
Managing Application Programming With Fourth Generation Resources
N. M. Demos

Performance Software Group
Baltimore, Maryland 21228

In the late fifties IBM realized that its computer effort was fragmented into
several different computer models employing several different
architectures. At the same time, system software, particularly operating
systems, were recognized as an integral part of a computer vendor's offering.
To meet this challenge, IBM after much soul searching and internecine
warfare, announced the System/360. While electronically different and
designed and produced by different engineering groups and plants, each model
would have the same instruction set and peripheral interfaces. Therefore
programs could be ported at the object code level from one model to another.
This would make upgrading much easier for the user and optimize programmer
resources, because only one instruction set and architecture would have to be
learned.

Software could be designed and written based on the same instruction set.
This was a critical element in the strategy and success of the S/300
architecture.

The other radically new feature of the S/360 is that it was designed to be used
with an operating system. The operating system, using the new capabilities
of the disk drive, would facilitate program to program transition, handle all
input and output, and allow multi-programming. IBM initially announced two
operating systems for the S/360 - DOS and OS (there was also initially a tape
varient of DOS called TOS). OS, designed for the larger and faster S/360
models, was designed to have a functionality way beyond the capability of
anything seen previously in a commercially available computer system.

Brooks' "The Mythical Man Month" is an analysis of what happens when a very
large system design and programming effort - in this case IBM's OS - is
undertaken. While I recommend that everyone read this book, as its lessons
are still germaine today and many of its precepts ignored, I can tell you what
the message I received from the book was.

Beyond the obvious - man and machine resources - the book has some very
important insights on how to bring a large system to completion on time and
within budget. As well as showing some of the human frailties that make a
project manager's life so difficult, it emphasized that only by superior
organization and a thorough understanding of the task could a large project be
accomplished. Brooks estimates that a program that interfaces to other
programs takes at least three times as much time.(I) He also states that "The
man month as a unit for measuring the size of a job is a dangerous and deceptive
myth."(2) First, this confuses effort with accomplishment, which are not
the same. More important, this type of scheduling assumes that a job "can be
partitioned among workers, with ~ communication among them."(3)

There are two tasks that have to be carefully accomplished for the project to
be successful. In the first place, the project must be logically organized

Managing Application Programming With Fourth Generation Resources
0168-1-



and then broken down so that each person has a task that can be understood and
accomplished by one person. At the same time all interfaces, vertically and
horizontally, must be thoroughly, absolutely and immutably defined. Of
course, we all know that that is impossible, but we must get as close as
possible. Incidentally, it would seem to be in this area that the Spectrum
project may have gone astray.

Once having designed and written specifications, the project must be
organized and scheduled. Brooks sees another pitfall here. Ideally, one
would like to have a "small sharp team-- - a small group that knows the tasks
thoroughly, communicates with each other effectively and can perform
effectively together. Unfortunately, this group of near geniuses is mostly
unavailable and in any case, cannot handle large tasks in a timely manner.
Brooks proposes instead project teams of specialists with only one person
taking responsibility for all the code, most of which he would write himself.

How have some of the more recently available resources, particularly Fourth
Generation languages affected the project director's ability to perform
these tasks? First of all, a good fourth GL, because code can be written so
much faster and modified more easily, allows realistic prototyping, so that
both the user and designer can quickly determine if they are on the right
track. This not only verifies the design, but gets the user involved and
therefore he is more likely to become committed to the project. Today, with
most user interaction occurring via a display, it becomes critical that the
users understand what they are expected to do to accomplish the application's
objectives. This means that not only must they become comfortable with the
terminal, but it must be easy and as obvious as possible to enter data and
perform other functions correctly. Prototyping is one way of making this
happen. In many cases the last prototype becomes the production version.
In other cases, the prototype is a partial solution to the task and is used
until the complete system is available. In situations where the prototype or
a portion of it will be used in production, the fourth GL and the user
implementation must be robust enough to operate in a production environment.

A good fourth GL supports a dictionary. This is a major asset in
standardizing data definitions, linkages, and databases so that all
programmers access the same data structures in their programs. If carefully
managed, not only does this help implement standards and prevent errors
caused by programmers not having up-to-date specs, but it facilitates
changes. A good dictionary can be used for even more than that. Depending
on the dictionary and the skill of the dictionary user, it can store in
accessible form definitions on all linkages and program code, thereby
allowing members of the project team to query it for as complete a map of the
project as they might require.

When a fourth GL is chosen, each one under consideration must be analyzed not
only for what it can do itself, but for the environment it operates in. For
example, if documentation is an issue, then Infocentre' s Documentor supplies
a solution not available with the other fourth GL' s. If the applications are
complex in logic, then the fourth GL must have the capability to accept
procedural code and run it on the 3000 without performance degradation. For

Managing Application Programming With Fourth Generation Resources
0168-2-



example, the combination of HP's Transact and Performance Software Group's
FASTRAN accomplishes this objective.

The bottom line on pro ject planning is still the same - the better the planning
and organization, the better chances for a successful implementation. The
availability of new facilities such as 4GL's and dictionaries, if properly
utilized, give the project management powerful new tools to help him.

Managing Application Programming With Fourth Generation Resources
0168-3- .




	Managing Application Programming With Fourth Generation Resources

