New Paradigms For Automating Batch Job Processing
Michael A. Casteel
Unison Software
Mtn. View, CA 94043

Since the introduction of the Series II in 1976, the HP 3000 has steadily gained installed
base and stature as a business computer. It is no longer just a minicomputer—the Series
70 delivers mini-mainframe power, and HP’s new Precision Architecture offers the
potential for full-scale mainframe performance in a supercharged HP 3000 chassis.
More and more HP 3000 users find themselves running a full-fledged data center, and

their companies' demands for computing productivity translate into demands on the
computer operations staff.

Like their counterparts elsewhere in the company, data center and operations managers
are now looking to the computer to aid them in the performance of their work, and
they're using a new breed of software designed for data center management. The opera-
tions staff, like new computer users in other departments, must learn and adjust to new
ways of doing their jobs. This is never easy, but change is necessary in the pursuit of
greater efficiency and productivity. This paper attempts to ease the way by presenting the
principles involved in automating one of the most important operations tasks: control of
batch job processing.

Although clearly not conceived as a batch processor in the traditional sense, the HP 3000
has had to assume a batch processing burden commensurate with its growth as a general
business computer. A number of HP 3000 data centers report they are now processing
more than 20,000 batch jobs per month, with the jobs subject to many interdependencies.
How can this volume of batch processing be reliably accomplished with the MPE
:STREAM facility?

The answer is, it can’t. The basic MPE facility only allows the scheduling of jobs based
on time dependencies, e.g., hold a job until 8:00 p.m. before running it. There is no built-
in provision for MPE running a job every day, every month, or every quarter, nor a
way to ensure that a sequence of jobs is run in a certain order. In order to handle all
their batch processing, HP 3000 users have resorted to a combination of manual opera-
tion and software tools such as SLEEPER from the INTEREX Contributed Software
Library. However, this combination is inadequate to handle the jobs on a single Series

70, where six, eight, or even more jobs must be kept running to effectively utilize the
machine’s capacity.

Over the past few years specialized software tools have become available, mostly from
third-party software suppliers, which provide the automation necessary to support
production batch processing. These tools put the computer to work for the data center
operations staff, just as existing applications serve the end-user. This means the opera-
tions staff must adapt to a new working environment, as the end-users already have.
This paper presents five major functions which are fundamental to batch job automa-
tion, regardless of the particular implementation. They are:

scheduling - to determine the jobs to be run on a given day

sequencing - to ensure the jobs run in the correct order

constraining - to keep conflicting jobs from interfering with one another
synchronizing - to coordinate with external events

recovering - because something will still go wrong, at least occasionally.

0155-1
New Paradigms For Automating Batch Job Processing

Scheduling

The first step in production batch processing is scheduling; that is, deciding which jobs
are to be run this day. This is also the first, and perhaps most difficult, task to automate.
It often takes many months before all the production jobs in a large shop can be identi-
fied and cataloged into an automated scheduling system, a phenomenon which under-
scores the need for automation in such shops.

Of course, not all jobs are scheduled in advance. For example, a programmer’s compile
job runs when the programmer has completed work on a section of a program. In a pro-
duction environment, however, hundreds of jobs are scheduled on some regular basis,
e.g., every Friday, every work day, or every month-end.

One of the most challenging problems in scheduling regular production jobs is the
definition of the calendars used to determine when they run. Some processing might be
scheduled with regard to the ordinary calendar (e.g., every Friday), and some by an
artificial calendar, such as month-end processing for a calendar where each 13-week
quarter contains one 5-week and two 4-week months. A shop may require references to
several calendars in order to schedule, say, Manufacturing, Financial, and Payroll
month-end. The scheduling task is likely to be further complicated by holidays, which
may cause processing to either be skipped or rescheduled before or after the holiday.

An automated scheduling system must therefore provide for several different calendars,
customizable to the company’s holidays and other special requirements. Setting up the
calendars is a prerequisite to scheduling jobs properly. Before trying to automate batch
job scheduling, it is important to identify the scheduling calendars used, and then study
the calendar functions offered in the automated scheduler to obtain the best fit.

In order to handle irregular jobs, which don’t fit any calendar, it helps to be able to
specify a list of specific dates on which to run each job, rather than calendar intervals.
This way, if it is at all possible to predict the schedule on which an irregular job is to be
run, it can be documented in the scheduling system and processed automatically. Ex-
amples of such scheduling are jobs which run at the Full Moon (I don’t know of any
automated scheduler which includes the Lunar calendar!), or jobs which run two weeks
before each Interex conference.

Of course, every shop is likely to have a substantial amount of ad hoc scheduling, where
user departments submit jobs or job requests on some basis known only to themselves.
To minimize overhead, it helps if the automated scheduler will allow users to submit
their requests directly to the scheduling system rather than to the operations staff. Once
the users have been trained, their special processing requests can be integrated iniv the
production schedule automatically, while operations concentrates on monitoring and
controlling the batch process.

Another benefit of automated scheduling is the ability to schedule jobs reliably over long
intervals, particularly quarter- and year-end processing. Manual scheduling of infre-
quent jobs is complicated by lapses of memory and staff turnover, while the computer
never forgets.

Sequencing

Once the scheduler has determined which jobs should be run, the next step is to define

the correct processing sequence. Although some jobs are essentially independent of

others, it is critical that most jobs be executed in the proper sequence with respect to other

jobs. Consider a batch update and reporting application, in which the processing se-

quence is: First, a backup (in case something goes wrong); then, an update job posts the
01552

New Paradigms For Automating Batch Job Processing

batch transactions to the database; finally, a number of report jobs analyze the updated
database.

This case illustrates the need for proper sequencing. If the update does not follow the
backup, either it will fail because the database is tied up by the backup, or the backup will
be useless because it did not get a complete copy of the database before updating.

Furthermore, if the reports do not follow the update, they will either fail or produce
incorrect figures.

The essence of job sequencing is this: A job must follow another job if it uses the results
of the first job’s processing (e.g., reports follow the update), or if it modifies a file which
is required by the first job (e.g., update follows the backup). If a job does not use another
job's output or erase its input, then it usually needn’t follow it; it may be that the two jobs
must never run at the same time, but that is a constraining issue and is covered in
another section.

From this it may seem that the simplest way to define the processing sequence would be
to list jobs in the proper order. For example, we would simply list, the backup first, then
the update, and then the reports. By following this list, the computer operator can
correctly process the jobs, one at a time (assuming nothing goes wrong). Many shops use
just this approach for existing manual or semi-automated operations, and MPE even
supports it: Just set the job limit to 1 and stream the jobs in the correct order.

Of course, ideally we want the HP 3000 to handle more than one job at a time. After all,
it is a multiprogramming computer system. If we have several independent applica-
tions, such as accounting and manufacturing, each can have its own list of jobs to be
processed independently. Although MPE offers little assistance, a number of such lists
could be maintained and executed, depending on the skill of the operator.

But the simple list scheme becomes complicated when we try to take advantage of multi-
programming within one application. In the backup/update/report example, it may be
that some or all of the report jobs can be run at the same time. What is needed is a
simple means of maintaining job sequence dependencies with the flexibility to permit
multiprogramming whenever possible.

Automated job processing typically uses an approach with maximum flexibility: For
each job you specify which other job(s) must come before it. If we use the word
FOLLOWS to signify this relationship, then we can easily express job sequences as,
“UPDATE FOLLOWS BACKUP,” and “REPORT FOLLOWS UPDATE.” In the example

we have been discussing, there may be several reports, all of which “FOLLOW UP-
DATE.”

Clearly, this approach makes it easy for the computer to achieve the highest possible
degree of multiprogramming. At any given time, the machine can process all jobs not
waiting to “FOLLOW”™ jobs not yet complete. This approach also accommodates complex
interdependencies, in which a job is dependent on more than one other job. A report may
combine input from two applications, for example, and it need only “FOLLOW” update
jobs in each application. This kind of job would be impossible in the listkeeping scheme,
but is simply and elegantly handled by stating the individual job dependencies.

As it can take considerable effort to identify all the production jobs to be cataloged into
the scheduling system, it can be even harder to determine the correct sequencing rules.
One of the disadvantages of the simple list so often used is it doesn’t reveal precisely
why jobs run in a particular order, and this can make it difficult to recognize multi-
programming opportunities. If the list does not distinguish whether the sequence is due
to true dependencies or simply because some jobs cannot be run together, it can take a
long time to find out the necessary facts. Once rules are determined and then docu-

0155-3
New Paradigms For Automating Batch Job Processing

mented in the automated system, job throughput can be optimized. The information can
also be invaluable in application system maintenance.

It is usually not enough simply to cause Job B to FOLLOW Job A. Usually, we require
that Job A complete successfully before we can permit Job B to run. In our example, the
reports should not be run if the update job terminated abnormally, due to something like
a work file reaching its capacity. Instead, dependent jobs should wait until the problem
has been corrected and necessary processing completed. Ideally, the batch processing
software should signal the problem to a designated person, and perhaps proceed with
automatic recovery processing.

An important consideration in this regard is how the software can know whether a job
has succeeded or failed. Without automation, someone usually has to look at the job’s
output ($STDLIST) or read a completion message on the console. A common criterion,
quite compatible with automation, is to consider a job successful only if it reaches the
“EQJ” command at its end. Although this doesn’t hold for all jobs, experience shows
most jobs adhere to this rule. The rule also covers those occasions when the job itself
doesn’t fail, nor does it complete, such as a system failure while the job was in execu-
tion.

If “successful” job completion is signified by reaching some point in the job other than
the end, it may be possible to modify the job by inserting a utility program at the point
which will signal success to the batch controller. Or, the job could be modified to adhere
to the ":EQJ" rule, and only reach its end on successful completion. The advantage of
the latter approach is consistency with the majority of jobs, always an aid in main-
tenance.

Finally, it may be that successful completion of a job can only be determined by inspec-
tion of the results. Software products now on the market can automate this by scanning
reports or listings for tell-tale messages, but in general it may still require a person to
check the results. To derive maximum benefit from automation, such applications
should be modified to remove the need for inspection and provide a more obvious signal
of success or failure.

Constraining

Now that the jobs have been scheduled and sequenced, there may be further constraints
which need to be applied. One such constraint is illustrated by the MPE job limit: Only
8o many jobs are allowed to execute at one time. Some automated job controllers refine
this function, offering the ability to limit the number of jobs executing for a given appli-
cation, or in a given account. This can be a handy resource allocation tool. At month-
end, for example, you can allow accounting a half dozen jobs at a time, while limiting
development to two, facilitating month-end closing.

There are often more specific constraints to be applied, such as making certain that
particular jobs never run at the same time. Although this can be (and often is) handled
by sequencing one job before another, it can be counterproductive when there is no real
reason for the sequence. If one job is arbitrarily selected to go first, any event which
delays that job will also delay the second. It is therefore important to distinguish such
dependencies from ordinary sequencing.

Exclusive job constraints are typically due to a conflict cver some resource in the
system, such as a database, a file, or even contention for the CPU. It is helpful to identify
these resources explicitly when establishing processing constraints. First, this docu-
mentation removes any mystery regarding why certain jobs can’t be run together.
Second, it permits more effective maintenance, such as when new jobs are developed
which require the same resources. Finally, the systematic recognition of resource con-

01554
New Paradigms For Automating Batch Job Processing

straints can turn up new opportunities to increase productivity. For example, jobs which
require the system’s only tape drive can run together successfully, but only one will
actually be executing at any time. By identifying such jobs to the job controller, they can
be kept from occupying executing job slots while waiting for a resource to become avail-
able.

Some automated systems extend this resource-centered model by distinguishing between
“shared” and “exclusive” use. For example, jobs which access a database would identify
it a8 a needed resource. Read-only jobs such as reports can specify shared access, which
allows several such jobs to run at the same time. If exclusive access is specified for
update jobs, the system can not only avoid running two update jobs together, it will not
run an update while other jobs are using the database. This concept supports the highest
degree of multiprogramming while maintaining the constraints necessary for
successful processing.

Shared resources can be further controlled by designating the available quantity of the
resource. If two tape drives are available, two jobs can be run if they each request only
one unit of the “tape drive” resource. This approach can be extended to bulk resources
like “CPU time” and “Disc I/O,” and used to create a dynamic “job limit® which takes
into account the special needs of certain CPU- or I/O-intensive jobs.

Synchronizing

The third facet of job control is synchronization with external events. For example, a
certain input/update job must await the arrival by courier of a magnetic tape each night.
Since this tape is not visible in the computer, the controller software cannot release the
job into execution automatically. Instead, it is usually the operator's job to inform the
software when the tape becomes available.

Automated job controllers commonly provide for operator input via prompts or “run
book” codes, which the software displays and the operator responds to when the external
condition is satisfied. In addition to the availability of input data, such conditions may
include the reservation of a peripheral device or the state of an application database (are
all on-line users off the system?). This method is sometimes employed for job
sequencing, when a pre-dependent job is processed on a remote computer not in the local
network, or when the successful completion of a pre-dependent job must be certified by
someone before processing can continue.

Sometimes external events are visible to the software and synchronization can be auto-
mated. It may be that the availability of input data, or the shutdown of on-line
processing, can be determined by the appearance or availability of a file or database in
the computer. A number of automated job controllers offer such “file dependencies”.

And, it may be that external software is able to determine that a synchronizing event
has occurred. In this case, it is useful for a program or job to be able to send a signal,
akin to the operator’s response, to trigger dependent processing.

Recovering
Finally, there comes a time to face the inevitable: A job fails and some recovery proce-
dure must be performed. The job controller’s first contribution may be to announce the

job’s failure in a timely manner. The sooner the problem is attended to, the better the
chance of getting production back on track.

In most shops, the ultimate (sometimes only) recourse is to “call the programmer.” Most
job control packages will allow you to attach some descriptive information to each job

01555
New Paradigms For Automating Batch Job Processing

and make it available on-line, such as the name and telephone number of the
programmer. There are even software and hardware packages which can make the
phone call automatically!

Although the variety of possible recovery actions is as varied as the possible causes of job
failure, it may be possible to establish a highly automated recovery procedure. For ex-
ample, failure of a particular job could trigger the job controller to launch a restore of
the database and continue with other processing, bypassing the failed job until it can be
attended to. Other automated actions could include rerunning the failed job, or simply
bypassing it without recovery.

Conclusion

The operations staff will succeed in automating their batch job processing without severe
difficulty by carefully attending to these few basic elements:

Scheduling - Identify all jobs which are regularly scheduled and determine the basis
for the pattern in which they are scheduled. Obtain the calendars used and understand
holiday scheduling.

Sequencing - Find out why jobs are run in a particular sequence. Identify where a
series of jobs really needs to be processed in a certain order, as opposed to an order
established arbitrarily.

Constraining - Document conflicts between jobs which prevent them from running
together. Identify system resources which may be at the root of these conflicts.

Synchronizing ~ Prepare a list of checkpoints or external events which may require
operator action to trigger or continue processing.

Recovery — Collect recovery procedures and instructions for any jobs which have them.

Once these basic elements are assembled, batch job automation can be accomplished
fairly easily and with a likelihood of significant productivity gains.

01556
New Paradigms For Automating Batch Job Processing

	New Paradigms For Automating Batch Job Processing

