CASE - A Way out of the Software Trap

Geoff Davies
RAET Software Products BV

The Netherlands

1. Introduction

e e hottest topics in the computer indusi ay is which stands for
One of the hottest topics in the p ind podcdy'CASE which stands fo
Contlguter Aided Software Engincering (or Computer Assisted Systems Engineering). Is this
another meaningless acronym you sec for a while, that dml&pears in a short time, when the
excitement dies down? e acronym could disappear, but the concept will certainly not go
away, because design and construction of business application systems is _so vital a
dimension of commerce and industry today, that our ‘“profession” finds itself under
increasing pressure to behave as Engineers.

Engineers today are assisted by computer technology in the design, visualisation,
manufacture, testing, service, and ~ quality control of “the products of ~ their discipline,
such as bridges, buildings, automobiles, “weapons, satellites, computer chips, and so on.
The terms CA /CAM (Computer Aided Design / Computer Aided Manufacturing) and CIM (Computer
Integrated Manufacturing) are widely known.

So it will %o with Application Software development. CASE is the term rapidly gaining
acceptance for the automation by computer of the Software Deve{gpment process.
Automation is being hailed by many ‘as a way out of the Softwarc Trap - the trap we find
ourselves in when we can’t make vital new systems quickly or well enough, because of the
burden of holding together inadequate systems developed in the past.

This r will explore the background to CASE, the benefits it can deliver, and suggest
an iqg:retoolset, el;pecially withkgrregard to the HP3000. Finally, some industry trcnd‘;“are
examined for a view of where CASE '1s headed.

2. MIS Quality and Secrvice goals under pressure

The march of technology in our business has not diminished in any way the pressure on MIS
to improve its performance in the delivery of support to the business _ activities of our
corporate masters, Everyone today is aware of the incredible price-performance ‘ﬂams in
the com'(mter, with a microcomputer being almost as common a feature of the middle class
household as the television set.

Corporate leaders are therefgfre agking themselves why they do not perceive similar
advances in _the delivery of quals support systems for business activities., It’s
becoming such a glaring " deficiency that gemeral business publications are .examqm%eghe
prol‘:.l:dm,iuand lt’llniseussmg the effects and possible remedies. Our dirty linen is being
was public.

Are we doing such a bad job? Corporate analysts say that, on the whole, we must be able
to do better.

Data Processing was once a black tower, where magicians wove their secret _spells, and

:lpokq in strange I e that awed and mystified the tremulous user. The minions

omain were known to be fickle and some ‘even had a reputation for blackmail - the secret
owl possessed by them would leave their employers paralysed if they left the enclave

or pasfures mnew.

CASE - A Way Out 0174-1

And indeed, little has changed in that respect. Tod.ax, experienced prggmmmer/analysts
m)etatots, and management are as scarce as ever - which' is good news if you are one of
ese.

In our efforts to keep up with demand, and _to maintain quality in the delivery, support
and maintenance of business systems, we have become a serious drain on corporaté finances,
m seem to get no closer to ‘answering fundamental questions about the service we provide.

. do development projects so often run behind schedule and over budget? Why can we nof
repair software defects” as quickly and easily as an engineer can correct hardware
problems? ~ Why must important enhancements to critical business systems, necessary for
competitive advantage, wait so long to be scheduled and implemented?

It’s_generally agreed that the reasons for this, at least in the _area of business
applications, are to do with the ability of MIS to take the expression of a

: and solve it with a computer-based solution. Among the reasons most commo
cited:

User to MIS communications is poor

MIS understanding of users’ needs is poor

Usersl kﬁep changing their requirements, increasing the maintenance
oa

Good programmers are scarce

MIS ability to plan and estimate is poor
MIS development productivity is low

MIS quality control is almost non-existent

There are many other possible explanations (excuses?), but the overriding impression is
that MIS, who “are E\mgqm:l to able to provide the total service for users, simply are
not sufficiently professional in the delivery of their service.

User to MIS communications: shouldn’t the responsibility rest with MIS to behave as
ines and CLARIFY a user's requirements before a single line of code is
wri

Sulryct of technical resources: where is the real problem - is it programming or
analysis

S nning and estimatin bility: oth departments ngineering, nufacturing,
xs'tﬁlfﬁltqlon, gtc) can s:bt:}ta wel -I:ana.gtgd b‘:xsi:rcss ag " pr%jecl gia 5 - wgy c::et MIS? e

(‘j‘s‘g qlevelopnt:ent ptodnpetivity: little gain has befn n_mdfe ntn devetlopmgnt Iroduc%ivity in_dthe
in_recen rs. m in fact, em ment is widel
regarded as they_?:st uni?&m‘ﬁ?ef' gsinesesam::ﬁv‘i’ty, amia onesy or wlnie X ew benchmar!
measurements exist.

MIS quali control: _contragt e quality control procedures (if an of the MIS
depar?mentty_vlithoaxose,of man! ngt&hng,qand l¥I:en= is a yagvning gap. (Andﬂh.at_should come
as no surprise - QC in engineering departments is based on a ngotous discipline stemming
from the recognition that, ultimately, customer satisfaction (an safety) will determine
thfaq ss of ~the corporation. MIS has only internal cxﬁtpmm"&, we_have an informal
relationship with our customers, and the?' have only one choice of supplier. But MIS can
build systems, on which the business musf depend to survive, with no es - and those
systems can be grown and extended over decades to massive networks of thousands of
terminals and enormous transaction volumes,

So I would suggest that we, as MIS professionals, whatever the size or budget of our
departn,lelit, should decide firmly on a _strategy to :pgudc the service that we offer, and
aggressively implement that strategy while we still have a choice in the matter.

CASE - A Way Out 0174-2

3. Strategics for MIS to reach Quality and Service objectives

ery, bﬁefk', we will look at some steps that MIS could take to approach the objectives of
an

Q, gfilg Service Iﬂlal‘lal? des“lableld we are to be scen as an asset to our eﬂlployeﬂy

There are many different ways of dividing up the components of a development project, and
?f course most MIS deparfments have several projects under way simultaneously. ~ The
ollowing four stages are a simple model, and we'll assume that it i)een decided
to proceed with a project.

Design: Visualising _the finished licati i dat, d £l
e of cll:t: Sl:lgld sgttinml out ? elcargﬁ;:l?nlismgn edat: m:agemgt requirements.
Normaliy a pen-and-paper job, done by an analyst.

Program: Actually creating and editing Jrograq:q in the sclected language, .
and submitting a __succession revisions to a compiler or interpreter, until
each program is finished.

s already

Test and document: Iterative = procedure of verifying that the programs work,
going back to programming to make corrections, and finally establishing on paper
or in-code how it all works and what it means (for MIS and users).

Mainteaance: Does it nd? Th t of maint d ds on h
* %Erjo%%ﬁl edid in tfxea m?il:lslt pla;?“;nenat:g:ns e&e lkEgnD f‘m maintenance, and
1t

design program test maintenance

_

T™E
Figure 1: Traditional Approach

CASE - A Way Out 0174-3

Figure 1 shows a _theoretical model of a development project naingn:.taditional approach and
the four stages (altho there is no sharp line between ~them). c arca under the curve
would represent the total investment made in human and other resources in the project.

This graph emphasises that traditiona little resource in total goes into design. Why
is thig_‘; pBecm!l’:: there is little thal{yone could do to significagn refine a design to
mt:lke it :_nio;e usteful, on::e yolt: Mve'ﬁ: few flowcharts, a_list dof gfata tems, an;i sam:e 5creen
and r . . "Let’ ming” rse we ten

SR SN walE £ P, Ppgmmggy and o conme e tend (o dedgn
Testliéxg z}xt:dt d%cm?entabteion in;ehperha 8 %'_zien M?hRE weight t!lant iatrelxla_l in the traditional Dl;
world. en zard ac e programmer tests his own programs, an
documentation ollgws latzr) a?ter aﬁ, we 'don’ Ilt’kgs to write pases of notqg F wes'think
the, user manﬁht reject the system until more changes are made! Of course, if we got the
design at wrong up front, we could be a very long time putting it right later.

And maintenance, where 80% of America’s programmers are busy (as Wall Street Journal would
bave it), just mever ends. Unless the documentation was ~comprehensive (even through
earlier ‘maintenance), we have a lot of code to read.

What we would like to accomplish is to get the curve flatter (it makes scheduling easier),
lower (it reduces costs), and for the delivery point to be nearer to the start point.
There are some ways to]!elp

4GL

A fourth generation language can reduce the¢ programming load. 4GL's boost productivit
enormously in_low transaction volume ap&hcauons, and “also are very effeiuve in rapi
roto . They have a great ability with data manipulation, and for ad hoc report an
quiry applications. The penalty is paid in performance, and in transactions with amy
complexity of data management.

this.

-

RelationalDatabase
Information-retrieval-intensi licati benefit f fati data m and
the associated retricval language is nsually ~ Gasier 1o code with thad Cobol & Agaia

. ain, the
penalty is paid in high-volume applications, and _you stil need traditional or fourth
generation language for full-function application development.

Code analysers and restructuring
There is substantial growth in this segment - the advantage comes in making old code

maintainable. Obscure algorithms developed twenty years previously can be made readable
for today’s analyst.

DataDictionary
Implementing a_standard data dictionary is a very real way to introduce some productivi
- nl:’lak %:%a de}initions re-usable l.ypl-ayatm'n:ym on a A or maintenance px!"ogﬂnmne‘r)sY

team,
in the future, reduces the amount redundant coding considerably.

Gencrators
Code generators and report generators are a ﬁood way to re-use programming done
! U drivi 4

somebody else. Usually en by a procedural language, you can get skeleton or ev‘e,z
complete programs from a few statements.

CASE - A Way Out 0174-4

The tproblem with all of these, and the many other productivity tools available today, is
that few are integrated, and there remains an almost obsessive enll‘?hasls on the program as
an object of attention, It seems to be overlooked that the objective is to build
application systems, that's what the business needs us for.

Furthermore, how do we measure that we are in fact gaining in productivity at_all, and to
a :dumtcilvei“ (leg\'ec:,ti thaé we 5 can, assertl thatt . our sen‘r)llce is gnprov‘l:'nilg? lzevclopmcnt
roduc as mentioned earlier, is ! .

B e s Mo Tods gt messable quantly. "The most commonly

Two problems with this: first, what constitutes a line of code? A line of Cobol? A field
gefmed on a screen? A line of a DBSCHEMA? 1Is a replaced or deleted line a line of code
or productivity ?meawres? What if I copy 1000 lines from another program, for a "same as

except” purpose

Second, if a line of Powerhouse code can do what ten lines of Cobol do - am I ten times as
Ftoc_lncflve? Is this true if the other tasks surrounding the programming (design,
esting, problem resolution, editing) take the same amount of time anyway?

Understanding the productivity average for yonr development cemfer is important if you are
to able to tmfy gnow tha%y you lm%e madg im) r_ovemeem. Knuw%n% productivity by fuaction
and by individual personacl can be very helpful in determining what resources to apgkly in
a development task. How useful would it be if you kmew the average time it took a skilled
analyst to 8todnce a transaction of mediom complexity, when estima time and cost for a
new project? And the time it takes a trainee programmer to produce a mew screen display
for an ‘existing system, including testing and documentation update?

Your manufacturing department has this sort of information, relevant to their operation.

In all of the tools available to the HP3000 user today, there are verx few that help with
deugl. You can obtain PC-based applications that _hefp you understand the data and flow
of data in business systems, many even produce diagrams to use as a starting point for

programming.

And yet, it is in failing to get the design i at the very beginning that our problems

. 1siness application system, u all of its” screens and menus, _all its
reports, all its transactions, datd management _activity and system management, form a
critical structure, supsqrtmg the corporate activities. Compare it with, for example,
your head office building.

¥ we erccted buildings the way we put application systems together, we would start from a
sketch plan, hand-craft the buiidmg rom the roof down, every room would be a different
size, shape, height, we hwmtnlhcl make all gléeth fittmgst egursﬂveﬁ insteadtog llslél _stal?datd
ones ress surprise when the owner sai wan oors, no! and finally we
would ﬁnd it o:%r and say "use it for a whileg, and tell me what you think - if |t'sy not
quite right I can make some small adjustmeats!" When we_th it was all finished, we
would get around to drawing up the "real’ plans - if we hadn’t started another pr:fcg.
¥ ltgtamu;gh tom' building would entail going into the building and rearranging it until it
¢ right.

Now let’s use CAD/CAM as an example. Who can deny the value this has been to_the
engineer, who can now ggfnst t at a workstation a complete specification for a machine
inspect and adjust it, before having mnnufacmnng put it into Foduchon. He doesn’t
tell_the computer every item of detail of a gear wheel, for example. He tells it _he wants
a "32 tooth spur gear of radius 4.25 inches” - and then adjusts it and moves it around.

eers qmckl{‘ Enecame familiar with d{.heu- new tools in spite of ri‘:ls ce by MIS (who
I have scen challenge the competency engineers to select and use them).

To_conclude, this part, let’s look at our gragh again (Figure 2) and see how it might look
with an engineering approach to development.

CASE - A Way Out 0174-5

We have a flatter curve, with the carlier delivery of the system. The programming phase
is compressed, because in an engineoring approach, rather telling the computer how_to
do everything (programming) we ~concentrate on telfmg it what we want accomplished. We

en leave it 'to the computer to assemble as much e design into our _desir
executable application system as possible. We give the computer the task of coding the
solution, using highly ~ re-usable code structares.

How do we implement design on an HP3000? W to,_ select tools that will allow us
interact with ogt HP m“s?etmha?as a computee ‘;ﬁgd odesign, wg?ksstatfon, and which w%ﬂ
interact with all the other parts of the development cycle, giving us a complete "software
factory®. This is the objective of CASE.

TIME

Figure 2- CASE Approach

CASE - A Way Out 0174-6

4. An integrated CASE toolset

In this section, you’re asked to forget about writin rognms to deliver business
applications, Tﬁmhnf rograms makes you relate to CASE at a level of lines of code, and
to do so is to be fettered by tradition.

Instead think in terms of the systems you need to produce, and of those systems as made up
components, and sub-assemblies, rather as a manufactured product might be.

Our proposed CASE toolset may not correspond exactly to how you might ggceive the vital
parts of an mtaated software engineering environment. There are man erent ways of
representing a SE toolset, this is just ome. The toolset you see here (figure 3) is

oriented to a total application development environment.

In this diagram, the CASE tools arc visualised in a_“casc” - and tidily packed away. This
bas no bearing on the (t)r%fr you might use them in. It helps you to = see the interaction
etw each cc t tool.

1 4

Figure 3: CASE Toolset

CASE - A Way Out 0174-7

DATA ANALYSIS

Sometimes called “front-end” CASE tools, these have been around for some time. Used to
analyse the behaviour of data in an existing or planned business application, they help
the c;levelogment professional’s understanding ~ of the future design and data management
requirements.

La:ge installations, especially mainframe wusers, tend to favour these products more,
perhaps because tLey seem to fit very well to relational data management.

The usual approach is for a skilled analyst to survey the user’s application area, capture
into the PC ‘the data entities identified, and as much ~ information as is known about these
entities. Progressively, the whole story is built up, including the logical organization
e data, the updatmg points, the “relationship ~ to other enmtities, the properties

the entities (editing, type, size, and so on).

utput from these tools is ically presented i aphical form, in entity-relationshi
%xgptanl., and data flow dtiy . am);.p Some tool%t gr«; directed ' at specific structures
programming techniques, and produce diagrams in a compatible form.
Increasingly, wuse . is ing mad: of the output _directly, accepting . the
eﬂtity.-l'lenlsngon.f.!lip_imfom‘mt‘i)gng as a‘;': initial t:lam“l:no\‘lel f%cr y thebyData l)Dicstlmlary,
especially on mainframes.

CHANGE CONTROL

Whether it’s the _introduction of a completely new application, or the adjustment of an
existing system, Change,k Control (or Change Management) is a vital aspect of controlling a
lively “development environment.

Volumes have been written about effective control of change and its impact on existing
Management Information Systems. Micro and minicomputer users are notorious for their
cavalier attitude to changes'in a running application, ~Mainframe users have been in_the
business long_ enough, and in a hitherto more complex environment, to know that these
ggtimsofarfh ftragxle things. Quality Control is closely linked - although we don’t tend to
in at.

Most old hands have had the ex})eriex_uce of a "minor change" causing massive disruption to a
critical system. It’s all too (empting to think we know all we need to, and make a
*quick fix" that later tums out, to have an effect we did not expect. The _problem is
exacerbated with interpretive code environments - we often want to try it and see in a
}we ::lsage. Even when a backup is available to undo the damage, the disruption can be
earful.

So a management information system for MIS itsclf is nceded - whereby procedures are in
place to control changes to semsitive systems. To return to the manufacturing analogy -
change to established ~design normally goes through an EC (Engineering Change) approval
rocess, with QC, Engineering, Marketing and Shop Floor inspecting the change and
commenting on or planning for the effect of this.

Qur ideal Change Control system will jnclude forms for submitting problem reports and
change requests; a submission and registration procedure; a design review, comment and
approval procedure; quality assurance procedure, (by which sign-off is given that impact
analysis, on relational integrity within programs,tesu_r.g, documentation, and
user-advice have all been done); and a release procedure. ese procedures can be
real-time and c ntmi;ous, in a DP shop there dogs not even have io be any paper. Why not
give a change/%ro em report facility entry point to users on all application systems

A further issue arises here, and that is controlling the versions of software in use,
especially in a distributed systems environment. Change control should therefore take
account of the version in use, at the point where change 1s needed, and being aware of the
effect on other current or future versions.

deali ith the yery natural of chi i of egsional and inceri ode,
b Cabante"the ‘Qualtiy” of o0 sBrnces® snd Sans prcatir Peoniience from® enr shonts, mo%

CASE - A Way Out 0174-8

METRICS

!lepeatjnf the earlier assertion that productivity of the development center is virtual
unpossnb? to measure objectively, we should look for tools that will help with this,
our development resources are substaatial.

There are man{afl‘-ll’ 3000 users in the world with multiple development centers, with many
development s at each site.

Our ideal intﬁl;alegi CASE toolset will permit us to measure our production and
oductmwtii is is very important, if we want to collect project progress information,
t we come to that later.

Here we raise a concept that has not xet been mentioned - "Object Oricated Programming®.
This _concept _ is_eme: in a PC development environment - we see an object-oriented
interface in the HP-NewWave envu-onmentl and th%nfamed Macintosh interface. At the m
of :.Ins se::}xon sytou were asked to forget about lines of code, and programs, but to

in terms systems.

Object-oriented development is more encompassing than programming but _the idea is the
san{z? Development a'::ﬁvity and progress g“eal:t%r to egpl?esss in hl?ser-orientea terms, to

the users themselves, why not measure in the same terms?

Our CASE tools will help us develop “objects® such as screems, reports, transactions,
menus, database definitions, and so on. Let's measure our progress using = those terms.
Integrating metrics to = object development means that our Metrics module logs resources
expended in accomplmlung the development of a unit. For example, let’s take a screen as
an object of development.

Megﬁcséﬁj for the screen, the total sign-on time (programmer resources), CPU cycles for
design, cycles for forms generation, ™ and also can study the make-up of the screen to
arrive at a_ COI!IYIOXI megsurpm_ent.. If you want, it can alsg identify who did the job.
Now, this is not such a hoi idea -'in most other disciplines these measurements “are
indeed done. Comparative data on the performance of individuals may be more draconian
t.I:?ulwe could bear, but of classes of personnel (trainee, advanced, expert) may be very
u .

Commercial software specialists who do development work by contract would find this very
useful as a basis for charging, as indeed would internal corporate development centers who
would then have a practical basis for cost distribution to client departments.

SYSTEM INVENTORY

Now we come to the heart of our toolset. As with a manufacturing product data management
stem, our CASE tools will allow us to keep all system specifications in ome place. where
e developer(s) can all access it uniformly. In ~terms of Data Dictionary, this is not

such a novel concept - but for the other items, it’s quite uncommon up to now.

We will look at cach of the four categories of information retained in _this repository
shortly. ~The System Inventory can only be useful if it is accessible interactively for
gystem designers (note that we don’t say programmers).

Adding, editing and manipulating specifications requires a _very active interface comm
ﬁem to dgcsa ﬁhewlzelignqu' cl:“ beltlclll. Ayday in dthf.t%llfe an ag;lyst or pli_ ammer

ra a X ou spend little or no e usin -screen
cha?agc?cr-mode %ditof&l: t'ile &g‘rlkbench &%wnts yourpesl to you in a formatted agd osgm.liscd
:vay. As soon as an item is added to the inventory, it's available for amother designer
0~ use.

A good workbench will provide standard objects, from which you can derive further
standards of your own (such as standard screen and report layou:;). Objects can thus
"breed", thr "same-as-except” derivations, and the components a target application
system can come together very quickly.

CASE - A Way Out 0174-9

Progressively, as you degcribeisytglary diessiq!l:g,h !ou can refine -and enhance it. Alteration of

sp:.c ications organised in th -years ahead of reading source code to locate
where changes must be made. Because our tool has a very active inventory, the effect
changes proposed can be detected and propagated quickly.

Documentation of design, long a despi task of pr mmers, becomes a task of attachin,
an ixlmnotatigy tto ourqobjec%a" des%ribing only ‘;lm! makess' it different from any othe%
similar object.

The SI thus forms a coﬂrlete design _ specification for the target Application, or in
mnnfamn::g tims, a *B b?:’ Materials”. ul ﬁd htie at:y q:lnufaqtqmg product ggm
managemen m, you can gbtain_ very usef! ail sion-making: where
is tln% dala%gefd gwd? what if l'yextend its %o'? ?‘\ bill materials can be

'expl " to show down to the lowest level all components and sub-assemblies.

Productivi ins in _analysis of change effects and in re-use of standard objects are
quantum, ‘yﬁscatots of 10 toy20 in this :gea are not uncommon. ovlects a

A designer familiar with the System Inventory becomes concerned only with differences in
mts - designs produced by others aré thus accessible, and ° transparent, ing

itenance a process that is not as arduous as poring over listings. Breaking a problem
application down to detect a_ fault requires no progﬁvm libraries, no | listings, no
programmers’ notes - you break it o&en in the System entory, and examine the component
objects, self-contained pieces of the design.

Because the whole design is available to all design staff, division of work to specialists
becomes a simple matter, for example into screens, reports, processing, structure.
Measurement of progress (even in the absence of etrics) 18 facilitated - countin

0gré:
components at least gives an objective measure, Try comi up with a simple an
repeg‘t’able way to estilglate the pem’:ict complete of a sgnce-cod:g pro%tam! P

And of great importance, "programming style" becomes minimised in _impact. The "software
Picassos'.p:mon p?:s may p&s pertut%.ed lyby that - we believe thatpaonr own style is
outstanding, and want to leave our signature on our works of art - but we can’t stand
maintaining code of others, use they arc never as competent as ourselves. The wor
*elegance” turns up frequently when programmers are describing arcame coding problems.

We will now examine the contents of our System Inventory, and how it helps us produce
better systems faster.
DATA DICTIONARY

This is a reposito: "Data about Data". Data_ Dictionaries have been around for some
time, most v]::?ldot? C‘gl' one, HP 3000 users even have l: o?ce. 8 °

The Data Dictionary keeps all we need to know about data in an accessible location, and
all developers use the DD to reduce redundancy and error in their use of data items. The

information kept here is fumdamental or ~describing th ropertie: ta items,
otgnnniutiotnalp defining ' relationships, — and physical describing For cxample disk - data
management.

In a CASE environment, where re-usabili is a major objective, and where the properties
of a data item are part of the "object definition", wé needpfo know a whole lot ml:)rel?e

Added to the usual descriptive information in the DD, such as Iden nam and
I , etc, we also wgnt to 53?“ other operties, that w-# .;e (avai&)ﬁl.ety f:’ our
application. So we also want to know headings for use in reports and displays (a
one-character code with a_long name might ‘;nsufy a short heading); security or ways to
idontify cteati/dxapdate/re:fi acee?s; anges for automatic input validation; tables again
for mmput validation; ting for input and output; lochn‘% L ﬂmred to prevent
simultancous update by two transactions; defaults when not filled-in; HELP to

CASE - A Way Out 0174-10

input if the wuser is uncertain; structure if an entity is t of th tity;
sab-ficlds if an entify has them. " cntity is part of another entity;

This is not an austive list. The important point is that in opr ideal toolset, all of
these are igmpen?gl d‘_tfnq data item, agd you,pdo not have to c e' ’t!x%t:n tgo haveathem
available your application. If the data item is accessed, all its properties are
automatically ° there.

Because defined data about data is all in the inventory, useful information can be given
online or off-line to the designer. Decisions Support. is given by cross referencin ;
whg:ﬁ;'used; search and retrieve. Defining new data objects is rapid with "same-as-excep
ac .

Maintenance happens faster and with better results - because the designer mnkil}g a_data
ange can inspect the ripple effect of that change. Much maintepance €
applications can be carried out simply by selecting and modifying a simple data entity

inition (for example ranges, editing, prompting, P).

The ultimate beneficiary is the application user - data items are presented, prompted and
andled more as he intended, when he first explained to the designer of _the existence of
the items. He gets consistent treatment from his application - because editing,
validation, prompting, annotation ar always the same, rather than a different
programmer’s interpretation each time.

DATA VIEW
Defining the Data View is the process of telli our CASE toolset how the User wants the
application _to fook, and to sopme extent, fee.y From the on-?ngne viewpoint, this is the

layout of Screens, the way exceptions and errors are handled online, th% nature of user
prompting, and menus.

For off-line operations, the layout of reports is part of the data view.

And navigating through it all is also &;ﬂ of Data View. What's different from
traditional programming is that we store standard and specn}l gat? Views in l&e System
Inventory, as ~objects for mana and maintaining. = All the facilities of the “Data
Dictionary are available for comstructing the Data View - headings, edits, standard data
validation, and so on. ~ And because we've defined data entity relationships, associated
data items can be mapped info screens and reports together (i.c. groups of elements are
presented together for input/output).

Now we should also attach to our Data View objects some other information, mainly a
reference to special rocessmtg, if any (such as related-item validations, _for example,
three input fields t have to add uﬁ_to 100), and, of course, P describing how an
what to do at_ a menu or screen. is approach separates screem proces from the
driving transaction - and again makes maintenance easier by breaking e ove
application into manageable "chunks".

You should have tools in ¥our Workbench with which to define and edit Data Views, rapidly
re-use existing componen s((same-as-except) and with which to inspect and adjust the

actpal a; ran t
cog?- ppearance bt

1 c.g. screen painting). You should never have (o enter
inspection.

What are the benefits of scparately defining Data View? Because it's here that 80% of
user_acceptance problems occur, then by reviewing your design tzlt.hdt.ll.e user, BEFORE the
e

tougher part of = design begins (processing ou can_adjust esi even ore the
us:?;dv%; ?es. I?l is séven(l;lonh ctg'sideyting gnvm]g“ the user lixg’ilt’ed access to this
r e desi

ign to make the minor adjustments or in the online guidance themselves
HELP text, otc). ™ e g

CASE - A Way Out 0174-11

STRUCTURE

The advantage of CASE’s object-oriented approach is the separation of the desired
application into components which are easier units to manage and maintain than programs.
Systems built in_traditional progammmg methods rareele have a _ clear architecture or
structure, with the consequence that a great deal of elfort goes into laboriously writing
code to facilitate navigation (menus, related transactions, etc); and to handle the
interaction of data management (database and files), mam‘plﬂauog, and data dpresentauon
or Data View). What is odd about this is that almost all of this has been done_ before,
ut only sometimes do we take the trouble to establish re-usable code to make it easier
the next time.

Eater CASE, in which a catalog of standard structures for all standard programming logic
is already available, eliminating the need to program it. This does not mean that you mow
have to manipulate Cobol with the aid of copy-books.

CASE gives you, once again, objects which are pre-programmed structures for System
Management ‘(menu tree structures, for example), applications (wheée the component
transactions are defined), and transactions emselves (online and batch). These
structures can be thought of as models that you select, manipulate and customise through
parameter settings.

use, Take example an online ‘"browse" throu; historical records. e select a
"BROWSE" transaction model, and proceed to §pec|f¥h e customisation necessary to make it
unique for our user. Thizs would involve namin ¢ Data View(s) attached, and the Data
Management_required (data base(s) and/or files); naming the ocossing objects (next
section) to be invoked at the sockets in the transaction; and the relationships between
the transaction and the application, and other transactions.

Within_each type of structure, all the management is provided automatically model in
P A ! ovide,
ry

What you get automatically is management of database activity, function key recognition
and action, correct entry point and initialisation, correct housework at end, management
of a%gropnate HELP to ‘the right point at the right time (carri in from DD and DV), and
sensible error handling.

I's akin to sclecting standard foundations, columns, bearers, partitions and roofing when
designing a house.

Now we benefit in design and maintenance by isolating system na\ﬂgation and transaction
logic problems or changes to parameters, rather than having to handle source code and Job
Control Language. Our user is happier, because getting into, around, and out of a system
is always the same, regardless which system it happens to be. Peculiarities and

quirks can are somefimes amusing, often downright annoying, are a thing of the past.

PROCESSING

Processing, or calculation and data manipulation logic, can also be reduced to components
of a structured application suite. _The component, or “logic object’, is a sclf-contain
and re-usable e%ystem Inventoxz .item, with _associated, properties. e nature | _of those
sropeynqs is_defined by the designer, but the properties include, besides an identity: a
escription_for the original and subsequent designers of pu and technique employed; a
definition of the error handling (e.g. display message, re-set work areas); the work area
or common arcas that the logic accesses; linkages to other processing logic objects,
depending on success or failure; and other possible properties.

of co%"seec’t the actual data manipulation and calculation logic itself is also a property of
e object.

In any CASE environment, it is almost imgossible to climinate the need for a_high-level or
macr:) deftmmon I age. Our idealtll CAl E_toolset mclndest)m mteractnv:. edl(orit? a.ll,]%w

0 enter new i T CO| other c (same-as-exc artin, nt. e
%&:"'m must _include %‘:(nrge.s topyensnree tﬁt t(hs: fo;iscqnse%yntag&c:ﬂ; co%rec, and that
we work with real data (defined in the DD).

CASE - A Way Out 0174-12

The CASE .mgthodolog relieves much of the tedious coding chores from the designer, throt:gh
its Data Dictionary, Data View and Structure facilities. So it’s probable that 80% of the
deugn coding effort will be expended in this part. Our CASE Process Definition LanFuage
must therefore provide a ve% high {evel of né#ro capability, reducing to a few keystrokes
what normally requires a substantial coding ort.

Eklm }:ighest-skillegy anlalysts in yon;ed installatitin ca;e p ve in CASB:“ ble form tlheir
of acc fie . 8 n
;fence‘f aroun.t:l’ssn piet:ee szf T&'ﬁ:, i‘: bec%enfzgmgmpler ‘gal:gd oui{, nndetsta'; ??, ulilssepitsans
earn from i

Again, this separation ke int far simpler. = You do not have to be lhé

originator, nor have any written manuals present, to be able to isolate a groblem piece

logic and fix it. _And in development, the accomplishment of a logic object or process
inition means that you need never handle that code again,

Contrast this with traditional programming, in third or fourth generation language.
Construction of large and complex programs tends to be an iterative cycle of edit, compile
until clean, add more com lex:t{i. ven parts of a program that are running OK get
compiled again and again. Sometimes, the subsequent re-editing messes with code that was
running satlsfaetorﬁ;.

Once again, it’s gointed out that the chief beneficiary in the end is the uwser - who gets
a better response from DP for maintenance and new system development.

PROTOTYPING

We now leave the System Inventory, at least in regard to, ,changing its contents, But
Prototyping, a proven” technique emplgyed by many for verifying design, can participate in
the ST as well in our ideal CASE environment. | . A e
i we did not get the look of our system right using the Data View facilities, we can
generate a pmto%yp‘gll application and actually run the application. When does a prototype
stop being one? c answer is probably, when you feel like the design is nearly finished.

To_ truly prototype what the finished application will logk anli feel like, and picture what
a day in the le of the user will entail, you have to able to go from transaction to
transaction as the user would, not by starting Data En under Formspec. The user needs
to isge, and you also, what the screens and reports look like when there is data appearing
in them.

In our CASE environment, thercfore, you can check the I=ok in the Data View parts of the
workbench, as well as the prototype.” But for the feel you need to start the application
from the Operating System, as i ‘"real life".

Which is why, the proto! is best made as the word intended - not in some special
make-believe” enyironment ‘(such as by using dBase), but _is in fact the first effort from
the toolset, and in fact is the first reviewable version from the code generator (mext).
As with verification of the look in Data View, up to 80% of rework can be eliminated from
the post-delivery phase if you do this phase t. And that makes us all happier.
CODE GENERATOR

Ideally, you should use the code genmerator to make the prototype, because then it is a
trae ~ prototype.

Why a_code generator? Its not the only choice, there are quite a few CASE environments
today integrated to a 4GL. But 4GL’s often give real performance problems in h

transaction-intensive systems. A code generator that makes compilable code gives you some
fringe benefits.

CASE - A Way Out 0174-13

First, if generated code is _rec third generation _la; such as Cobol
Fortran, tllgen you maintain mdepen ence of develgpment emronnlgi:‘:m your GL code ?s stlll
maintainable; second, distributing a lcanons a _4GL in evinbly leads to high
cllarges for ' runtime _systems; distri bunon cf conpiled 3GL code _gives a_ large
of protection agamst sgymg of proprietary source and reduces size
apphcanon libraries on smaller disk™ systems.

A fundamental assmnﬁ:lon here is that, because the CASE tools are integrated, the Code
Generator can read the specifications from the SI.

The Code Generator makes more than just executable code - it should also create source

code, management schemas, initialise databases, build screen forms (e.g. VIEW), write

fhe imkmg b control, bind messatge and HBhP tfn files into the whole, nnd act on your
structions or organization e executal ibraries (USL’s etc).

A nnmlglr dof benc;ﬁts ac::metz,:ro% thgd CAsnllzy Cscide Genelator. Rggfble and corrcct co&i}e
ner oes not hav - o ications

5? oﬂ ﬁ::mp?le ovel? A'ﬁ over becolm:s8 less alent. CASE de :§ners don‘

feel the need '.h programmers do, to get one program riect before going on the next

one. In the CASE environment, you could deslgn weeks and never generate or compile in

all that time. Then, as you get to prototyping and refinement, you begin to need to
generate.

It becomes possible, and I have wen it, that conten(ed demﬁn staff schednle all their
generate/complle activity for th ck-shif more ‘g lesign ,;o
mply work - with the mteractlve (ools rongh the day,mi:ypassmg e, edit/compile
tﬁlrammers cycle with it’s trips o the printer, sessions with spook, and “just ome more
change and it will be right". Less erratic, unscheduled, and CPU-iniensive activity

makes for good response times.

TESTING

The antomation of Tes is a late-emerging part of CASE. There are some tools available
at allow you to automate an intetactlve terminal session that signs on, enters

transactions, “creates reports, deliberately makes mistakes, and so om, according t.

ownt scripts and then gves you a report on what was different from the last ume it dld

i

Specification of standard test procedures like this is vitally interesting to software
package developers, or to those with colossal user populations.

Yon could check for code that was never entered (wm do we need it? Maybe our test was
inadequate, or we have a logic error?), and the ndlculous values for input ("I
never would have expected a user to enter minus 5 for the mon

Another interesting area we want for our ideal toolset is an extenston of the Data

Du:tlm y tfo descrilﬁ the %:ngcles ldddaut‘a by e} ber of smsléedud hcatlon
r exam n rder de ines

order?eader; the nsuale d:stnbuuoneofulseutierslsm eoﬁAME tp eld of a%lAeMB & ADDR|] SS

group.
A test data uld the truct full di bases based th tatistical
o?:mu gen pr f'zf y%u t%n re:to.n ¢ I’“(‘;n of hg"ilarde:le spa:rs lesli:g iss t: g:t

enough reahstlcal hlled records to make all screens and reports look as they would
when' the ugpllc&non Jhas been ‘lln :se some time. dotl; gen. to ttl’:e abl::“ to esun::te thg
response e in cation accessing_ a se with a million recos an
a g::lplex structure. ,?:;{y dagap generators can gtlo tlﬁ 8. ®

CASE - A Way Out 0174-14

DOCUMENTATION

There arc already a number of tools on the market to help us do what we least like doing

documenting our” systems. But they rarcly are able to shine light on Tgn sc behin_sd
logic that “they scan. Our System Inventory is self documenting. e designer is
disciplined more to create a small amount _of descriptive information when creating
Processing objects, where he is outsidle of the boundaries pre-structured or
special-purpose” objects.

All the pre-structored and special purpose objects (screems, _ data elemen reports,
tranuctiong, menus) have such a defin {ggic and plc)nrpgse that further manuaﬁ§ progl‘l‘oed
documentation is redundant.

ﬁ)%l active System Inventory therefore carries all its documentation within it. The CASE

set needs to provide access to the de or management reporting and designer
review. This is accon’;rplished by rea)orts and.isl:cgll‘;iries, amtlas is an ap]l))l‘i’ca(ion that should
offer choices of levels of depth and complexity.
Calling for a full set of reports describing all _structures, processing, and

messages
text, scrcens reports and data dictionary - is asking for a System Reference Manuﬁ. It's
always up to date.

Calling for menus, screens, and report layouts, annotated with the validation rules,
ranges and associated HELP text for all inpu fields and action screens - is asking for a
User’s Manual. And it’s also always up to date.

DP staff benefit - that burden of fnlh for incomplete documentation lifts from your
shoulders. Your client user benefits also - machine-produced . documentation is able to
customised and formatted - I've scen very smart manuals produced with corporate logos and
other frills, using a laser printer and CASE documentation tools.

PROJECT MANAGEMENT

These tools are not exclusively the preserve of CASE, but when you run the rest of you
development environment so well, why not underpin it with an intégrated toolset that helps
you maintain control over large development projects and maintenance? All project
management tools include a Critical Path algorithm, cfuu? the shortest path between the
start and finish points, and many include cost conmtrol an manag; t facilities.

Integrating Project Management to_ the rest of the toolset means ring progress
gcccumg. the SI) and determining if required stageiahave been g'a‘ssed yet. It also means
at Metrics can actively employed to determine, based on previous performance, when a

project will be completed.
This can only lead to trust in MIS, and more satisfied users.

S. Industry Trends

We shall now review recent developments in Computer Aided Software Engineering, and sce
whether any trends are emerging.

Technology

CASE workstations driven by pkroprietary CASE software are expected to_become a growth
area. ogous to CAD workstations, the CASE workstation will use iconms to e&sf the
selection of objects for de: activity, and wiadows to permit rapid navigation through
the toolsct, and to run te and d’eslgq side side. Some engineering workstation
vendors are already producing SE workstations for systems.

Workstations which are fully compatible with the target environment are today quite common

and the new HP 3000 LX models could be considered to be development ‘workstations for
HP3000 corporate systems. .

CASE - A Way Out 0174-15

Start-ups

Business Week reported in May that the worldwide market for CASE tools could hit $2
billion in 1992, and in the US alone, $800 million.

It’s no surprise, then, that there are many people get(ing‘ into the act. In the same
article: a San Francisco consultant sees two new CASE start-ups a day, and an analyst
reports that he knows of some 100 CASE companies, mostly less than two years old, and most
funded at more than $1 million.

Perhaps we’ll see the same explosive sort of growth that the micro started.
Standards

It only becomes interesting to attempt to establish industry standards for any new
technology once there is a discernible movement to embrace that technology by _large
numbers of J)loneers. There are no standards _yet for specification of software design,
and no standards for productivity measurement. c IEEE ~ has st ed for several years
to c%lre up with a "single perfect measure"” of software productivity, but few believe it is
possible.

What is more likely is that the new CASE technol and object-oriented design and
Pl‘ mming will permit accurate measurement of development effectiveness, but comparison

ormer methodologies will not yield any accurate figures, because the old methods of
measurement are so imprecise.

Alliances

Re ition by the computer industry that growth is stunted by the inability of corporate
clients to take full advantage of thé power of mew computers, because of the maintenance
:!mdl developdmglllt backlog, has greatly accelerated the interest of vendors in having CASE
ools available.

lowering the cost and improving the quality and service offered by MIS might make more
budget “available for more hardware purchases, and growth in user populations can only lea
to increased peripheral and capacity purchased.

Consequently, we are seeing major hardware vendors and software companies teaming up, and
manufacturers of ~discrete CASE tools getting together. Even major corporate computer
users are invited to have their say.

In 1985, fourteen leading acrospace and defence contractors formed a limited gannership
called the Software Productivity Consortium. e&r have an invited group of CASE vendors
called the Guest Systems Council, and jointly Jhey are aftempting to formulate
complementary strategies_for their fufure mutual benmefit.” The last press statement I saw
was optimistic, but nothing concrete had emerged.

Education

MIS is traditionally adverse to risk, and as a_consequence is not yet ready to embrace the
new technology. Few companies want to be pioneers, and few in corporate ‘MIS want to lead
the way for their colleagues. As Computerworld put it, we need a "hero in the
programmer’s shop".

However, a growing number of CASE evangelists such as T. Capers Jones, James Martin and
David Ymu%on are defining the CASE environment thorg:ghly, and some excellent
publications from some of these authors are available. There will probably be an increase
n the exposure of computer science students to CASE methodologies.

Cost

There is a huge variance in the price of CASE tools, just as with 4GL’s and databases,
depending on whether you’re an I mainframe user, or a small mini user.

CASE - A Way Out 0174-16

A total life-cycle CASE environment recenthlx announced for mainframe IBM by one of the
"Big Five" accounting firms, includes an IBM _PC based methodology front end at $50,000 for
a site license; a design interface for filling the repository at $7,000 per networked
micro ‘ivorkls_tatlon; and a generating/implementing back-end that costs a hefty $200,000 for
a single license.

At the other end of the spectrum, the most popular data analysis PC based front-end is

around $8,000 per co and a_fuil application development and documentation environment
can be had on ptehe H%OOO for just 538,%00. e ! o

The cost of the tools is, of course, offset by the gains in productivity, and the
com.]peutwc advantage to the corporation of having high-quality and maintainable systems
available faster.

CASE is here, and it’s growing in importance. The signs are in the industry that it is
going to reach all of us, very soon, and very pervasively.

6. Summary

We've reviewed the pressures on MIS to upgrade the quality and service, which is its
responsibility, and we've seen how executive attention is becoming focused, on software
development productivity as being at least part of the problem, where it exists.

One of the possible strategies to help us drive towards MIS quality and service objectives
has been examined up close, and onme ideal set of tools has been proposed. The ideal set
of tools would transform our development center from a craftsmen’s workshop, into a
professional software engineering ter, with ¢ advantages already enjoyed by
engineers in other disciplines.

And finally we have glimpsed a few of the developments relating to CASE in the computer
industry, which augur for a healthy period of penetration and growth for this technology.

Attendees are invited to discuss the CASE approach further at the RAET Software Products
exhobot, number 1015.

CASE - A Way Out 0174-17

	CASE-A Way out of the Software Trap

