Fortran 66 to 77 Conversion:
Problem Considerations in an
Integrated Environment

Brant L. Kelly
Bradmark Computer Systems
4265 San Felipe
Suite 820
Houston, Texas 77027

Introduction

With the introduction of the Precision Architecture line
of computers, HP has made its Fortran 66 compiler obsolete.
Along with the introduction of the Fortran 77 compiler, HP
provided some tools to help the programmer in converting
Fortran 66 source to Fortran 77 source. After converting a
system written in Fortran 66 to Fortran 77, I gleaned some
knowledge that is not clear in the documentation. The
system that I converted is a group of fortran subroutines
that calls system intrinsics. The steps outlined in the
migration manual for converting Fortran 66 source are clear
enough, so this paper is not a "how to" guide. The purpose
of this paper is to share my experience in a conversion of
interacting programs in a system. The conversion facility
from HP is a good tool if the programmer has some previous
knowledge on its use. This paper covers internal
representation of Fortran 77 data types with the interest of
helping the programmer in calling external routines that do
not use the same default data sizes as Fortran 77.

I. After the Migration Aid: What Now?

You spent hours of reading and experimenting to
understand just what the Migration Aid will do. After
taking the plunge, you now have a file of fresh FORTRAN 77/V
source code just itching to be compiled. Will it work? 1If
it is a stand-alone program that does not call other
programs or system intrinsics, then it will work (probably).
If your program is a routine that interfaces with other
programs on your HP3000, then there is an excellent chance
that it will not PREP. The default size of integers in
FORTRAN 77/V is two words. The default size of integers on
the HP3000 is one word. This is where the majority of
problems arise.

Another problem is the new logical type. You can not use
logical arrays to store non logical data such as IMAGE
parameters.

The other road block that is thrown in your path when you

Fortran 66 to 77 Conversion 0167-1

are converting is FORTRAN 77/V's implementation of character
strings. A character string has two parameters associated
with it. The first is the byte address of the string and
the second is a one word integer whose value is the length
of the string. When you pass a string to a called
procedure, FORTRAN 77/V will pass these two parameters.
FORTRAN 66/V passes one parameter per string.

II. Integer Data: One Word or Two?

FORTRAN 77/V's default integer size is two words. Repeat
the last sentence until it becomes forever burned in your
mind. Understanding this will help you in a smooth
conversion. HP has provided you with some control on how
programs are compiled that will allow you to specify the
size of integers. The fool proof ones are the $SHORT and
SLONG compiler directives. If your FORTRAN 66/V program
uses INTEGER declarations, as opposed to INTEGER*2, then the
SSHORT will force the creation of one word integers in
FORTRAN 77/V.

Another way to specify one word integers in the above
example, is to globally change all occurrences of "INTEGER "
to "INTEGER*2". The result is the same as FORTRAN 66/V.
Integer constants are another problem. If you specify
$SHORT in the code, then all your constants will be one
word, except when they are two words. An example
(exclamation points are comments in FORTRAN 77/V):

$SHORT
program test
integer short_integer tone word integer
integer*4 long_integer !two word integer

short_integer=32000 !the constant is a
Ishort integer

i=32000 !the constant is short as
twell as the undefined
lvariable

long_integer=32000 teven though $SHORT is

tdeclared, the constant takes
lon the size of the left hand
!side of the equation

stop
end

The rule of thumb I use for constants is: The constant will

take on the characteristics of the left hand side of the
equation. This rule also works where there is no apparent

Fortran 66 to 77 Conversion 0167-2

left hand side. An example:

program test
integer*2 parameter,i

i=32000 !short constant

call something(parameter,i+2) !the second parameter
!is a DOUBLE integer

stop

end

The left hand side of the second parameter in the procedure
call is defined as the parameter in the called procedure.
FORTRAN has no knowledge of the called procedure in this
example, so the compiler generates a double integer because
the default integer size in this code is two words (no
$SHORT) . The constant in the parameter is a double and it
forces the expression to evaluate as a double. If the
called procedure expects a short integer then there is a
problem. There are two ways to solve the problem. The
first way is to force the constant to be a short integer and
the second way is to use the $SHORT declarative. Examples
are:

call something(parameter,i+2i) !the 'i' following the
lconstant forces it to
!be a single integer
12j will be a double

$SHORT

call something(parameter,i+2) !$SHORT forced the
lexpression to evaluate
las a single integer

Let me show you an example of an integer overflow:
$SHORT

program test

integer*4 i

integer*2 a,b,c

a=32000

b=32000

c=2

i=(32000i+32000i) *2i

i=(a+b) *c

Fortran 66 to 77 Conversion 0167-3

stop
end

The first expression will evaluate just fine. The second
expression, even though identical to the first, will fail
with an integer overflow. In the first expression, the
constants are defined as single (remember the "i"'s), yet
the compiler makes them double because of the left hand side
of the expression. The second expression fails because the
intermediate values on the stack are single integers.
32000+32000 will overflow a single integer. Inconsistencies
in the compiler like these make programming in FORTRAN 77/V
a much more exciting challenge than programming in FORTRAN
66/V.

III. Logical Data: Illogical

Logical data types can be described as 'weird'. FORTRAN
77/V only uses the low order bit of the high order word.
When the bit is set, the value is true. This is totally
incompatible with anything else on the HP3000. If your
application passes logical flags around and you must convert
only parts of your application to FORTRAN 77/V, then you
have a lot of work to do. One way to solve the logical
problem is to pass the flags as integers, testing them for
zero or minus one. FORTRAN 66/V logicals and SPL logicals
are not compatible to FORTRAN 77/V. The default size of the
logical data type is two words.

IV. Character Data: Two Parameters for the Price of One

There is a useful FORTRAN 77/V intrinsic function that
returns the length of a string. A further enhancement is
dynamic strings in subroutines. FORTRAN 77/V will allow you
to write routines that manipulate strings of unknown length.
An example:

program test
character string*121

call string_sub(string)

stop

end

subroutine string_sub(string)

character string*(*) funknown length
integer string_length

string_length=len(string) !len is a FORTRAN 77/V

{function that returns the
!length of a string

Fortran 66 to 77 Conversion 0167-4

print*,'Length of string is=',string_length

return
end

There is a drawback to this flexibility. As stated before,
two parameters are passed with a string. The first
parameter is the byte address of the string and the second
parameter is a one word integer by value whose value is the
length of the string. This is the only case where FORTRAN
77/V will pass a parameter by value on its own (you can
force it to pass parameters by value with the alias
directive). Calling a non FORTRAN 77/V routine with
strings, or being called by a non FORTRAN 77/V procedure
with strings will fail. I will describe HP's work-arounds
in a later section.

V. Calling FORTRAN 66/V: Mixing the 0l1d and the New

FORTRAN 66/V's default integer size is one word. FORTRAN
66/V does not have the LOGICAL*4 data type. FORTRAN 66/V
expects one parameter per character string. The .true.
value of a logical parameter is not compatible between the
two fortrans.

If you are careful with integer constants then you will
have no problem calling either fortrans. LOGICAL*4 can be
passed to FORTRAN 66/V into an INTEGER*4 parameter if you
relax the parameter checking.

You can pass character strings to FORTRAN 66/V in two
ways. The first way is to use the compiler directive
SFTN66 3000 CHARS ON. This directive tells the compiler to
pass only the address of the string to any routine it calls.
The other way is to define the called routine with an $ALIAS
compiler directive. In the ALIAS directive you specify the
language of the called routine as FORTRAN 66 then the
compiler does the rest.

Calling a FORTRAN 77/V routine from a FORTRAN 66/V
routine with a character parameter has the same problem only
reversed. You have two ways to solve this problem as well.
The first way is for you to provide the extra length
parameter to the FORTRAN 77/V routine. An example:

C FORTRAN 66/V
program test
character string#*20
Cc

C length parameter is by value
C

Fortran 66 to 77 Conversion 0167-5

call string77(string,/20/)
stop
end

C FORTRAN 77/V
subroutine string77(string)
character string*20 lor string* (%)

string='this is FORTRAN 77/V'
return
end

The second way is to surround the subroutine statement with
the $FTN3000_66 CHARS ON and OFF directives. The above
subroutine rewritten in this way is as follows:

$FTN3000_66 CHARS ON
subroutine string77(string)
$FTN3000_66 CHARS OFF
character string*20 !you can not use the * (%)
!construct here

string="'this is FORTRAN 77/V'
return
end

You may not use the unknown string length definition in the
above example. The length of the string is not expected by
the subroutine, so the length parameter is not needed in the
calling routine. This is the why you can not use the *(¥*)
construct for the above string. This method is the easiest
way to integrate 77 code with 66 code. You do not have to
recompile the 66 code that calls a routine that you have
replaced with FORTRAN 77/V if character strings are passed
to the replaced code.

As you can see, calling FORTRAN 77/V and FORTRAN 66/V from
each other is not that much of a problem except for logical
data types.

VI. Calling System Intrinsics: Is FORTRAN 77/V
on Speaking Terms WIth MPE?

MPE intrinsics require parameters that FORTRAN 77/V can
not provide:; such as value parameters and byte address of
logical arrays. HP has provided two mechanisms that will
allow you to call system intrinsics and other SPL routines.
The nicest one is the SYSTEM INTRINSIC declarative. Ninety-
nine percent of your problems in calling system intrinsics
are solved with this declarative. The compiler will use the
SPLINTR file to set up the call to the intrinsic. The
parameters will be passed in the proper manner; by value or

Fortran 66 to 77 Conversion 0167-6

reference, by word or byte address. Always declare the
system intrinsics that you use in your programs. Failure to
do so will crash programs.

The other mechanism is the $ALIAS directive. The ALIAS
directive is best used to call SPL routines, although it can
be used to call system intrinsics. The directive allows you
to define the passing method for each parameter. Based on
your definition of the procedure from the ALIAS directive,
the compiler will create the code to call the procedure.

You can not use logical arrays to store parameters for
system intrinsics in FORTRAN 77/V. Moving a logical array
to another logical array will not move all the data from the
source array. Only the low order byte of the high order
word is moved. An example will explain this better:

program test
logical*2 1_arrayl(10) !the default size of logical
!is two words, so I used '*2'

character stringl#*20
equivalence (1_arrayl,stringl)

logical*2 1_array2(10)
character string2#*20
equivalence (1_array2,string2)

stringl="'abcdefghijklmnopqgrst'
string2="' !

do i=1,10
1 array2(i)=larrayl(i)
end do

print*,string2
stop
end

The output will be 'ace gikmogqgs'. FORTRAN 77/V will
allow you to use integer arrays in place of logical arrays
to store your parameters. The system intrinsic declarative
will take care of the necessary conversions for you. Do not
put parameters in logical arrays, period. The Migration Aid
will not place parameters in integer arrays, you must.

The FORTRAN 77/V compiler seems to relax parameter
checking at PREP time for system intrinsics. Therefore, you
do not have to worry about having a mixture of FORTRAN 66/V
and FORTRAN 77/V code that calls intrinsics with different
parameter types such as logical arrays in 66 and integer
arrays in 77 for the same intrinsic call.

Fortran 66 to 77 Conversion 0167-7

There was one interesting bug that happened to me in a
call to FREAD. The length field that I used to receive the
value of the FREAD function was defined as a double integer.
Immediately after the FREAD call, I tested the condition
word. Every time the condition word was CCG, indicating an
end-of-file state. I knew this error condition was wrong
because the file's record pointer was updated to the next
logical record in the file and the pointer was not greater
than or equal to the actual end-of-file. The cause of the
problem was that the FORTRAN 77/V compiler generated some
code that converted the short integer returned by FREAD to
the double integer. The code affected the condition word
before I could test the result of the FREAD.

Conclusion

Should you convert to FORTRAN .77/V? Yes. Even with the
problems associated with a 32 bit language on a 16 bit
machine, FORTRAN 77/V is well worth the trouble that it
causes. With the new control statements - DO WHILE and
IF...ELSE blocks - plus powerful string handling constructs,
you can write better programs easily. The FORTRAN 77/V
Language allows you to write structured programs without any
GO TO statements. GO TO's are difficult to read 1in
programs and they allow for careless programming. The only
statement labels that are necessary in FORTRAN 77/V are
FORMAT labels. The programmers that have to maintain good
FORTRAN 77/V code in the future will appreciate the absence
of GO TO's. The string handling helps the language to be a
more general purpose language. If only they added BCD. 1If
you are interested in having your code run on the 900 series
computers, then you need to convert to 77 because there is
no native-mode 66 compiler.

Fortran 66 to 77 Conversion 0167-8

	Fortran 66 to 77 Conversion: Problem Considerations in an Integrated Environment

