
Comparing UNIX with other systems

Timothy DO' Chase
Corporate Computer systems, Inc.

33 West Main Street Holmdel, New Jersey

The original concept behind this article was to make a grand comparison between UNIX
and severalotherwell known systems. This was to be all encompassing and packed with

vital information summarized in neat charts, tables and graphs. As the work began, the
realization settled in that this was not only difficult to do, but would result in a work so
boring as to be incomprehensible. The reader, faced with such awealth ofinformation would
be lost at best. Conclusions would be difficult to draw and, in short, the result would be
worthless.

Mter tearfully filling my waste basket with the initial efforts, I regrouped and began by as
king myself why would anyone be interested in comparing UNIX with another operating
system? There appears to be only two answers. First, one might hope to learn something
about UNIX by analogy. If I understand the file system on MPEN and someone tells me
that UNIX is like that except for such and so, then I might be more quickly able to under
stand UNIX. This I felt was an unlikely motivation. After all, there are much simpler ways
to learn UNIX.

Instead, the motivation for comparing UNIX to other systems must come from a need to
evaluate UNIX. If we are aware of the features or short comings of other systems, then we
can benefit by evaluating UNIX relative to those systems. Choosing an operating system or
computer is a major decision which we can benefit from or be stuck with for a long time.
So I decided that this article should discuss some of the important UNIX issues in the hope
that it might help with decisions regarding the operating system. Naturally such a discus
sion results in comparisons with other systems, but certainly not in the way I had original
ly imagined.

So why are people interested in UNIX? Conventional wisdom indicates several reasons.
First and foremost is because UNIX is a vendor independent operating system. Many feel
that if software development dollars are invested in UNIX, they are safer because UNIX is
not tied to any given vendor. If, for example, you write a program in FORTRAN for your
HP3000 which makes use of the features of MPEN, you are going to have to spend some
money to move that application to another vendor's hardware. To a large extent, HP has you
trapped in that you'll often choose to put up with things that make you unhappy rather than
switch to another computer vendor.

UNIX And Other Systems 0151-1

ThedreamofUNIXis that itmakes computerhardware more ofacommodity than it is now.
You can develop UNIX applications then shop for delivery vehicles. This may or may not
actually be tnle, as we shall see, but it most certainly is not tnle for proprietary operating
systems like DEC's VMS or HP's MPE. An excellent model for this approach is the ffiM
developed PC. Because ofthe PC's open architecture and generally available operating sys
tem, you can now purchase PC's from literally hundreds of hardware vendors. Currently,
one can secure a 1 megabyte PC with a color CRT and a 40 megabyte hard disk for under
$2,500. It has no nameplate on the front, but it runs Lotus as well as the ffiM original. It's
the user's dream that UNIX brings this state of affairs to the minicomputer.

The second important feature which UNIX promises is people portability. Nowadays it's
not enough to get a COBOL programmer, you need to get a VAX/VMS COBOL program
mer. Each proprietary operating system has its own command language, editors, compilers,
file system and system services. Only the most superficial of programmers is not effected
by the host operating system.

With UNIX, that changes. We have programmers working for us who don't really care what
machine they're working on. All they know is that they are working on UNIX. As program
managers, this is apowerful incentive to use UNIX. It's especially true for managers of in
ternal service organizations supplying general programming talent. Rather than force the
company to standardize on a given vendor or vendor's processor line, UNIX allows you to
address a range of processors with a single pool of programming taleilt. Clearly a cost ef
fective use of an expensive commodity.

A third reason to consider UNIX as an important system is the available software pool. Be
cause UNIXis widely available, it behoves thirdparty software vendors to develop products
which are UNIX based. Because UNIX is installed on so many systems, it gives software
houses a large potential market. This naturally results in more packages for you to choose
from. In addition, competition causes the resulting packages to be high quality. Contrast this
with proprietary operating systems. The HP3000 MPE system is actually too small to in
duce big software suppliers to make the (often extensive) changes necessary to port their
packages. The smallness of the potential market associated with proprietary operating sys
tems limits the choices you have and effects the overall quality ofavailable thirdparty pack
ages.

So, our comparison of UNIX with other operating systems is motivated by the hope of
evaluating the goodness of UNIX to see if it might be a useful way to gain vendor inde
pendence, people portability and access to existing software.

As easy as goodness is to talk about, it is quite another matter to define it. This is because
goodness is, ofcourse, relative to how the system is going to be used. It is generally felt that
UNIX lacks certain features which would make it a good real time system. Does that make
UNIX bad? Ifyou don't care about real time features then it certainly does not effect you.
So, although we will evaluate UNIX relative to other systems, our conclusions will only be
valid with respect to your scope ofapplication. Ifyou live in Oneonta, New York and there
is only an HP office near by, then you may not be really interested in UNIX's vendor inde-

0151-2 UNIX And Other Systems

pendence while a customer in downtown Manhattan might find it very attractive.

Open versus Proprietary

The first UNIX feature to be compared is its openness versus other operating system's
proprietary nature. In a nutshell, UNIX's openness stems from the fact that it was provided
in source form to most users and is available in some incarnation on many different com
puters. (For security reasons, UNIX sources are no longer automatically shipped with the
system. Now, inordertoobtain sources onemustpurchaseasourcelicense.)Writtenprimari
ly in a machine independent way in the C programming language, UNIX trades off wide
availability against somewhat diminished performance. It should be unsurprising that a
proprietary operating system executing on the computer it was designed for should out per
form UNIX. Because UNIX was written with portability in mind, it cannot take advantage
of the special features available on any given computer. UNIX must first abstract the fea
ture and then implement it in such a way that it is available on many different processor
designs.

In practise this is so difficult that it borders on impossible. The result is that UNIX has dif
ferent flavors which address differing underlying hardware capabilities. For example, in
VAX/VMS, the operating system is strictly demand page and the hardware is designed to
accommodate this. UNIX, however, must cope with machines which can support demand
page organization and those which cannot. As a result, UNIX may be run in either paged or
swapped mode. This fact causes a difference between individual UNIX installations. For
tunately, the number ofapplication programs which can (or must) differentiate between the
two modes is small. Still, the pure concept of a universal UNIX has to give way to ques
tions ofefficiency.

Although next to impossible to verify, one confidential study I have seen indicated that a
VAXf180 running UNIX could support 32 users while the same machine running VMS
could support in excess of 48. The point being not a quantification of the difference in per
formance, but rather verification of the existence of a difference.

For many applications, however, the ability to execute on different machines unchanged is
more important then a slight decrease in performance. But, there are those who don't find
UNIX all thatpure on the different machines it runs on. Arecent issue ofDatamation quotes
P. J. Plauger as saying ttCurrently, there are so many dialects [of UNIX] that the idea that
there is one UNIX is sillytt. Plauger, who used to work with Bell Labs during the UNIX
genesis appears to know what he's talking about. A partial listing ofUNIX system current
ly in use includes the Sixth, Seventh and Eighth Editions (sometimes called Versions 6, 7
and 8), Programmer's Work Bench, System ill, System V, System V Release 2, System V
Release 3, Berkeley 4.1, Berkeley 4.2, Berkeley 4.3, PC/IX, UniPlus+, Ultrix, Venix and
XENIX as well as ahostofUNE-alikes such as Idris (fromPlauger'scompanyWhitesmiths)

. and Coherent

In addition, various companies likeHP, DEC, SUN, Apollo, Plexus ModComp, etc. all offer
standaId UNIX with a few enhancements just to make it run better. Advertisements offer

UNIX And Other Systems 0151-3

"Standard System V with Berkeley BSD 4.2 enhancements". The net result of all of this is
that, although UNIX is conceptually open, pure and portable, the local enhancements tend
to make it become proprietary in subtle ways. In UNIX, Local enhancements take two dif
ferent forms. Usually they are commands which have been added and are therefore avail
able onlyon the enhancedsystem. Other, braver, users actuallymodify theresidentoperating
system. This can result in a UNIX which looks normal, but behaves in distinctly abnormal
ways.

Though you probably never thought of comparing UNIX with UNIX as another operating
system, you should. Take, for example, standard UNIX (whatever that is) compared with
HP/UX. HP's real time enhancements Gust to make it run better) include the introduction
of more than 10 new system calls not found in System V which were either taken from
Berkeley 4.2 or invented by HP. Ifyou use these calls in developing your application, then
you'll find that UNIX can be just about as bad as a proprietary operating system when it
comes to porting to another vendor's hardware.

In the face ofall of this, AT&T magnanimously offered to standardize all of the UNIX im
plementations by introducing the "System V Interface Defmition" and an appropriate set of
test programs to measure any given implementation's adherence to the standard. The SVID,
as it's called, was met with less than enthusiastic acceptance from AT&T's competitors who
narrow-mindedly complained that AT&T was actually trying to control the UNIX
marketplace. To address this complaint, the IEEE organized an alternative interface stand
ard based on SVID given the project number PlOO3. This system is called POSIX; a name
derived from Portable Operating System. This name is hopefully far enough from UNIX to
avoid the legal wrath of AT&T for trademark infringement, but close enough so that
everyone (wink, wink) knows what they're talking about.

The conclusion here is a bit cloudy. Although UNIX does represent a giant step toward a
portable machine and vendor independentoperating system, there is still quite a ways to go.
Trivialprograms will clearlyportwithout change. More complex applications which require
local enhancements to UNIX will not. In point offact, it would be just about as easy to write
the trivial class ofprograms toport to any operating system be itproprietary ornot. As users,
we must remember from all of this that when someone says "UNIX" we might need further
clarification.

Some bits of history

How did UNIX get to be so varied? Didn't it all come from Bell Labs? In order to answer
this, it's worth our time to understand a bit of UNIX history and compare this history with
that ofother operating systems.

The UNIX time line begins way back in 1965 when Bell Labs was working with MIT and
General Electric onProjectMAC. The goal ofthis effort was to develop MULTICS. Alarge
and complex system, MULTICS never totally met its design goals. Reading about MULTI
CS provides an interesting insight into UNIX's conception. Many ofthe features one might
credit to UNIX actually came from project Mac.

0151-4 UNIX And Other Systems

Bell left Project MAC in 1969 and one of the team members, Ken Thompson, started work
ing on an operating system as well as apersonalresearchproject involving real time anima
tion in a competitive setting titled Space Travel. This was for an almost forgotten PDP-7
"with good graphics capability. tI Thompson and Dennis Ritchie implemented the predeces
sor to UNIX in assembly language on the PDP-7 to enableThompson to get the Space Travel
video game working (One can only guess how history might have been changed had AT&T
understood the worth of video games as well as it understood the worth of UNIX.) UNIX
was then moved to the DEC PDP-II and subsequently rewritten in the new C language
developed. by Ritchie. The rewrite was completed in 1973. The use of a high level language
to implement an operating system was unique for the day and would later be one ofUNIX's
important features.

Because ofFederal antitrust rulings, AT&T could not sell UNIX, but it could give it away.
In a brilliant master stroke (or a lucky move) AT&T started giving UNIX to universities.
The smallness of the system and the fact it was written in a high level language made it at
tractive for teaching purposes. The fact that hundreds of students were adding to the system
and growing to become disciples didn't hurt its current and future popularity.

By 1977, UNIX was being used in over 500 sites. Also in that year, UNIX was ported to the
first non-DEC machine, the Interdata 8/32. From that year unti11982, several versions of
UNIX were available within the Bell System. These were ultimately coalesced into one sys
tem called System ill which was offered commercially in 1982. Several new features were
added during 1982 and in January of 1983 AT&T offered official support ofSystem V. (The
missing SystemN was never commercially released and enjoyed fleeting popularity within
the Bell System during 1982).

The boys at Berkeley, being an unruly lot, did their own UNIX developing and came up
with several additional versions. These were BSD 4.1, BSD 4.2 with the most current being
BSD4.3.

This history tells a great deal about the operating system. First, its design was largely
motivated by intellectual curiosity and not market pressures. Unlike proprietary operating
systems, UNIX did not have to compete with other venders nor support upgrades from pre
vious systems. Second, even though the basic design for UNIX came from only a few minds,
thus insuring conceptual integrity, a great many people have had a go at the system since its
beginnings. As a result, UNIX is the product of evolution as opposed to design.

When comparing UNIX to other operating systems, this shows. For example, the UNIX
human interface bas little uniformity to its syntax and is filled with commands which rep
resent the various implementers pet names or individual senses ofhumor. Contrast this with
the VAX/VMS command language which was designed as a unit, with similar formats and
relevant English names for each command. It's argued that these differences are only a
problem for inexperienced users, but they are still a consideration. The lack of consistent
design is also apparent in the system services. There are some calls which appear to have
duplication of function as well as a lack of consistency in doing things. Error condition in
dication is an example. Most calls return errors in the same way, but there are a few which

UNIX And Other Systems 0151-5

don't. Not that this is a serious problem, but it does tend to foster misunderstandings among
new users.

UNIX's family history also points out another important problem. Everyone who's ever
taken an operating system course knows something about UNIX and there are a great many
people who know an awful lot. The result of this is that security on the UNIX system is dif
ficult to control. Contrast this with something like the MPEN system. Either by plan or
carelessness, it's downright difficult to get a detailed picture of what's going on inside the
3000. This makes security a lot easier because there is already a confusion factor about
what's happening. With UNIX's public privates, this is much harder. This problem is com
pounded by the fact that UNIX used to come with the sources right out there for all to see;
just pleading to be modified, studied and tampered with.

The security problems with UNIX are horrendous even in UNIX heartland. At Bell Labs in
New Jersey there has been a mini-crisis with unauthorized access to internal UNIX systems.
Some, in darkened rooms with the backs to bright windows, have even admitted that there
is fear for the master sources kept in Short Hills. It would be possible, some theorize, for
hackers to subtly modify the systemwhich is shipped thus enabling themto get in anyderived
UNIX system. This might go unnoticed for long periods with predictably disastrous results.
Bell is taking herculean steps to correct the problem, but the fundamental reason for security
difficulties remains the basic philosophy ofUNIX and its general exposure compounded by
UNIX's roots being in educational institutions. Further standardization activities by AT&T
and the IEEE may actually worsen the problem.

So the conclusion is that unlike most proprietary operating systems, UNIX has grown by
evolution often at the hands of research types. The result is that it lacks an overall consis
tency. In addition, the fact that UNIX's sources are generally available and well understood
by many smart people introduces security problems which are unique to UNIX.

Sometbing bas to be missing

When comparing UNIX with other operating systems one thing should quickly strike you
as odd. The basic UNIX kernel was implemented over several years by essentially two
people. Take this incontrast to something like System/360from ffiM. This (monster) operat
ing system took man centuries to implement as compared to a man decade for UNIX. We
can conclude from this that either the boys at Bell are pretty smart when compared with the
people from mM, or that something is missing from UNIX which others thought important
to include in System/360. Throughout the UNIX literature the small is beautiful theme reoc
curs. Admittedly one of the basic system design goals was to provide a minimum amount
of kernel function. Non-kernel user programs would be left with the job of providing the
real sophistication.

This philosophy has several results. First, it is not true that small and easy to understand
necessarily lead to optimum machine usage. Much of the complexity ofotheroperating sys
tems stems from the fact that they are giving the user a wealth ofchoices which offer various
degrees of optimality for different programming situations. A good example of this is the

0151--6 UNIX And Other Systems

difference between the process scheduling algorithms found in VAX/VMS and UNIX.

VMS offers the userwith acomplex setof scheduling techniques clearly breaking the UNIX
small is beautiful rule. In fact, the VMS scheduler offers two distinct scheduling principles.
UNIX, on the other hand, only offers one. It's much easier to use and, for the most part,
transparent to the programmer. The problem is that a real time application has different
scheduling needs than an interactive application. VMS offers solutions to both problems at
the same time, UNIX offers only the interactive solution.

A secondresult of the ''UNIX philosophy" is that UNIX users tend to view rolling yourown
as a normal way ofdealing with operating system deficiencies. The file system doesn't per
form the way you want? Just write your own. Does memory management miss the mark on
important features? Just write your own. You either view this aspect ofUNIX as great (be
cause you can modify UNIX so easily) or terrible (because you have to modify UNIX so
often). I know offew people who get in there and tinker with MPE, VMS, RTE or VM and
even fewer who expect that they will have to.

This ability to tinker, often coupled with a real requirement to introduce new operating sys
tem features, tends to create a new class of programmer in your organization -- the UNIX
OS Guru. Unfortunately, this is just the sort of thing that you were hoping to avoid by going
to UNIX. Now, all of a sudden, you have pockets of unique specialized knowledge in your
organization. No one really knows what changes were made. You are held captive by sub
ordinates who have the keys to the kingdom. At least with a proprietary operating system
you are being held captive by another (large) company with, hopefully, well understood
motivations.

The list of features missing from UNIX is often long and may be important depending on
your individual application. MostUNIX advocates dismiss "missingfeatures" by telling you
that there is some Berkeley version or third party package available which solves precisely
those problems. This answer, to me anyway, is admission to a larger problem and that is the
rapid proliferation of nonstandard UNIX systems. Among the missing features are the fol
lowing.

A classic file system.

The UNIX file system is unique among operating systems. It reflects UNIX's original text
processing application in the Bell Labs patent department. A file in UNIX is a string of
characters with no record boundaries. A file consists ofa number of blocks which are hung
offofa master block called an inode. The inode block contains pointers to the other blocks.
To extend the potential size of files, UNIX provides pointers from the inode block to sub
ordinate blocks which, in tum, contain pointers to the actual data blocks. This results in the
odd situation where the first part of a file is slightly faster to access than the last part of the
file Oast part requires occasional double reads).

Because UNIX pre-reads blocks into a buffer cache, reading a file sequentially results in
fast access. As you are processing one block, the system is getting another for you. There

UNIX And Other Systems 0151-7

are some problems, however.

Although a conceptually simple file system, UNIX gets into some trouble because of it In
fact, the file system is usually the first thing serious UNIX users begin to modify Gust to
make it run better). The usual file system problems include:

Too simple a file model. There are times when the classic record orientedfile systemis just
what the doctor ordered. UNIX files have interesting properties, but they can miss the boat
when it comes to large efficient data base applications. This criticism stems from the fact
that the record model gives the user control over some of the physical attributes of a file
which are important to performance tuning. In addition, many operating systems, give im
portant system support to data base functions rather than force them to completely reside in
applications programs as does UNIX.

Scattered blocks. UNIX provides little control over the allocation of files on the physical
disk. The result is thatdata blocks are scattered all over the place. This causes multiple seeks
when accessing the file. There is no way to cluster the file's data blocks to minimize the size
ofthe seeks either. Contrast this with MPE, RTE, VMS, and otherclassic file systems. Files,
or at least file extents, can be allocated in physically adjacent regions thus minimizing disk
head movement. In fact, some operating systems even give you control over fIle placement
with respect to physical disk cylinders so that head switching may be used instead of head
movement. UNIX offers no such help. Some program which may be run after the fact allow
you to reorganize the disk to provide more optimum file block locations.

No pre-allocation. UNIX gives you disk space as you use it. This means that when writing
to a new fIle, disk allocation overhead will be intermixed with write overhead. There is no
way to pre-allocate a file so that the allocation overhead is concentrated in one spot in your
application. This problem is especially vexing to real time applications which may need to
write data quickly and can't stand the allocation overhead at any particular moment Be
cause UNIX allows files to have holes in them, you can't simply position to the last byte of
the file and write it causing the operating system to allocate all the other bytes. Doing so
would make a file with only the last block in it and no others.

Other operating systems provide the capabilities to pre-allocate either all or some of the file
when it is created. MPE's preallocation scheme provides a compromise solution which
enables the user to anticipate the file's ultimate size and then determine how much should
actually be allocated at file creation time.

Small data block size. The block size used for UNIX is either 512 or 1024 bytes. This is
fine for interactive applications and text storage, but for large data transfers, it limits data
throughput Other operating systems don't have this problem, because they offer the user
the conceptofthe recordas ausercontrolledblock size. User's may define bigrecords which
more efficiently accommodate larger individual /0 requests.

Asynchronous disk writes. UNIX always performs disk writes to a disk cache. Because of
this, the application program is neverreally sure that the /0 has been performed to the physi-

0151-8 UNIX And Other Systems

caldisk. In transaction applications which wish to implementbulletprooferrorrecover tech
niques, this is a difficult situation. Transactions are typicallyconsideredcompleteonly when
everyone is safe back home on the disk. UNIX prevents this information from getting to ap
plications. Again, other operating systems, have extra features which either disable cache
ing or allow the requesting program to specify synchronous writes.

Super block. Important parts of the file system are in memory in a UNIX computer. If the
system crashes, the disk and the memory are out of synchronization. This causes damage to
the file system. One especially vulnerable structure is the super block. The super block is
an in-memory data structure which maintains information about the disk space managed by
the system. There is only one super block for each file system (a disk may, however, be par
titionedinto multiple file systems which are then linked together). This is adangerous design
for systems which must have highly reliable data bases.

Sophisticated proc~ scheduling

UNIX offers only one flavor of process scheduling. This technique was designed to give
good performance to terminal jobs in an interactive environment (program development,
text processing). Processes are given a time quanta and apriority. Processes are preempted
on the basis ofpriority, but the priority level is dynamic and is automatically readjusted by
the operating system when a process is suspended. High priority is given to new processes
to insure quick initial response. The priority decays as the process runs (This type ofprocess
scheduling is difficult to simulate. The result is that UNIX is hard to model for system
response time studies.)

Contrast this scheme with the priority scheme found in the HP RTE operating system. Typi
cal of real time systems, the RTE provides simple priority preemption without priority ad
justment. This gives the system the ability to insure processes fixed amounts of
non-preempted CPU time when responding to events.

The VAX/VMS operating system, totally ignoring the Itsmall is beautifulIt credo, offers both
types of scheduling. Processes with certain priority levels are scheduled with time share
techniques while 16 priority levels are reserved to implement the real time technique.

Sophisticated Kemel

The kernel organizationofUNIX is quite simple, but again, the missing parts are considered
vital in some circles. For example, the UNIX kernel is non-preemptive (sounds pretty com
plex, huh?). This means that once UNIX enters its kernel, it won't interrupt out to begin
another kernel task (other than /0 interrupt processing) until the current task is completed
or until the process which requested the operation is blocked. In English, what this means
is that when a process requests akernel service, the process begins execution in kernel mode.
From that point on, the process cannot be preempted by another process in the system until
the kernel mode request is either completed or until the kernel decides that the requesting
process must wait for some other event to complete.

UNIX And Other Systems 0151-9

The net result of this is that UNIX processes can disregard other processes for as long as
one second. Again, not something real time enthusiasts rave about in a positive way.

The HPIRTE system has the same problem, but it was written to try and be quick about get
ting out of the kernel. In addition, RTE has been modified to include a priority interrupt
which is a way of actually interrupting the executing RTE kernel to address a more press
ing need elsewhere.

vAX/VMS has an even more elaborate solution. It has an asynchronous kernel which is
reentrant. It may interrupt itselfand go off to process more important kernel functions while
in the middle of processing a less important kernel function. This results in a larger more
complex kernel, but provides far superior interrupt response and system throughput

Therealization thatUNIXis a synchronous kernel, ledHP to modify SystemVwhen produc
ing HPIUX. They changed the standard kernel code to incorporate interrupt points. These
are areas where the kernel may be interrupted by otherkernel processes. This does not result
in a truly asynchronous kernel, but it is much better than standard UNIX's strictly
synchronous design.

Like many other UNIX vendors, HP has taken a hard look at the short comings of UNIX
such as those mentioned above. In the case of HP, the HPIUX offering addresses each of
the UNIX problems in some way. Although HP is lobbying to have their solutions accepted
as "standard" the jury is still out Every vendor who as tuned UNIX to address its problems
wants their solution accepted as standard. It would appear that true standards will be long
in coming. It would not be surprising to see that there will be several different standards
evolving. Certainly not quite what user's have in mind when they think of portability.

Another final comment is about the richness of the kernel. Other operating systems tend to
offermore in terms ofkernel functionality than does UNIX. This is oftenexplainedby saying
that the UNIX kernel offers the base upon which users write applications to perform the real
work. This is actually what has happened. The UNIX kernel is surrounded by many man
years of excellent software which is available to the UNIX terminal user. The problem is
that transaction oriented systems tend to need the functionality at the process level. To have
application programs providing features which might more appropriately belong in the ker
nel, precludes their use from other user processes. Once again, you are forced to roll your
own.

And in conclusion•••

Upon rereading what I have written detect a distinctly negative feeling. I don't think that
this is intentional, because as a programmer, I useUNIX and like it. Perhaps I have presented
some of the more negative aspects of UNIX because it is so easy to hear only good things
about the system. From whatyou have read, I hope that you make the following conclusions.

UNIX is definitely a serious force in the market place. There are well over 200,000 UNIX
installations. From that consideration alone UNIX must be doing something right

0151-10 UNIX And Other Systems

UNIX does represent our best shot at a vendor independent operating system, but by no
stretch of the imagination should you think that UNIX is standard. When you hear someone
remark that they are using UNIX, you must ask a number of questions to really understand
what they are saying. In addition, standardization itself, which on the surface appears to be
so attractive, has its own innate problems; not the least of which is security.

UNIX evolved as an operating system instead of being designed from the start as an in
tegrated whole. This is perhaps true of any mature operating system, but it is especially true
of UNIX. As a result, there are areas of inconsistency which can be confusing.

Finally, UNIX is small. This is often confused with charming. UNIX's smallness is as much
a result of missing functionality as it is the result of a good sparse design. To some, the
omitted parts will not be missed, but to others, UNIX's lack of features will forever label it
as a toy system still smacking of its n;search upbringing.

In all cases, though, it borders on silly to make blanket statements about UNIX. As with art,
UNIX can only be evaluated in the contextofits intended use. The potential user will gather
the facts, weigh them against the application and only then conclude whether or not UNIX
is the right or wrong solution.

UNIX And Other Systems 0151-11

	Comparing UNIX with other systems

