
An Approach to Debugging

by Grant W. Fletcher of The Interface Group, Incorporated, and
Kathleen A. Sachara of The Haley Corporation

Abstract of the Paper

A significant amount of effort and, therefore, money is spent debugging
systems during the development cycle and after installation.

An Approach to Debugging defines the issue in terms of development and
post-installation situations, and then goes on to present a philosophical
foundation upon which the matter may be approached to optimize system user/
system development efforts.

An Approach to Debugging also presents, in a case study model, some
tools and techniques that are applicable to COBOL programming and which
may be tailored to other languages.

The objectives of the paper are to present a philosophical approach
to debugging that may cause the audience to re-evaluate their own approach
to the task, and to share some techniques that have been applied to
the task.

Agenda of the Presentation

The What, Why, and When of Debugging.

It is always useful to define the topic at hand, and that is what is
addressed by way of the introduction to the paper. The audience is given
a definition of what the task is, and some explanation of why and when
debugging becomes a necessity.

A Philosophical Foundation.

The success, or failure of a system may depend upon the ability of a
system user and a system developer to co-operate during the development
cycle and after installation, and that co-operation itself may be
dependent upon the philosophy of each participant as it relates to the
other. One philosophical approach to the task of debugging that attempts
to optimize the user/developer relationship is presented.

Some Tools and Techniques.

The usefulness of knowledge is difficult to quantify until the knowledge
itself is evidenced in some material form. The paper presents a case
study of some tools and techniques that have been applied to debug an
application, both during development and after installation.

An Approach to Debugging - Paper #0189 Page 1

The What, Why, and When of Debugging.

Software is usually in a perpetual state of evolution. It is very rare to
find a computer programme that has been implemented, and that is not expected
to require some modification work in the future. Ideally, we hope that any
subsequent modifications to our own software are enhancements that are in
response to new user requirements or procedures. Some modification,
realistically, occurs in response to user problems encountered with an aspect
of the design, coded logic, implementation environment, or manner in which the
software is used. Debugging may be viewed as an analytical tool, a technique,
or simply the process of addressing the requirements of the latter case.

Webster's defines the term debug as a verb meaning "to find and correct
the defects, errors, malfunctioning parts, etc. inn. More specifically applied
to the job of computer programmers, this definition may be re-written to
emphasize the reality that errors may be real or perceived, and that errors
occur in computer systems. So, we may now define debugging as the task of
finding and correcting the real or perceived errors in computer systems.

The errors that we are commonly required to correct in computer software
include errors in design and coded logic, errors in installation environments,
and errors related to the usage of the software in question. Their implication
may be related to one or more of many factors.

Typically, errors will manifest themselves in the form of corrupted output
from a particular programme. Unfortunately, in our more complex systems where
data dependancies are numerous, an error may come to surface in a programme
that is some number of process steps removed from the offending programme.

Also, in today's business environment, errors can manifest themselves in
other ways. Many of our systems have evolved 1?eyond the point of being simple
procedural tasks that may be isolated in a few independent computer
programmes. Because of the complexity of our systems, and often because of the
complexity, necessary, or otherwise, of our computer programmes, user training
and the usage of computer programmes themselves may be the source of perceived
errors. Perceived errors are more difficult to address as they are often
presented as errors relating to programme output. But the perception that an
error exists arises because the user's expectation of the output from the
programme is not what the programme is intended to produce. If the user's
expectations are based upon incorrect assumptions, incomplete training, or
improper procedural responses, then an error in user education or software
usage may exist. It is as equally important to correct this type of error as
those that are directly related to the work done by system developers.

·A third manifestation of errors in computer programmes that is becoming
more critical in today's business environment. and which should be of
particular interest to programmers in an HP3000 (pre Spectrum) environment, is
programme performance. Systems may become needlessly overburdened with tasks
that may be optimized with better programme or data base design, and a hardware
upgrade is simply not available. or not economical. In these situations, if
not always, programme performance may be the evidence of errors within the
programme's logic, the techniques employed to code the logic, or it may be

An Approach to Debugging - Paper #0189 Page 2

considered to be the error in itself.

Why errors exist is more ambiguous than the fact that errors do exist, but
is of more importance to resolve. With the tools that are available to
programmers and other system developers today, .it is very easy to write and
install computer programmes. But, few, if any of today's tools remove the
potential for creating systems that include errors. So, since it is now
possible to increase the number of computer programmes produced by one computer
programmer during a particular period of time without decreasing the potential
for error in each of those programmes being produced, one may argue that the by­
product of database management systems, fourth generation languages, and other
software advances is the creation of more software errors. This is certainly
the case when the causes of errors are not addressed prior to the introduction
of some of today's tools.

Errors may be introduced to the computer system early in the project life
cycle. One of the first causes of errors in computer systems that eventually
require debugging is the communication skills of those people involved with the
initial design of a computer programme or system. Poorly co~icated

requirements, unclear or overly technical proposals, and other
misunderstandings can result in systems being developed and implemented that
never actually resolve the user's initial request.

Following the project life cycle, the next situation in which errors may
be introduced is in the development phase, or during the coding of specific
programmes and procedures. Syntax and logic related errors are a very common
source of errors in programmes, both during development and after the software
has been installed and used.

Another source of errors in programme code that is evidenced more and more
today because our systems are often one node in a multi-hardware configuration
is the way data is stored within the programme. Once again, communication, now
of the intended use of the data, either by designer to programmer, or user to
designer, may be the cause of errors detected after programme installation.

Errors that are attributable to programme performance are cases in which
the design or technique of coding a particular programme is not the best, or'
when minor sections of code require inordinant amounts of CPU time to process.
These errors can be difficult to detect without prior consideration during the
design of the software, and can usually be credited to the level of expertise
of the development staff.

Errors may also arise because programmes are developed and used in
different account structures, operated under different versions of operating
systems, or on completely different CPU's. These types of errors, typically,
are the easiest to resolve in a systematic way as each difference between the
two environments can be isolated and proven to be the offending factor, or not.

Misconceptions, and improper usage of software are usually the result of
inadequate or unclear documentation, or other training factors. When
programmes are designed, coded, and installed perfectly there is still the
requirement that the programmes be used in the manner, and for the purpose
which they were created. Documentation and training can be seen to be the
cause of many perceived errors in computer systems. The responsibility to

An Approach to Debugging - Paper #0189 Page 3

provide a sufficient level of documentation or training for the user has to
begin with the designers and developers of computer systems as they are most
familiar with the intended usage of the programmes that they implement.

A Philosophical Foundation.

Whether tool, technique, or task, debugging is often the least scientific
element of our function as computer programmers. It is common to hear
debugging described as an art, or some other subjective process, and it is too
often found that the task is delegated to our most junior staff and
rationalized as an important learning experience for them to endure. Rarely
are programmes or systems designed with any direct consideration for the fact
that the project will undergo some level of debugging during it's life cycle,
and that the implemented work from the project will itself be the subject of
some future debugging, or at least investigation of it's processing or
performance.

The reasons discussed for why and when debugging occurs have one common
element, and that one element contributes to the ambiguity and subjectiveness
found relative to the task. The ability of the user to communicate their
requirement to the system designer is the first potential cause of errors in
computer programmes. Then, the ability of the designer to communicate the
intent and specification of the programme to the programmer, the ability of the
programmer to describe and document the work that has been done, and the
ability of the user to understand the use of the implemented programme all
compound the potential for errors in the systems that we develop. Debugging
becomes a difficult task because the interpretation of each participant in the
project of what the project is addressing is rarely similar.

But, there is no good reason why debugging cannot be made easier with a
different approach to the matter. Computer scientists are the rare exception
within the scientific community who appear to assume that their work will be
functional and error free on the first attempt, and rarely design for the
possibility that ~s not. Most computer programmes are written under the
philosophy that testing will isolate any and all errors, and that the errors
that do occur are unique enough that they cannot be generalized. Perceived
errors are rarely considered to be within the realm of responsibility of
computer programmers, but usually considered to be problems that the users
themselves must resolve.

Approaching system development with the idea that debugging is a design
issue, rather than an ad hoc activity to be considered if and when problems
arise, causes programmes to be written that are easier to debug. Designing
programmes to be debugged should be a formal criteria for all systems developed
within a structured programming environment. Where possible, fourth generation
tools should be evaluated for their ability to permit the programmer to design
debugging considerations into programmes. Programmes designed and written to
be debugged are generally the simplest to debug.

Implemented within structured programming guidelines, but acceptable

An Approach to Debugging - Paper #0189 Page 4

within any standardized programming environment, this approach to programme
development inherently leads to a definable and systematic approach to the
resolution of any· error. An informal, but equally recognizable aspect of the
philosophy of designing programmes for debugging is that debugging should occur
within a defined framework, providing both the system developer and the system
user with a common understanding of how the task will be undertaken.

Once the task of debugging is placed within a defined structure, then the
procedures and techniques for investigation may not only be described to the
user community, but designed to be employed by the users themselves. Giving
the user sufficient insight to the workings of computer processes that are
executing tasks on their behalf reduces the possibility of perceived errors,
and strengthens the understanding between the system user and the system
developer at all stages of system development. Increasing the direct
involvement of the user in the debugging process also reduces the further
potential for misunderstanding during the initial stage of debugging that
involves identifying the problem and describing it in terms that are common to
both the user and the programmer.

Philosophically, and often for practical reasons, the task of debugging
should begin with the programme input and output that the user perceives to be
in error. Re-compi1ation of source code should not be necessary until the
cause of the problem is clear, and the resolution has been written into the
programme. Meeting this criteria demands that the implemented programme
include designed logic to facilitate the gathering of all information necessary
to isolate any process of the programme that may be in error. Preferrab1y,
this logic should be conditional upon parameters passed during the execution of
the programme.

The composition of the above elements presents one philosophy on debugging
computer programmes that places emphasis on formalizing debugging
considerations in the design of computer systems. Unfortunately, this does not
directly address the potential for design errors themselves, but, since the
system developer/system user relationship is enhanced through more direct user
involvement in the debugging process, the potential is reduced indirectly. The
introduction of debugging in the design of computer systems also improves the
understanding amoung all concerned parties of the intent and use of the systems
or programmes implemented.

Some Tools and Techniques.

The philosophical approach to debugging described above postulates that
debugging considerations are a critical element of programme design. This
section of the paper presents, by way of example, some tools and techniques
that help to implement a design based approach to debugging that also reduces
the need to recompile source code during the investigatory stage of debugging.

The example that follows is presented within the context of a COBOL
programme with some called routines written in SPL. Many, if not all of the
techniques illustrated may be implemented with other programming languages.

An Approach to Debugging - Paper #0189 Page 5

The discussion will evolve around the following programme as participants
develop a given case study that will be included with the presentation
materials. The following tools and techniques will be illustrated during the
discussion to give the participants some insight to their potential uses.

MPE DEBUG,
Debugging mode in Cobol,
Job Control Words,
Copy Libraries,
Segmentation, and
Proces~ timing techniques.

An Approach to Debugging - Paper #0189 Page 6

code&
mixed&

$Control nolist, source, warn, map,
$ bounds, crossref, locking,
$,verbs, quote-', uslinit
$Set X9-off
* Off-Test Compilation, On-Implementation Compilation.
$Set XO-on
* Off-SPL, On-Cobol.
$IF X9-off
$Control DEBUG
$IF
Identification Division.
Program-ide

Pgm-Manager.
Remarks.

Summary

Usage

Installation

Operation
RUN pgm; parm-

0, or not defined is normal operation.
1, is 'process-debug' (process-activity-debug).
64, is 'not UPDATING' (UPDATE-SWITCH).

Input
Processing
Output
Recovery/Debugging

Environment Division.
Copy A20b200 of A20bLIB nolist.
Data Division.
File Section.
Working-Storage Section.
Copy A20b300 of A20bLIB nolist

replacing --'$Title
--'$Actual Title

Procedure Division.
Copy A20b600 of A20bLIB nolist.
Function-Process.

Display 'Virgin programme, no functions defined.'
upon sysout.

*Include functional procedure files.
Copy A20b800 of A20bLIB nollst.

$Control list
*Segmentation.
* Capability lA, PH are required.
$Control nolist

End-of-programme Section 99.

An Approach to Debugging - Paper #0189

'- by
'-

Page 7

Configuration Section.
Source-computer. HP300048 with debugging mode.
Object-computer. HP3000xx.
Special-names.

CONDITION-CODE is istatus,
SW9 is UPDATE-SWITCH, off status is UPDATING,
TOP is PAGE-EJECT.

An Approach to Debugging - Paper #0189 Page 8

A20B200
A20B200
A20B200
A20B200
A20B200
A20B200
A20B200

*Programme.
01 Programme pic x(28) value spaces.
01 Father-pin pic s9(4) comp value O.

88 father-process value O.
01 process-control.

11 process-activity pic x(3) value spaces.
88 process-end value 'END'.

11 process-activity-debug pic x(l) value spaces.
88 process-debug value '1'.

01 flag-dialogue pic s9(4) comp value O.
88 process-dialogue value 1.

01 process-error pic s9(4) comp value O.
88 no-process-error value O.

*Programme Title.
01 Programme-Name.

11 Title pic x(40) value
'$Title

11 filler pic x(26) value spaces.
11 programme-date pic x(8) value spaces.
11 filler pic x(l) value spaces.
11 programme-time pic x(5) value spaces.

*Processing Variables.
01 fstatus pic x(2) value spaces.

88 fstatus-ok value '00'.
01 19th pic s9(4) comp value O.
01 mpe-error pic s9(4) comp value O.
01 number-out pic 9(5)- value zeroes.
01 numchar pic s9(4) comp value O.
01 passed-info pic x(80) value spaces.
01 passed-parm pic s9(4) comp value O.
01 pin pic s9(4) comp value O.
01 work.

11 work-1 pic s9(9) comp value O.
11 work-2 pic s9(9) comp value O.
11 work-3 pic s9(9) comp value O.

*CreateProcess Variables.
01 process-items.

11 items pic s9(4) comp occurs 13 times.
01 process-itemvalues.

11 itemva1ue-1 pic x(2) value spaces.
11 itemva1ue-2 pic x(2) value spaces.
11 itemva1ue-3 pic x(2) value spaces.
11 itemvalue-4 pic x(2) value spaces.
11 itemva1ue-5 pic x(2) value spaces.
11 itemva1ue-6 pic x(2) value spaces.
11 itemva1ue-7 pic x(2) value spaces.
11 itemvalue-8 pic x(2) value spaces.
11 itemvalue-9 pic x(2) value spaces.
11 itemva1ue-l0 pic x(2) value spaces.
11 itemva1ue-11 pic x(2) value spaces.
11 itemva1ue-12 pic x(2) value spaces.
11 itemvalue-13 pic x(2) value spaces.

An Approach to Debugging - Paper #0189 Page 9

A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300

*Date Variables.
01 work-dates.

11 work-date-day pic s9(4) comp value O.
11 work-date-julian pic s9(9) comp value O.
11 work-date-yyyymmdd.

21 work-date-century pic x(2) value spaces.
21 work-date-yymmdd.

31 work-date-yy pic 9(2) value zeroes.
31 work-date-mm pic 9(2) value zeroes.
31 work-date-dd pic 9(2) value zeroes.

*Timer Variables.
01 timer-1 pic s9(9) comp value O.
01 timer-2 pic s9(9) comp value O.
01 timer-debug-1 pic s9(9) comp value O.
01 timer-debug-2 pic s9(9) comp value O.
01 timer-out pic s9(9) sign leading separate.
01 work-time.

11 work-time-hh pic 9(2) value zeroes.
11 work-time-mm pic 9(2) value zeroes.
11 work-time-ss pic 9(2) value zeroes.

*Input.
01 stdinx pic s9(4) comp value O.
01 function-input.

11 function-type pic x(l) value spaces.
11 function-command pic x(79) value spaces.

*Output.
01 stdlist pic s9(4) comp value O.
01 clear-screen.

11 filler pic x(l) value %33.
11 filler pic x(l) value 'h'.
11 filler pic x(l) value %33.
11 filler pic x(l) value 'J'.

01 cr pic x(l) value %15.
01 end-continue.

11 filler pic x(l) value %15.
11 filler pic x(l) value %12.
11 filler pic x(38) .va1ue

, Please hit "Return" to continue.;'.
01 error-message~.

11 filler pic x(50) value
'Error, can not open $STDINX, or $STDLIST

11 filler pic x(50) value
'Error, JCW or CIERROR not zero

11 filler pic x(50) value
'Error, programme jew not zero

11 filler pic x(50) value
'Error, software license is not valid

01 errormessages redefines error-messages.
11 error-message pic x(50) occurs 4 times.

01 error-limit pic s9(4) comp value 4.
01 format-off.

11 filler pic x(l) value %33.
11 filler pic x(l) value 'X'.

An Approach to Debugging - Paper #0189 Page 10

A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300
A20B300

01 1f pic x(l) value \12.
01 message-buffer pic x(160) value spaces.
01 prompt-function.

11 filler pic x(l) value \33.
11 filler pic x(7) value '&a2rOOC'.
11 filler pic x(9) value 'Function?'.

An Approach to Debugging - Paper #0189 Page 11

A20B300
A20B300
A20B300
A20B300
A20B300
A20B300

Declaratives.
Debugger Section 01. Use for debugging on all procedures.
Debug-Dump.

Display,
,* * * * * Deb u g Dum p * * * * *'.

Display,

Display DEBUG-ITEM, cr, 1f.
Debug-Timer.

Call intrinsic "PROCTIME" giving timer-debug-l.
IF timer-debug-2 - 0 then

move '1' to process-activity-debug
call intrinsic "GETINFO"

using passed-info, \\, passed-parm
giving mpe-error

move passed-parm to number-out
display

'Information Passed', cr, 1f, passed-info
, 'Parm - " number-out

ELSE
compute timer-out - timer-debug-1 - timer-debug-2
display,

, CURRENT-DATE

, TIME-OF-DAY
, , CPU time (milliseconds) since last point '
, timer-out.

Compute timer-debug-2 - timer-debug-1.
Debug-Dump-End.

Display, :as:zc: _

,
IF process-dialogue then

Display 'Debug end - please hit "Return" to continue.'
Accept pin
Compute pin - O.

End Declaratives.

A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600

An Approach to Debugging - Paper #0189 Page 12

Pgm-Main Section 11.
Perform Initia1izations.
IF no-process-error then perform Processes until process-end
ELSE next sentence.
Perform Conclusions.
GOBACK.

A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600

Initia1izations. A20B600
Move CURRENT-DATE to programme-date. A20B600
Move TIME-OF-DAY to work-time. A20B600
String work-time-hh delimited by size A20B600

, ":" delimited by size A20B600
, work-time-mm delimited by size A20B600
into programme-time A20B600

Call intrinsic npROCINFO" A20B600
using 19th, numchar, \0\, \10\, programme. A20B600

Call intrinsic "FOPEN" using \\, \'254\ giving stdinx. A20B600
IF istatus - 0 then next sentence ELSE compute stdinx - O. A20B600
Call intrinsic "FOPEN" A20B600

using \\, \'214\, \'1\ giving std1ist. A20B600
IF istatus - 0 then next sentence ELSE compute std1ist - O. A20B600
IF stdinx - 0 OR std1ist - 0 then compute process-error - 1.A20B600
String format-off delimited by size A20B600

, clear-screen delimited by size A20B600
, programme-name delimited by size A20B600
into message-buffer. A20B600

Call intrinsic "PRINT" using message-buffer, \-86\, \'40\. A20B600
IF no-process-error then A20B600

call intrinsic "GETJCW" giving mpe-error A20B600
IF mpe-error - 0 then A20B600

move 'CIERROR.' to message-buffer A20B600
call intrinsic "FINDJCW" A20B600

using message-buffer, pin, mpe-error A20B600
IF mpe-error - 0 and pin - 0 then A20B600

call intrinsic "FINDJCW" A20B600
using programme, pin, mpe-error A20B600

IF mpe-error - 3 A20B600
OR (mpe-error - 0 and pin - 0) then A20B600

call "PROCESS'PROFlLE" A20B600
using \stdinx\, flag-dialogue A20B600

call intrinsic "FATHER" using father-pinA20B600
IF istatus - 0 then NEXT SENTENCE A20B600
ELSE compute father-pin - 0 A20B600

ELSE compute process-error - 3 A20B600
ELSE compute process-error - 2 A20B600

ELSE compute process-error - 2 A20B600
ELSE next sentence. A20B600

An Approach to Debugging - Paper #0189 Page 13

Conclusions.
Move CURRENT-DATE to programme-date.
Move TIME-OF-DAY to work-time.
String work-time-hh delimited by size

, ":" delimited by size
, work-time-mm delimited by size
into programme-time.

Call intrinsic "PUTJ~"

using programme, process-error, mpe-error.
IF no-process-error then

display
cr, 1f, programme-date, , programme-time, ,
, ' Normal end of programme.' UPON SYSOUT

ELSE
move process-error to number-out
string "Programme Error " delimited by size

, number-out delimited by size
, "." delimited by size
into message-buffer

call intrinsic "PRINT"
using message-buffer, \-22\, \'40\

IF process-error < 0
OR process-error> error-limit then

Display
cr, 1f, programme-date
, , " programme-time, ,
, ,Abnormal end of programme.' UPON SYSOUT

compute process-error - '100000
call intrinsic "SETJCW" using process-error

ELSE
Display

cr, 1f, error-message(process-error)
, cr, 1f, programme-date

, " programme-time, '.
, ' Abnormal end of programme.' UPON SYSOUT.

A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600

'A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600

An Approach to Debugging - Paper #0189 Page 14

ELSE

ELSE

ELSE

ELSE

A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600

Process Error "
delimited by size

, number-out
delimited by size

, "." delimited by size
into message-buffer
intrinsic "PRINT"
using message-buffer

, \-25\, \%40\
"INPUT'O"
using end-continue, pin, \1\.

call

call

move process-error to number-out
compute process-error - 0
string

"

ELSE

perform Function-Process
IF no-process-error then

call "INPUT'O"
using end-continue, pin, \1\

IF function-type - '$' then
perform CreateProcess
call "INPUT'O"

using end-continue, pin, \1\

IF function-type - ':' then
perform Command
call "INPUT'O" using end-continue, pin, \1\

call "EDIT'UP" using function-input, \80\
IF function-input - 'EXIT' OR 'END' then

move 'END' to process-control

Processes.
Move spaces to function-input.
Move CURRENT-DATE to programme-date.
Move TIME-OF-DAY to work-time.
String work-time-hh delimited by size

, ":" delimited by size
, work-time-mm delimited by size
into programme-time

String format-off delimited by size
, clear-screen delimited by size
, programme-name delimited by size
, prompt-function delimited by size
into message-buffer.

Call "INPUT" using message-buffer, function-input, \80\.
IF function-input - spaces then

call intrinsic "FATHER" giving father-pin
IF istatus - 0 then

call intrinsic "ACTIVATE" using \0\, \3\
ELSE move 'END' to process-control

An Approach to Debugging - Paper #0189 Page 15

Command.
Move spaces to message-buffer.
String function-command delimited by size

, cr delimited by size
into message-buffer.

Call intrinsic "COMMAND" using
message-buffer, mpe-error, pin.

IF mpe-error - 0 then NEXT SENTENCE
ELSE

move mpe-error to number-out
IF mpe-error < 0 then

string "Command Warning n delimited by size
, number-out delimited by size
into message-buffer

call intrinsic npRINT"
using message-buffer, \-21\, \'40\

ELSE
string "Command Error n delimited by size

, number-out delimited by size
into message-buffer

call intrinsic npRINTn
using message-buffer, \-19\, \'40\.

Move spaces to message-buffer, function-input.
Compute mpe-error - O.
Compute pin - O.

An Approach to Debugging - Paper #0189 Page 16

A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600

CreateProcess.
Move spaces to message-buffer.
Move function-command to message-buffer.
Compute items(l) - 10.
Compute items(2) - 6.
Compute items(3) - 3.
Compute items(4) - O.
Move %3 to itemvalue-1.
Move %75000 to itemvalue-2.
Move %41 to itemvalue-3.
Move 0 to itemvalue-4.
Call intrinsic "CREATEPROCESS"

using mpe-error, pin, message-buffer
, process-items, process-itemvalues.

IF mpe-error - 0 then NEXT SENTENCE
ELSE

move mpe-error to number-out
IF mpe-error < 0 then

string "Loader Warning " delimited by size
, number-out delimited by size
into message-buffer

call intrinsic "PRINT"
using message-buffer, \-20\, \40\

ELSE
string "Loader Error It delimited by size

, number-out delimited by size
into message-buffer

call intrinsic "PRINT"
using message-buffer, \-18\, \%40\.

Call intrinsic "KILL" using pin.
Kove spaces to message-buffer, function-input.
Compute mpe-error - O.
Compute pin - O.

A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600
A20B600

An Approach to Debugging - Paper #0189 Page 17

Subroutines Section 91.
SUBROUTINE-Stare-Clock.

Call intrinsic "PROCTIME" giving timer-l.
Display

"Timer
, CURRENT-DATE

• TlME-OF-DAY
• " Clock Started.".

SUBROUTINE-Stop-Clock.
Call intrinsic "PROCTIME" giving timer-2.
Compute timer-out - timer-1 - timer-2.
Display

"Timer
, CURRENT-DATE

, TIME-OF-DAY
, " Clock Stopped: CPU used (milliseconds) n

, timer-out.

An Approach to Debugging - Paper #0189 Page 18

A20B800
A20B800
A20B800
A20B800
A20B800
A20B800
A20B800
A20B800
A20B800
A20B800
A20B800
A20B800
A20B800
A20B800
A20B800
A20B800
A20B800
A20B800
A20B800
A20B800

Procedure Process'Profi1e(stdinx,f1ag);
Value stdinx;
Integer stdinx, flag;

!This procedure defines whether programmatic dialogue may occur.
BEGIN
INTRINSIC FFILEINFO, WHO, PRINTFILEINFO;
Logical array mode(O:O);
Byte array mode'ba(*)-mode;

!Input the user's profile.
WHO(mode) ;
IF mode. (12:2)-%l«session» then BEGIN

FFILEINFO(stdinx,2,mode'ba);
!If it is recognized that the user is operating a session, and that
!stdinx (opened in Initia1izations) is either $STDIN or $STDINX, then
!the programme may expect the user to respond to prompting. Otherwise,
!the user is passing input into the programme using a file, and it is
!logica11y incorrect to expect the user to respond to alternate action
Iprompting (from a recoverable exception).

IF %4<-INTEGER(mode.(10:3»<-%S then flag:-1
ELSE f1ag:-0;

END
ELSE f1ag:-0;
END«Process'Profile»;

An Approach to Debugging - Paper #0189 Page 19

Procedure Input(parameterO,parameter1,parameter2);
Value parameter2; Integer parameter2;
Array parameterO«0:79», parameterl;

«
Summary This procedure outputs the prompt, ending with "1", in

parameter 0, and returns the input user response in
parameter 1. The length of the expected response is
passed in parameter 2.

»
BEGIN
INTRINSIC PRINT, READX;

Byte array input'ba(*)-parameterl;
Array message(0:79);

Byte array message'ba(*)-message;
Byte array prompt(*)-parameterO;
Integer 19th:-O;

19th:-SCAN prompt UNTIL "1";
message:-" ";
MOVE message(1):-message,(79);
MOVE message'ba:-prompt,(lgth+l);
PRINT(message,-(lgth+2),%320);
input'ba:-" ";
MOVE input'ba(1):-input'ba,(parameter2);
Igth:-READX(parameterl,-(parameter2+l»;
END«Input»;

Procedure Input'0(parameterO,parameterl,parameter2);
Value parameter2; Integer parameter2;
Array parameterO«0:79», parameterl;

«
Summary This procedure outputs the prompt, delimited by";",

in parameter 0, and returns the input user response in
parameter 1. The expected length of the user response
is passed in parameter 2.

»
BEGIN
INTRINSIC PRINT, READX;

Byte array input'ba(*)-parameter1;
Array message(0:79);

Byte array message'ba(*)-message;
Byte array prompt(*)-parameterO;
Integer 19th:-O;

19th:-SCAN prompt UNTIL ";";
message:-" ";
MOVE message(1):-message,(79);
MOVE message'ba:-prompt,(lgth);
PRINT(message,-(lgth+l) ,%320);
input'ba:-" ";
MOVE input'ba(1):-input'ba,(parameter2);
19th:-READX(parameterl,-(parameter2+l»;
END«Input'O»;

An Approach to Debugging - Paper #0189 Page 20

Procedure Edit'Up(parameterO,parameter1);
Value parameterl; Integer parameter1;
Array parameterO;

«
Summary This procedure edits a string of characters passed in

parameter 0 for a length of characters defined in
parameter 1. Any lower case letters are shifted up.

»
BEGIN
Byte array buffer'ba(*)-parameterO;
parameter1:-parameter1 - 1;
DO BEGIN

IF t14l<-INTEGER(buffer'ba(parameterl»<-t172 then
buffer'ba(parameterl):-buffer'ba(parameter1) - %40;

parameter1:-parameter1 - 1;
END UNTIL parameter1 < 0;
END«Edit'Up»;

An Approach to Debugging - Paper #0189 Page 21

	An Approach to Debugging

