, but not
needed by the entire organizatlon (directions to
drive to customers~ offices, local inventory
balances)

Q.l...§.~DY-~IiL~.F-:S

slower and potentially less reliable for access to
remote data.

application complexity may increase, because each ap
plication has to either incorporate the logic to
search for remote data or else use an extremely
slow brute force serial search of all nodes.

it is very difficult to do analysis or reporting on a
basis broader than the local versions of the
files. It is usually necessary to combine
selected records from each node in a single loca
t i c)n f i ,,.. st.

the data records are very susceptible to duplication
and divergence due to unsynchronized updates.

Data Design Considerations for Distributed Applications
0149-10

6. How do you deci de wh:i ch to use'?

Who needs to see the (j at a';"

conslder that reports may be run at remote nodes and
sent to management at headquarters

Do they need all tl1e detaIl? Can it be e:·:t,-acted Ot
summed'? ~ For instance, account i ng peop 1eli ke to
collect data, but do they really need details on
which salesman called on WhICh prospect tor the
past twenty years"?

How do data updatf?S happen":'

Who creates or deletes data records?
Who writes~ updates or changes data?
How often does the information change?
How soon do the changes need to be available to

ever'yane who has a need to see the data'?

How large is the file?

consi. der' both absol'_lte si ze (bytes, records) and t"el a
tive SIze (compared to other data in the system or
organlzat.ion)

What is it used tor?

customer inquiries?
monthly GIL batch proceSSIng?
w(:ef..:l y management ,--epor·ts':'
on"-'demanc:1 management repc),... ts'/
whi eh manat;]er':"

What other constralnts must you consider?

communi cc3t:.i Clns casts'?
response time minimL~?

current equipment to be used?
company standards to be dealt with?

What does your URGANIZAfrON look like?

model the real world, not the current model!

----------------------_._---------
Data ueslgn Considerations for Distributed Applicat.ions

0149-11

7. What is ideal?

Guidelines:

READ/WRITE LOCATIO~:

if data is read by one node only, put it there!
else

if data is read by multiple nodes, but written
lcreated, updated, deleted) by one node only, con
sider locating it at the wrIting node ••• else •••

if data is written by multiple nodes, consider
centralizing it it it is dynamic, or cloning it if
it is static.

PPDIil]:: FREQUENCY:
if updates are done seldom or never, multiple copies

are fine ••• else
if updates are frequent, one copy is better.

PPDAl'E DEL?~YS:

if del ays in seei ng updates to a shared f i 1e are Q '.,

ceptable, look at capturing local update transac
ti ons and batch 'L:ransfer"I'-j, ng \.orienl 'to a centrall y
I oc:ated, si nl;)l ~~ copy 0+ ,"JH~i "}-:i 1eN.. el se •••

i. + updates must I:J\':: J. ii'IiTh2di ate (e. g. , ina sal es
:i nventol"'y) , I..iH:~ updatabl e f i I es must. be avai I abl e
"A'l . J 1 ne and performance is much more of a con'
::ald8t ation.

FILE SIZE:
if the number of records in the file is small (e.g., a

table of state codes and names), it may easily be
cloned •.. else •••

if the file is large (e.g., the income tax rolls for
the U.S.), it will tend to be centralIzed for
storage reqUirements if for no other reason.

Look at data in a hierarchy which matches the organization

Put each data item at the level where it needs to be,
then make it into records. For example, it may
be WIse to break the Inventory product master into
two files, a central or cloned file containing
common information such as description and size,
and a split file with local information such as
stock balance, pricing, and so on.

Data Design Considerations for Distributed Applications
014f./-12

Do not accept that head office users have a need to see
or change anything in the system. If they have
such a need legitimately, it may be possible to
set them up as valid users on each remote node.

Consider that, to generate common reports~ it is prob
ably a good idea to have all the data required by
that report at one place. This may be done in
batch, if It is only required on a monthly or an
nual basis.

For senior management reporting or other analysis,
snapshot extraction is a very useful option. A
periodic process (daily, weekly, monthly, hourly~

or •.•) creates a new file for the reporting
processes, replacing the current reporting file.
A snapshot file eliminates old or unneeded
records, summarizes wherever possible, eliminates
operational necessities such as status flags, and
generall y loses unnecessal"'y detai 1 . The snapshot
process has a side benefit of keeping data consis
tent throughout a given time period.

Centralize everything to a level which allows lt to be up
dated by those who have a legitimate need to do sOP

Intentionally decentralize for performance reasons only.

Plan to copy and download static information peri
odically.

Large central files, such as Customers, may be con
sidered too large to copy onto each remote
machine. These may be split up according to
which location deals with them. Then each node
can get a copy of "its own ll customer list.)

Watch out for bottlenecks:

if all processes on all nodes depend on a name-and
address master file at the central location, the
network is very vulnerable to communication or
central node failure.

Data Design Considerations for Distributed Applications
0149-1.$

Be creative:

if one or two data items are messing up your design,
break them out into their own record or records,
and see what happens!

Data Design Considerations for Distributed Applications
0149-14

8. What if the ideal is not possible?

Telecommunications Cost:

Millions of dollars per year may be saved by replacing
dedicated leased data llnes and online terminals with a

network based on dialup. fhe disadvantage is that
the files we so carefully placed in the inner
layers of the network may no longer be easily
available.

Careful design will separate subsystems, which may be
running on completely different machines, with
common files (i.e., the output of one subsystem is
the input to the ne~·:t). This makes the network
transparent to the application analysts and
programmers, so that they do not have to consider
it any fLlrther.

I ORDER ENTRY SUBSYSTEM
(on Head Office computer)

\

ORDERS
TO BE
SHIPPED

I I
I I

I I
I I

\/

(Transmit
file to
warehouse)

ORDERS
TO BE
SHIPPED

\

SHIPPING SUBSYSTEM
(on warehouse computer(s»)

The communications interface between systems then be
comes a matter of transferring a file from one
system to a lookalike file on the target system.

Data Design Considerations for Distributed Applications
0149--15

This interface may then be purchased, developed,
tuned or enhanced in isolation from the applica
tions themselves.

Performance Limits:

Network performance may not be satisfactory, no matter
how much is spent, if the data is not local.

use audit files to capture transactions, then batch
jobs to propagate them around the network. It may
be possible to use a file of nodes which need to
be updated for each transaction, so that all nodes
don't need to be updated for each transaction.

Head Office or other Reporting

use audit files to capture transactions, and batch them
up on a periodic basis. The control of the trans
fer process may be at the remote node or at the
center.

reduce the size of what is transferred as much as pos
sible, by use of extraction and summarization.

Intentional Redundancy Requirements

it may be possible, by cloning each remote node's
processes and data in a central location, to in
crease available up tlme to the remote users. If
the local hardware is down~ they may still be able
to work, uSlng their terminals and the network to
access data and programs on the central hardware.
I db not feel that this is a particularly effec
tive way to ensure up time, for several reasons:
it takes too much work to keep data synchronized,
it introduces a need to update both ways for when
a disabled remote node comes back up, and these
computers are very reliable in the first place!

Data Design Considerations for Distributed Applications
0149-16

9. Summary

Make the network model fit the organizational model

if the structural philosophy of management changes,
your network may also have to change. This is
known as lithe cost o-f doing business"!

Concentrate on application functions first.

where does management think they happen?
where do they really happen?
where does management want them to happen?

Look at data next.

put it where it needs to be to accomplish the func
tions.

if you have a problem locatlng data, review your func
tion map: is a function in the wrong place?
<Isn:ot modelling fun?!!"

Then, and not before, look at hardware, baud rates,
phone lines, and the like.

mu>:es,

it may be necessary to modify the model due to costs,
communicatlon service availability, or existing
investments

make your compromises here, but BE SURE that senior
management is aware of what is going on: they may
decide to spend mare, reduce a requirement or
change a constraint to achieve the overall busi
ness goal. Senior management makes business deci
sions, technical management makes technical deci
sions. Each of you should let the other do THEIR
job!

start with a pilot

don:ot try to implement the entire universe in one shot,
or you are doomed to failure before you start.

get feedback from the installers, users and maintainers
of the pilot before proceeding.

it is not (quite) too late yet to change your mind.

Data Design Considerations for Distributed Applications
0149-1'7

You will never finish this project~

your model, your network and your applications must
continually flex to adjust to the changing busi
ness climate, management requirements and avail
able new technology.

Data Design Considerations for Distributed Applications
0149-"18

	Data Design Considerations for Distributed Applications

