
Reducing Migrating Secondaries
Earl Waller and Mel Pearce

INLEX, Inc.
P.O. Box 1349

Monterey, CA. 93942

If you are like us, you have read a lot recently about
IMAGE and its 'myths', and you know that there can be
performance problems associated with migrating secondaries
in an IMAGE database. And like us, you follow the
recommendations to use ASCII key structures and prime number
capacities. And, finally, you expect and accept some
performance degradation as the database fills up and
schedule your database reloads over long weekends. But what
do you do when the performance becomes unacceptable?

INLEX provides library automation solutions. Design
considerations led us to use a combination of MPE flat files
(accessed randomly via pointers), KSAM files (for partial
key searches and sorted access) and IMAGE databases (to give
us fast known key, multi-record access). As relative
newcomers to IMAGE, we read all of the available information
about IMAGE database design and wanted to follow all of the
recommendations.

Due to several restraints, we found that we needed to
use a binary pointer as a key. We discussed the problem
with an IMAGE expert who suggested that we use a six
character ASCII key as the binary pointer but store it as a
binary value. He thought that this might give better
results than using a three word binary key.

Our customers routinely experienced performance
variability when loading bibliographic records. A typical
bibliographic record requires two variable length flat file
records, eleven KSAM records, and three IMAGE records. Load
rates differed across our customer base from one to thirty
records per minute and degraded severely as the databases
filled up. This seemed to follow very closely the
bibliographic record load rates of other vendors in our
industry and, because we had been told that KSAM was very
slow when rebalancing its trees, we didn't believe that
migrating secondaries were a serious issue.

The real problem surfaced when we tried reloading one of
our customer's IMAGE databases. Using a dedicated Series 52
computer, we initiated a database reload of an IMAGE
database containing 141,000 records. We aborted the not yet
completed computer run after two and a half weeks of
dedicated time with the realization that we had some serious
migrating secondary issues to resolve.

Reducin} Migratin} secxn:laries 0184-1

About this time there were numerous articles in the
literature exposing myths about prime number capacities and
integer keys. However, these articles failed to explain how
to analyze a database, how to tune a database for
performance, or even how to know that the database is
optimum.

Once we were confronted with the problem we realized
that we needed an analysis tool and a methodology to answer
these questions. We searched for tools to combat the
problem but were unable to find anything that promised
sufficient insight or a clear solution. So, we decided to
build our own tools.

We obtained the IMAGE hashing algorithms and implemented
a program that would read an IMAGE master and chart the
distribution of the hashed keys. The program also gave a
measurement of the number of primaries with no synonyms,
with one synonym, with two synonyms, etc.

Needing more disk to hold the customer's database for
testing and realizing we would be making hundreds of disk
intensive runs, we obtained a 132 megabyte ram disk from
Imperial Technologies1 • We were able to configure the
device as an HP 7914 disk drive, allowing us to perform high
speed disk i/o, eliminating seek and latency time.

With our customer's 141,000 record database and our new
program, we cycled through the automatic master hundreds of
times using hundreds of different capacities. Because the
program only totaled secondaries and did not migrate them,
it ran in a fraction of the time needed to reload a
database. The program generated the calculated hash
distribution for each run and displayed the results in a
series of bar charts. Figure 1, on the next page, is an
example of one of these bar charts.

Analysis of the charts showed that many of the keys
hashed to the same address and/or the same general area in
the automatic master. This created clusters and synonym
chains, many of them quite long. When IMAGE computes a
synonym it adds the entry to the end of a synonym chain or
creates a new chain and attempts to place the new entry in
an empty slot in the same block of the file. When the
existing block is full, IMAGE places the new entry in
another block, causing an overflow. The computed overflow
block count showed that the empty slots in the hashed block
were filling up and that IMAGE placed the entries in
additional blocks, sometimes after very long serial searches
for an empty slot.

Reducin'J Migratin:J ~ies 0184-2

Figure 1 - Sample Bar Chart Report

Data Base = AUTHOR.DBS
No. Name Type BF Entries Capacity
1 AUTHOR-KEY A 28 141462 324001

Data set number 1
Search item KEY-POINTER

Item type X
capacity 190973

Blocking factor 28
Entry count 141462 (74.1%)

Entries with 0 synonyms - 50960 36.0%
Entries with 1 synonyms - 33660 23.8%
Entries with 2 synonyms - 17979 12.7%
Entries with 3 synonyms - 12708 9.0%
Entries with 4 synonyms - 9800 6.9%
Entries with 5 synonyms - 7404 5.2%
Entries with 6 synonyms - 4347 3.1%
Entries with 7 synonyms - 2448 1.7%
Entries with 8 synonyms - 1197 0.8%
Entries with 9 synonyms - 640 0.5%
Entries with 10 synonyms - 209 0.1%
Entries with 11 synonyms - 96 0.1%
Entries with 12 synonyms - 0 0.0%
Entries with 13 synonyms - 14 0.0%

Overflow block count 729
Total block count 6821

17780+ *
I *
1**
1**

13335+**
1**
1****
1****

8890+****
1****
1****
1*****

4445+***** *
1****** ** **
1*************** *********** * ****************
1**
+----+----+----+----+----+----+----+----+----+----+

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ReduciJ'g Migrating secc:maries 0184-3

When IMAGE hashes to a slot occupied by a synonym, it
moves the existing synonym entry into another empty slot,
adjusts the synonym chain pointers, and places the new entry
into the vacated slot. This is called migrating a
secondary. It also can be very disk intensive.

The IMAGE hashing algorithm is a function of two
variables: the key type and the master dataset capacity. We
modified our analysis tool so that we could analyze up to
fifty different capacities in one computer run and summarize
the result into a single table. The results of this series
of tests showed that prime numbers are not necessarily the
best capacities to choose. Now we could see the best
capacities for the data in the databases. However, the
occurrence of secondaries in the best selection was still
larger than we could accept. Figure 2 shows that, for these
tests, the number of entries with zero synonyms was not even
equal to forty percent.

Figure 2

Text Key Hashing Comparison
141462 Entries (80% fUll)

PerC2nt of ¢ntrtes with Z~rosynonym~
.

TexlKey

178900178880178880178840178820

100

90

80

P 70

e
80

r
C 50

e
40

n
t 30

20

10

0

178800

Capacity

Reducing Migrating 8ecoJX)aries 0184-4

Our next step was to analyze several alternate key
structures. To do this, we created another program that
would accept input from a flat file and perform the same
functions as the first program. This allowed us to analyze
potential key structures without first building and loading
a database.

The keys of concern are the pointers to the file and a
logical record within the file. In accordance with IMAGE
recommendations, we .. originally specified this to be an alpha
key. To put it another way, we purposely avoided using an
integer key.

We chose an integer key for our next series of analysis
runs. Figures 3 and 4 show a performance comparison of the
use of an integer key versus the use of a text key over a
broad range of capacities. We observed that the integer key
resulted in significantly improved distribution, and smaller
clusters, with a significant reduction in the number of
synonyms and the length of synonym chains.

Figure 3

Text and Integer Key Hashing Comparison
141462 Entries (43% fUll)

100

90

80

P 70

e
80

r
C 50

e
40

n
t 30

Text Key

20

10 Percent of ~ntrieswith Z~ro Synonym~

324100324080324060324040324020
O~------ir------""'----""-----~----~
324000

Capacity

ReducinI Migrati.r¥j seoordaries 0184-5

Figure 4

Text and Integer Key Hashing Comparison
141462 Entries (80% full)

Integer key

· . .
Percent of ~ntrieswith Z~roSynonym~

· . .· . .

178900178880178860178840178820

100

90

80

P 70

e
80

r
C 50

e
40

n
t 30

20

10

0

178800

Capacity

We felt that we were on the right track; however, the
computer time required for the analyses, even with the ram
disk, was significant on our Series 40 computer.

We wondered if we could derive any conclusions from
comparing smaller chunks of the same data in the same
database for a range of capacities of the master set. This
caused us to make a number of runs using only enough data to
fill the master ,to twenty percent, forty percent, sixty
percent and eighty percent of its capacity.

Figure 5, on the next page, shows the analyses generated
for some of these runs. We observed that goodness for a
twenty percent full database never translates into badness
as the database becomes full. Our conclusion was that poor
capacities could be avoided by analyzing a sample as small
as twenty percent of the data.

ReduciJ'g MigratiJ'g 8econ:laries 0184-6

Figure 5

Comparison of Hashing with Fullness

· . .
Percent of ~ntrieswith Z~ro Synonym~

· . .· . .· . .· . .

8096 full (14149:2 entries)

178900178880178880176840178820

100

80

80

P 70

e 80
r
C 50

e
40n

t 30

20

10

0

178800

Capacity

By now we had developed some confidence in our analysis
tool. The real measure of its success, of course, could
only be determined by measuring the results in the real
world.

We selected the integer key and an optimum capacity and
reloaded the database at our customer site. The reload that
previously had not completed in two and a half weeks
finished in just five hours. Encouraged by these results,
we were anxious to see how these improvements would affect
our database loading process.

We selected a customer with slightly more than 20~,000

bibliographic records to load. The customer was USl.ng a
dedicated HP3000 Series 70 with Eagle drives. Load times of
eight to ten records per minute were originally anticipated.
Based on a 20 hour day of productive work (time off for
system backup) it would take approximately 28-29 days to
load and index this database.

Reducirg Migratirg secondaries 0184-7

All 208,000 plus bibliographic records were loaded and
indexed over a three and one quarter day period. It was
encouraging to note no observable performance degradation as
the databases filled.

We are now using the tools we developed prior to any
database reloads, and any time there is a design change to
an IMAGE key structure.

As graduates of the school of hard knocks, we have
formed some conclusions. It is possible to tune for optimum
performance and know when the optimum is reached. Prime
numbers mayor may not be good choices for a dataset
capacity • Two identical databases can require different
optimum capacities if they contain different data values.
Most important of all, performance and tuning is a function
of the specific data in the database, and without a tool to
examine a database there is no way to know what IMAGE is
really doing with your data.

1. Imperial Technology, Inc.
831 S. Douglas street, suite 102
E1 Segundo, CA 90245
(213) 536-0018

ReducinJ Migratirg secxroaries 0184-8

	Reducing Migrating Secondaries

