Conversations over the stable door
Anthony Furnivall
Buffalo News Inc,

A Division of Berkshire Hathaway
Buffalo NY 14240

Conversations over the stable door
0153-1

This paper is not meant to be an exhaustive discussion of the
security implications of the HP3000. Even if I were qualified to take
on such a subject, the time needed to do it justice would far exceed
the time available. Instead, what I will attempt to do is to present
my own thoughts on the subject, and then perhaps we can explore
together the implications of some of these thoughts.

There are two sides to the security coin, just as there are two
sides to most important issues. On the one hand we have the needs
of the user to be protected from long, involved sequences of
commands in order to complete a task; to be protected, in effect,
from the possibility of an error, a potential security violation. On the
other hand, we have the need of an auditor to protect the data from
the same sort of errors, or from the possibility of intentional
violations. These needs are largely incompatible, and it falls to the
system manager to attempt to keep everyone happy.

We have a classic good guy/bad guy conflict. We can find a
similar conflict anywhere we look - the right to privacy and the
public's need-to-know, or the rights of an employee and the needs of
an employer. There are other aspects of this conflict that readily
come to mind, but let us first examine the basic perspectives of the
computer user, and the most typical conflicting perspective, that of
the DP auditor. (Fig. 1) The user has explicit needs NOT to be
bothered with extensive verification procedures, and NOT to be
forever passing security checks. However, the user also has definite
needs to be asked to verify intentions at critical points, to be saved
from the possible consequences of his or her actions. This model of
the user as "good guy" presupposes basically good intentions, a
small amount of curiosity, and a fairly good grasp of what is possible,
but an overwhelming need to get the job done as fast and as soon as
possible.

Compare this with the need of the DP auditor, who requires
the system to be able to go back and recover every key stroke of
every session, to be able to identify who did what and with what
and to what, and to be able to report the slightest apparent

Conversations over the stable door
0153-2

malevolent intent as soon as it becomes apparent. This need is in
self-evident conflict with the need of the user, and would indeed

represent an intolerable burden if it were to be imposed only by
manual means.

User's needs Auditor's needs
Don't bother me with details Protect data from corruption
Let me get on with my work Guard against insecure access
Protect me from unnecessary Keep programs free from unaudited
interruptions change

System manager's needs

Keep system running
Implement auditor's
demands
Meet user's needs
Keep everyone happy

Fig. 1- The two sides of the security issue

By contrast, the system manager or program designer has
already got enough on his or her plate before worrying about the
apparently unreasonable and conflicting demands of the 'User' and
'Auditor' roles. It is only too easy to set up the basic minimum of
security and let things go at that. This has the added benefit of
leaving time to track down disappearing disc space, unexplained

program aborts, degraded system performance and other non-trivial
problems.

Conversations over the stable door
0153-3

Even though we have identified three basic role-models for
those who worry about computer security, they are as I have said,
reducible to two. The conflicting demands must be mediated by
whatever means we choose to use when automating the security of
our systems. In order to begin to do this we need to be aware of the
3 essential components of a security violation. These three
components are Access, Awareness and Action. It is in the way that
these three components combine that we have the different needs of
a user and an auditor. Let us examine, for a moment, the validity of
this proposition.

O Access

O Awareness

O Action

Fig. 2 - The three components of a security violation

In any computer system, there is a set of functions that are
available. Each one of these functions has been designed for a
specific purpose, and has been included for a good reason. Examples
of such functions may range from reducing the balance of a loan by
the amount of a payment, all the way down to providing a trace of
the result of an IMAGE procedure call. The point is that every
function has a purpose, an intended audience of users, and a set of
precedents that determine the appropriateness of its use.

Conversations over the stable door
0153-4

Now let us see how this set of functions fits in to our model of
Access, Awareness and Action. To begin with, since the functions
have been implemented by the designer, they must be accessible to
at least some users. As an example of this, consider a standard that
we have in place at the Buffalo News. (Fig. 3)

RUN CP525.PROG.CIRC;LIB=G
CP525 - (A.01.013) Carrier DM & Intro labels
CP525 - Tue, Apr 26, 1988, 4:55 AM

RUN CP525.PROG.CIRC;LIB=G;PARM=64

CP525 - (A.01.013) Carrier DM & Intro labels

CP525 - Tue, Apr 26, 1988, 4:55 AM

CP525 - CP525.PROG.CIRC PIN 155 Parm=%000100
CP525 - TONY,MGR.CIRC,PRUN Mode=%000007
CP525 - Flags: Test=N Trace=Y S220 Ldev 22
CP525 - Trace-file=CP525TR

Fig. 3 - Activating a feature of which the user may be aware

For programs that we design and code ourselves, running the
program with ;PARM=64 will generally produce a trace of the
program's action. This allows us to repeat a run which produced an
error, and get a detailed internal listing of what went on. It is a
useful diagnostic function which is intended for use by systems
analysts in the event of problems. It is NOT intended for normal use
because of the possible performance impact, and the possibility that
a very large report would be generated, thus wasting- both CPU
cycles and paper - both of which are scarce commodities. ACCESS to
this function is granted to all users who have access to MPE, and
some of them are AWARE of this functionality. However, unless they
choose to RUN the program in this way, they will not cause a
violation of the intent of the function.

In much the same way, let us consider for a moment the
payroll department of a company. Here is a group of people who are
provided explicit ACCESS to some of the most sensitive information
in the company, and who are very AWARE of the sensitivity of the

Conversations over the stable door
0153-5

data. Again, unless we have the explicit ACTION of passing this
information along to unauthorized persons, we do not have a
security violation.

Here is where the different needs of the user and the auditor
come into sharp distinction.(Fig. 4) The user expects warning and
notification ONLY at the point where a security violation is about to
happen; the auditor wants notification at the earliest possible
moment.

Notify me when ACCESS —
AND AWARENESS ©
AND ACTION O

are about to compromise security

Notify me when ACCESS
OR AWARENESS (@] UDITOR
OR ACTION o

is about to compromise security

Fig. 4 - Different noptification needs of user & auditor

For the user, all of the components of the
access/awareness/action model have to be active in a 'suspicious’
context. For the auditor, the moment any 'suspicious' act occurs
notification is necessary. Along these lines, we can see that any of
the three elements of the model can be the source of a breach of
security, and furthermore, that the determination of a violation is

Conversations over the stable door
0153-6

not easily made. For this reason, most computerized data security
mechanisms concentrate on the ACCESS phase of the model, because
this the easiest one to secure.

The last model that we need to consider in a preliminary
examination of the issues is the model of the components of a secure
system. We need to consider this model in the light of the others -
that is to say, in the light of the different needs of a user and the
system, and bearing in mind the three areas that need to be
monitored.

WHO? HOwW?

The actual user - The logical person -

a real person an entity in the

OUTSIDE the accounting structure

system MPE LOGON =
USER.ACCOUNT

The terminal- The program -

a real place with a set of functions -

a connection to the some are OK

computer. some are NOT OK

Ldev number?

WHERE? WHAT?

Fig. 5 - Four components of the run-time environment

This model of computer security focuses on the four basic
questions that reporters are trained to ask every time they begin to
write a story -the Who, What, Where, How questions. As we shall
see, in terms of computer security these same questions apply. Let
us consider these four components one by one, and see how they
contribute to a fuller understanding of our other models. I propose
to deal with them in the following order: Who, How, Where, What.

Conversations over the stable door
0153-7

The question of WHO is doing something on a computer system
seems, at first sight, to be almost trivial. (Fig. 6) After all, we have
to identify ourselves at sign-on time, and this determines who we
are. Or does it? Using MPE as a model, we can see that USERs are
related in a sub-ordinate way to ACCOUNTS, and thus are explicitly
differentiated between accounts. MPE enforces this separation
almost without exception (the :ALLOW command does in fact allow
an orthogonal view of the USER/ACCOUNT relationship). Our need is
for a relationship which is super-ordinate to the accounting
structure; an ability to model a pervading user who can (with any
luck) access ANY account. The accounting structure, then, does not
offer any support for our concept of the pervading user. MPE does
provide such support, however,in the optional session-name, or job-
name component of the sign-on sequence. Since this is not related
in any way to the accounting structure of the system, we are free to

REAL PERSON
=USER-ID
no accounting attributes
ACCOUNT ACCOUNT
a full set of a full set of
attributes attributes
USER1 USER2 USER1 USER2
a partial set of a different a partial set of a different
atributes partial set of atributes partial set of
attributes attributes

USER.ACCOUNT = LOGON-ID

Fig. 6 - User-ID & Logon-ID

Conversations over the stable door
0153-8

use it as a model of the real person who is using the system. This
model I propose to call the USER-ID, to enable it to be easily
identified later on.

The next question we need to ask is HOW is the user
represented inside the computer system. This is where the
computer's accounting structure becomes of primary importance.
From the MPE perspective, when we log on to the 3000, we specify a
combination of account and user which together constitute a LOGON-
ID. This logon-id has certain attributes associated with it, and these
attributes are used extensively by MPE to determine the
permissibility of almost everything that the user wishes to do. Some
linking of the logon-id with terminal attributes is done at logon time,
but this is rather limited in nature. It is important to note that MPE
allows a logon-id to have a subset of the attributes available to the
account. For example if an account is granted SM capability, there is
no need for all the users to have this capability. Depending on which
LOGON-USER is in effect, the capabilities of the account will be
restricted to the set that has been granted to the LOGON-USER.

Our examination of the four part model of computer security
needs also to consider the WHERE question. What I mean by this is,
"Where is the actual user presently located, and is it appropriate to
allow this request to continue?" It is easy to imagine instances
when this question needs to be asked - if the user is seated in the
front lobby of the building, it might perhaps NOT be a good idea to
allow the salary of the president to be displayed. Similarly, if a
given function is requested by a terminal located in a user
department that is more appropriately performed by the system
manager's terminal, this might also be grounds for the system to
consider the request a violation. Note that, in this regard the
terminal has some of the attributes of both a user and a resource.

Unfortunately, the question of identifying the location of the
user is a vexing one for two situations, and in these situations MPE
is not a very helpful partner when it comes to tracking down
potential security violations. (Fig. 7) These two areas are batch
jobs and data-communications devices. For a batch job it would be
desirable to know the source of the batch job - that is to say, who
(in the model's sense of the word) streamed the job, and what file
was used (including $STDIN). This monitoring would need to be

Conversations over the stable door
0153-9

extended down through however many levels of jobs are initiated
by the original stream command. This is provided at the present
time by various stream management packages, but, as far as I am
aware, the data is NOT available programmatically to processes
running under those jobs.

)

CPU
Datacomm lines r \

CPU

> U,

Point to point

CPU

Fig. 7 - Terminal location, and the question of 'Where?"

A similar situation exists for those logical devices on an HP3000
machine which are connected via modems, data switches and other
similar boxes where the end to end connection between the port of
the computer, and the terminal is not fixed and unchanging. Such a
situation obviously covers a large number - possibly even a majority
- of cases. In these situations it is also impossible for a program to

Conversations over the stable door
0153-10

determine the true location of the user, and thus to include this in its
own decision making. NS/3000, the software component of HP's
local area networking product does in fact address this problem, and
it is possible to work backwards through an NS link and discover
where the user is located, although this may be a rather torturous
process.

Considering the WHAT question is considerably easier -
computers use programs to change the data, and the WHAT of our
model is unequivocally related to the program that our user is
running. While the model is easy to define in this instance, it has
some disturbing implications.

ADD EDIT DELETE VIEW | AWARENESS
VIEW Usert
EDIT VIEW User2
ADD EDIT VIEW User3
ADD EDIT DELETE VIEW User 4
Fig. 8 - Programmatic functions

If our model is to be aware of and sensitive to the complete
environment, that is to say the combination of USER-ID, LOGON-ID,
TERMINAL-ID and PROGRAM-ID, this implies that programs may
need to produce different results for different users! How many

Conversations over the stable door
0153 -11

programs do you know that are capable of dynamically adjusting
themselves to a different user? IMAGE does in fact include this
capability, but the programs that use IMAGE procedures need to
accomodate the varying results of IMAGE calls. It seems likely that
most programs do NOT provide a dynamic functionality based on the
actual user-id, but rely instead on some other means of preventing
abuse.

As an example of what I mean in this regard, I would like to
present a brief model of a typical data-maintenance program. (Fig.
8)This program uses function keys f1 thru f4 to request Add, Edit,
Delete and View functions. From the point of view of consistency, all
data-maintenance in a system will use this model. It seems
reasonable then, for a program to disable these functions when they
are not appropriate for use by a given user-id. The user may well
know that f1 means Add, but the program must not only disable the
‘awareness' of the user (by hiding the function key label) but must
respond in an appropriate manner to both the user and the system
manager. The user needs either a simple message that the function
is unavailable, or preferably, a null response from the program. The
system manager, or the auditor may need to know that an attempt
was made to execute a function that would have resulted in a
security violation.

FILE SENSITIV;DEV=PRIVATELP

FILE SENSITIV;DEV=PUBLICLP

FILE SENSITIV;DEV=DISC;SAVE

FILE SENSITIV;DEV=MODEM

FILE SENSITIV;DEV=IBMPC

Fig. 9 - Run time detection of report destination

Conversations over the stable door
0153-12

Another example of the need for a program to respond to its
run-time environment is found in the ability of a file equation to
redirect the destination of a report. (Fig. 9) What may be intended to
go to a private line-printer may end up being directed to a public
line-printer, a modem or a PC! This is something that can only be
detected at run-time, but at least it can bedetected.

MPE then, provides a reasonably good matching of the four
phase model of computer security, and provided we can access the
attributes that are provided, and define relationships between them,
we ought to be able to make a good decision about the permissibility
of any request by a user. One of the important benefits of the four
component model is that once access to the computer system has
been established, three of those components do not change. (Fig. 10)
(For now I will exclude the problem of an unattended terminal).

WHAT?
PROGRAM-ID

Fig. 10 - After logon, most of the components remain the same

Conversations over the stable door
0153 -13

This makes the task of security checking easier - since part of
the checking is handled once at logon time, and can then be implied
after that. We must remember though, that we have explicitly
included an entity outside the knowledge of MPE, and the directory
structures. For this reason, we are faced with the fact that the only
way we can determine the legitimacy of access to the system is to
allow access, and then deny it if necessary. Further, to provide true
security, we need to find some means of determining whether any
potential violation of access or awareness is contained in any given
request for an action to be performed.

It is as we consider this need that the importance of all three
models becomes apparent: The user has different needs from the
Auditor (or the auditor's representative - the system manager); we
need to monitor access, awareness and actions, and we need also to
keep in mind the binding represented by the user-id, the logon-id,
the terminal-id and the program-id. What would be reasonable
would be to consider various strategies for keeping track of all
these entities, and possibilities.

If we are to do anything to meet the needs of the system
manager, it is obvious that we must monitor every action. Equally
obviously if we are to meet the needs of the user, we must not make
such monitoring an obstacle to getting useful and productive work
accomplished. Consider the common practice of providing employees
with an identification badge. The purpose for this is to allow some
mechanism (generally a security guard, or a card-key door) to
identify employees, and to grant them access. Typically, such
programs start out with a lot of attention, and the security guard is
very active checking every employee for their badge. This is
generally viewed as a hassle and as an obstacle to productivity! In
addition, after a while it is possible to notice that the guards adopt a
different strategy towards checking employees - they get to know
who is who, and the frequency of checks becomes less. What we
need to find is a way for the intrusion to be minimized, but for the
vigilance to be maintained.

MPE provides a very good example of incorporating security
consciousness into its activities. In addition, it does a fair job of
meeting the conflicting needs of the user and the auditor. I shall

Conversations over the stable door
0153-14

show how this occurs, and then go on to discuss the strategy used to
grant approval.

USER'S TERMINAL

ENTER LOGON PASSWORD (MGR) :
ENTER LOGON PASSWORD (MGR) :
ENTER LOGON PASSWORD (MGR) :

INCORRECT PASSWORD (CIERR 1441)

SYSTEM CONSOLE

13:12/#5545/229/INVALID PASS FOR "TONY,MGR.CIRC, TRUN" ON
LDEV "65"

13:12/#5545/229/INVALID PASS FOR "TONY,MGR.CIRC, TRUN" ON
LDEV "65"

13:12/#S545/229/INVALID PASS FOR "TONY,MGR.CIRC, TRUN" ON
LDEV "65"

Fig. 11 - MPE accomodates both reporting needs

When a user fails to provide the correct password at logon
time, MPE notifies the console immediately, reporting the complete
logon string, and the logical device. (Fig. 11) The user receives
another prompt, with no indication that the first attempt was
inaccurate. Only after 3 failed attempts does MPE indicate that the
user has supplied the wrong value. Notice how our two conflicting
needs have been met. The system has supplied notice to the system
manager at the earliest possible moment, and the user is not
obstructed until after three attempts. An area where MPE does NOT
do as good a job of taking care of the system manager's needs is in
the area of reporting file security violations. These are reported
back to the user, and can be handled as appropriate or necessary.
However MPE provides no notice to the console of such a security

Conversations over the stable door
0153-15

violation. New versions of MPE will permit the logging of file opens,
and this will help in some way to rectify the situation.

Permanent attributes - an intrinsic part of the entity
Eg SM, AL, PM, etc

Dynamic attributes - granted at logon time, or process start
Eg AC, GU, etc

Fig. 12 - Matching attributes

We have seen that MPE is evidently continually checking
security parameters as it does its work. Two distinct strategies can
be defined in the approach to security. The first is the strategy of
matching attributes. (Fig. 12) These attributes are of two varieties -
permanently assigned, and dynamically assigned. Consider the
attribute AL, for account librarian. This attribute is available to the
logon-id (since it is available at both the account and user level), and
is always present whenever someone is logged on in this way. This
attribute is used to determine the legitimacy of a file access.Or take
the attribute OP. This permanent attribute is used to determine the
legitimacy of (among other things) a STORE command.

The second sort of attribute is the attribute which exists ONLY
for the duration of the current session or job. Such attributes
include the Group User (GU) attribute, and the Account User (AC)
attribute. These attributes are also useful in evaluating security,
especially since they are a truer reflection of the present
environment.

Another aspect of attribute matching is that attributes may be
either required or permitted. (Fig. 13a) A required attribute is an
attribute that must be present in order for a request to succeed.
MPE uses its attributes in this way. For example, if I want to issue a
NEWACCT command, I must have the SM attribute active in my
logon-id. Similarly, if I wish to use data communications devices, I
must have the CS attribute active. It/is equally possible to disallow

Conversations over the stable door
0153-16

attributes. While MPE does not define any such attributes, they are
easy to think of. Multiple logons would be a good candidate. (Fig.
13b).

Required attributes - attribute must be present to gain access
Permitted attributes - attribute must be permitted if access is
access is sought with the attribute active

Fig, 13a
Muttiple logons as I must have this attribute granted
Required attribute to me in order to gain access
Multiple logons as If 1 am logged on more than once
Permitted attribute (i.e. the attribute is active), then
the attribute must be permitted in
order for me to gain access
Net effect I may only gain access if:

a) | MAY log on more than once
and
b) This is my current FIRST logon

fig 13b

Fig. 13 - Various aspects of attributes

In this example, access to a logon-id would be denied if the
access would result in multiple logons for the user-id. Note that an
attribute such as this can be used in both ways. For example, it
may make sense to limit access to a logon-id to those people who

Conversations over the stable door
0153-17

have the required attribute of multiple logons. It is even possible
to model some pretty exotic situations using something as simple as
required and permitted attributes.

Consider for example the possibility that access to a logon-id is
available only to those who have the required attribute of multiple
logons (i.e. they CAN log on more than once), but who are NOT
currently logged on more than once (the same attribute is not a
permitted attribute). We have effectively said that access to this
logon-id is limited to the FIRST logon by a given user-id. Attribute
matching in this way can provide a very strong degree of protection
in ways that would be otherwise difficult to describe. Attribute
matching, according to changeable specifications, is one of the two
strategies that MPE seems to employ to manage the security
function.

The second one is the concept of assigned rights. This rather
awkward term is what I use to describe the ability of a file's creator
to change the name. In effect, the right to do this is assigned BY the
file TO the logon-id. This strategy is a very useful one, because it
provides a 'hot-line' to a particular functionality.

Specific right SPECIFIC ENTITY

Rename a file CREATOR OF
FILE

Use system LOGON AS

console OPERATOR.SYS

May be used to extend or limit access

Fig. 14 - Assigned rights, another strategy

Conversations over the stable door
0153-18

Assigning a right is dependent on being able to define two
things - the right that is being assigned, and the entity to which it is
being assigned. (Fig. 14) It is easy to consider, for example, the
possibility of extending MPE security to assign the right to use the
system console to a particular logon-id (OPERATOR.SYS) for example.
By assigning a right in this way we create a fixed set of rights that
can be scanned for validity. If a right does not exist in the set then
any request to exercise that right will fail. Another example of an
assigned right is the way in which programs such as DBUTIL will
operate only on databases in your logon group and account. Here
what has happened is that the right to reference files in other
groups has NOT been assigned. It is therefore missing from the set
of assigned rights and, as a result, the request will fail.

It is interesting to speculate on ways in which MPE could be
enhanced by using this concept. Perhaps we could assign a terminal
to a specific logon-id. In this way we could guarantee that only
PERATOR.SYS could log on at the system console, or perhaps we could
limit use of the dial-in port to MGR.TELESUP (or possibly NOT
MGR.TELESUP!). In addition to allowing specific rights, the concept
can also be used to limit functionality. In the example we used
above, it might be that the only device that OPERATOR.SYS can use is
the console.

A third strategy that is not used for security checking in MPE
(so far as I know), is the concept of security level. This is the same
concept as priority level, except that what is being ordered is not the
sequence of events, but their permissability. Let us see how such a
concept works. (Fig. 15) We assign an arbitrary level of security to a
logon-id, eg 4. Only users with a security level of 4 or above can
access this logon-id. Or again, we assign a particular function within
a program a security level of 3. When the program is run by a user
with a security level of 2 or less, the function is disabled, and when
the program is run by a user with a security level of 3 or more, the
function is re-enabled. Several benefits accrue from this strategy.
To begin with, it is a rule rather than a reality. We can compare the
two security levels involved and gather our result based on a rule,
rather than on the result of finding this specific instance specified.
Compare this with the concept of assigned rights, where every
possible instance must be accomodated. Using security levels, new
entities can be added to the environment without modifying the set

Conversations over the stable door
0153-19

of assigned rights. Furthermore, if we want to restrict access to a
logon-id, we merely raise its security level.

-
=9
.
-
-
-
-
-
-
-
-
-
-
User - level 4 - Logon level L
[]
-
‘ -
-
-
-
-
-
[]
-
=
-
Security fence

Fig 15. - Security level, a 3rd strategy

To summarize, then, we have three possible strategies for
determining the approval of a request. They are: the strategy of
matching attributes, either static, permanent attributes or dynamic
attributes; the strategy of assigned rights and the strategy of
security level. By combining these in various ways it is possible to
achieve a very flexible degree of control over security requests.
Even so, we are only handling explicit requests. Another large
problem for the security function is the problem of nothing
happening.

When a terminal is inactive for any substantial period of time,
the binding of the user-id, the logon-id, the terminal-id and
possibly the program-id becomes weaker and more tenuous. (Fig.
16)"There exists some threshold of inactivity beyond which we can
not assert that the binding is valid. In some instances this may not

Conversations over the stable door
0153 -20

be a problem, but in others it will be.

WHO? How?
USER-ID LOGON-ID

N[/
7|\

WHERE? WHAT?
TERMINAL-ID PROGRAM-ID

Fig. 16 - The problem of the inactive terminal

What we need to be able to do is to define the maximum
period of time that any one of the four components can be inactive;
and then, to define the action to be taken once this threshold is
reached. If the period of time is of no consequence, then a value of
0 could easily indicate this. Possible actions to be taken would
include re-verification of the user-id, or the terminal-id, forced
termination of the program or forcing an end to the session. What
is important to realise, I think, is that each of the components needs
to be defined in this way. Only thus can we preserve the integrity
of all four components.

The last area that I wish to address in this paper is the
problem of data integrity. This subject warrants an entire paper on
its own, but I wish to consider it from the point of view of ensuring
that the program which is requesting permission to access and
manipulate data is in fact the program that it purports to be. The
idea of asking a person to prove who they are by supplying the

Conversations over the stable door
0153 -21

answer to a question (such as a request for a passsword, or a
personal knowledge question) is not new. However, it is not
possible to ask for an animate response from an inanimate program.

It is easy to ask a system manager to ensure that only the
right version of a program is allowed into production, but not so
easy to make it work. We need to define a sufficient set of data to
make it impossible (or at least sufficiently unlikely to be almost
impossible) for a program to be a wolf in sheep's clothing. What
constitutes such a set of data?

Program ID

Program file

Date & time of last modification

Protected group ID

Fig. 17 - Necessary data for monitoring program access

The first element we need is obviously the name of the
program. (Fig. 17) This is not the same as the name of the program
file, but the name by which the program is known to the
programmers, designers and other people. In short we need the
PROGRAM-ID. In addition, we need the name of the program file.
This is a piece of data which can easily be extracted at run time. We
also need to know the date and time of the last change to the

Conversations over the stable door
0153 -22

program-file. Armed with this data, we can compare it with known
values, and determine if the program that is requesting permission
to proceed is in fact the program that is allowed to proceed. In order
to allow testing, the checking is only done when the logon-id
indicates that a specific protected group is being referenced, either
directly, or by file equations.

The other aspect of a program which bears scrutiny is the
frequency with which it is run. If a program is run more frequently
than expected, it may represent a possible security risk. At the very
least it is worth bringing to the attention of the system manager.
What we need to specify in this instance is a range of time that we
can reasonably expect between activations of the program.
Naturally, for programs where this is of no concern, nothing needs to
be done.

At the start of this paper I said that I would follow the
implications’of my own thoughts on some security related issues.
Where I think we have arrived is the description of various
strategies for implementing the security function in the programs
that run in your own shops. Some of these may be programs that
are written in your own shops, and over these you can exercise as
much control as you wish. Yet other programs may be aquired from
3rd party software vendors. Over these you can obviously exercise
less control.

There has been much discussion recently about the importance
of security, and the importance of being concerned about it. The
place for such concerns is not only in the operating system software,
but also in every program that runs on a system. Ultimately, the
value of security consciousness is defined by the possibility of loss
and the cost of loss. This is an equation which must be solved anew
for every site. I hope that the ideas presented here will stimulate
your own thinking, and lead you into defining your own solution to
that equation.

Conversations over the stable door
0153-23

	Conversations over the stable door

