
Managing MPE For Support

Bill Sutton
Hewlett-Packard

North American Response Center
Atlanta, Georgia

I. Introduction

Imagine the scene -- a desperate system manager at 2:00 in the morning.
There is smoke pouring out of his Series 70 and the bit bucket threatens
to catch fire. Our intrepid hero calls the Response Center for help.
After ten minutes of frantic nail-biting, he receives the call· As the
soothing tones waft ac.1:oss the WATS line, what does our brave system
manager hear?

Requests for information.

LOTS of information.

What is the problem (in detail)? What subsystems are involved? What are
their versions? What version of MPE are you running? When was the last
backup? When was the last UPDATE? When was the last COLDSTART? When was
the last hardware change? When was the last software change? When was the
last configuration change? Has this mix of applications ever worked
before? Who was on the system and what were they running?
What •••when ••• how many ••. how long••. <puff, puff>.

The questions can be frustrating at times, but all of them are necessary.
To determine the cause of a problem, support personnel (whether hardware,
software, or business) need to know the environment of the problem. There
are many cases (ask other system managers at SIGBar and you'll hear lots
of them) where the solution to the problem was in an obscure, cobwebby
corner that never could have been searched without a complete set of
answers to the endless questions above.

We can't get rid of the questions (of course, someday HP may develop an
ESP interface option for PICS, but that's a future and we're not allowed
to talk about it). The best we can do is to speed the process of getting
those questions answered.

How can we speed that process? Unfortunately, until that ESP device ~ets

to release 2 (Read-System-Mind-MIT), there is little we can do from ~he

Response Center -- keeping a local database of customer configurations
lags actual customer changes, dialling in can take as long as getting
answers to the questions on the phone.

2023-1

There is good news, however. There are techniques that can be used by the
venerable and wise system manager to keep the information most often
needed both up-to-date and readily accessible. Of course, first she needs
to know what information to have and how to get it. Then comes the arcane
rituals of job streams, gold book updates, low mumbles of the magic words
"vuf" and "vuti, II and all manner ot trivia which up to now was passed
down only in secret circles from grizzled system manager to wide-eyed
innocent young assistant system manager.

No more! For at risk to my own life from the SPASMP (Society for the
Preservation of Arcane System Management Procedures) I will reveal the
forbidden secrets of:

Getting Fundamental Op~rating System information,
Getting HP Product information,
Getting Patch informati~n,

Getting Error information,
Keeping System Activity information,
Keeping Application information,
Locating Important Tapes and Configurations,
and Tracking Backups and Coldloads.

II. Definitions

Before things start humming, it would be nice to make sure we are all
talking about the same things when we talk about Support, System
Management, and MPE. All of the above words or phrases are subjective;
they have a slightly different meaning to each person who uses them.

Support is the most broadly-based term used here. Taken to extremes,
every activity geared toward keeping a system up and running can be
considered support -- including the people who run the vacuum cleaner in
the operators' lounge. This is obviously too extreme for our purposes,
unless we want to be here until August 1990. For use in this paper,
Sup~ort will be defined as activity which keeps the hardware and
Fundamental Operating System software functioning so that applications
may be run.

System management is another sticky term. There are basically two types
of system managers -- the administrative manager (in charge of purchasing
and budgets) and the technical manager (in charge of bits and bytes).
Sometimes both types are rolled into one. In our case, the System
Management activities we are discussing are those performed by the system
manager who spends his days with his sleeves rolled up and his fingers
poised on the keyboard. In other words, these techniques are used to help
discuss technical problems with technical support personnel.

Finally we get to MPE. Confusion reigns here, as we have MPE V (the old
new pperating system), MPE XL (the new new operating system), and MPE VIR

2023-2

(the new old operating system). Suffice it to say that unless otherwise
stated, the procedures here refer to MPE V systems and should also apply
with minor changes to MPE V/R systems. There will be MPE XL examples
scattered through this paper as needed.

All clear? Let's continue on to ••.

~II. Vital Information

Vital information covers all those things you will almost always be asked
to provide (system model, operating system version, etc.) Each piece of
information is treated separately, with a few words on what it is, how to
get it, what it is used for, and how to keep it up to date.

FOS VUF: Sounds like a French pastry, doesn't it? Actually, this is the
Version Update Fix of the Fundamental Operating System. The Fundamental
Operating System is all the software that comes with the system from HP
at no extra charge -- this includes TurboImage , KSAM, Sort/Merge, the
command interpreter, the file system, and many other modules. Version
Update Fix is the version of the software and/or the operating system -­
so called because it is in the form V.UU.FF (Where Version = G, Update =
A2, Fix = 04 {G.A2.04) for instance). The main VUF for the operating
system is found on the SHOWME command:

USER: IS1751,BILL.SUTTON,INTEREX (IN PROGRAM)
MPE VERSION: HP32033G.C2.02. (BASE G.C2.02).
CURRENT: THO, MAY 12, 1988, 8:54 AM
LOGON: THU, MAY 12, 1988, 8:36 AM
PROGRAM'S CPU SECS: 10 CONNECT MINUTES: 19
$STDIN LDEV: 24 $STDLIST LDEV: 24

The FOS VUF is the version you will be asked for most often. KNOW IT
WELL. Often, a particular FOS VUF will have a name associated with it
(G.02.00 is U-MIT, for instance). Always use the exact version number
from the SHOWME command.

The scheme used for setting up the FOS VUF seems a bit strange until you
get used to it. As a special added bonus, here is a quick rundown on each
section.

The V (version) is the BASE RELEASE identifier. Versions of the OS with
the same first letter will be based on the same tables layout, internal
structures, etc. A change in the first letter signifies a major change in
the OS direction. The most recent example would be from MPE IV (C.xx.~x)

to MPE VIP (E.xx.xx) to MPE V (G.xx.xx).

The U (update) is the MIT identifier. A change in this number/letter
combination signifies changes to particular modules of the OS which may

2023-3

or may not affect the entire os. An example of this would be the change
from T-MIT (G.Ol.xx) to U-MIT (G.02.xx).

The F (fix) is the DELTA identifier. A change in this number signifies
patches integrated into the release, new products, and/or new versions of
old products.

What makes all this confusing is the fact that, in the past, patched
versions and special versions of operating systems have been indicated by
adding letters to the VUF (for instance, Q-Delta-2 was C.Ol.02 but the
Q-Delta-2 Product Tape was C.Bl.A2). Rest assured that this won't happen
again until the next time it happens.

For MPE XL, things will be different. Each position in the VUF will
represent a particular set of changes and the numb~rs will be sequential
(O-9,A-Z). We might visualize an MPE XL VUF as M.C~,PN, where:

N: NL BUILD or POST-MR BUILD. This is a new creation of the Native
Library either for special customer requirements or to integrate
last-minute patches after the software has been released.

P: PATCH BUILD. This is the normal 'fixed in the next release' next
release. It does not include new product& or enhancements.

R: PRODUCTION RELEASE. This is a release which introduces new
products or enhancements to current products. This type of
release would also add support for new peripherals and software.

C: CORE RELEASE. This release contains major changes to the OS,
TurboIMAGE , or datacomm. A core release will increase the
functionality of the product changed.

M: MAJOR RELEASE. All bets are off, we rewrote a whole bunch. This
position will always be a letter.

PROPUCT VUF: When your question or problem involves a specific product,
it is the version of the product itself that matters. All HP software
products (in other words, software that has a separate product number
than FOS) have separate version numbers. Most third party software will
also have a version associated with that package and/or individual
modules as well. For HP' s products there may be program vers ions, SL
routine versions, XL routine versions, and overall versions.

For most products, the best way to get the version number is to run the
program and look at the banner. It's usually a little tough to run an SL
entry, so HP products with SL version numbers provide an interface you
can use to get those numbers. Let's look at TurbolMAGE as an example:

:run query.pub.sys

2023-4

BP3221bC.OO.05 QUERY/3000 THO, MAY 12, 1988, 8:57 AM
COPYRIGHT HEWLE'rl'-PACKARD co. 1976

>vers

QUERY C.OO.05

IMAGE PROCEDURES:
DBOPEN C.OO.30
DBINFO c.oo.26
DBCLOSE C.OO.28
DBFIND C.OO.15
DBGET C.OO.29
DBUPDATE C.OO.15
DBPUT C.OO.20
DBDELETE C.00.20
DBLOCK C.OO.27
DBUNLOCK C.OO.27
BIMAGE C.OO.27

TURBOlMAGE PROGRAM FILES:
DBSCHEMA.PUB.SYS c.oo.28
DBSTORE.PUB.SYS c.oo.24
DBRESTOR.PUB.SYS C.OO.OO
DBUNLOAD. PUB. SYS C.OO.OO
DBLOAD.PUB.SYS C.OO.OO
DBUTIL.PUB.SYS C.OO.17

>e

END OF PROGRAM

If your product versions are different in any way from those shipped on
the SUBSYS tape, we will want to know! In almost all cases, a patch to an
HP product or SL segment will change the version number.

For you datacomm folks, you may see a slightly different version format.
In addition to Version Update Fix, you will also see an Internal Software
Level (I) listed for each individual part of a module. This level is NOT
compared with other parts of the module to determine module compatibility
-- in other words, we do not put out an error or warning if the Internal
Software Levels do not match. We do put out an error or warning if the
Version, Update, or Fix levels do not match. For instance:

run nmmaint.pub.sys

NMS Maintenance Utility 32098-20010 A.Ol.03

Subsystem version ID's:

2023-5

Node Management Services 32098-20010 module versions:

SL procedure:
SL procedure:
SL procedure:
SL procedure:
SL procedure:
SL procedure:
SL procedure:
SL procedure:
Program file:
Program file:
Program file:
Program file:
Catalog file:

NMVERSOO
NMVERSCSL
NMVERS01
HMLOGSLVERS
NMLOGDATAVERS
NMVERSo4
NMVERS05
BFMVERS
NMMAINT. PUB. SYS
HMFlLE.PUB. SYS
NMLOGMON.PUB.SYS
NMDUMP. PUB. SYS
NMCAT. PUB. SYS

Version:
Version:
Version:
Version:
Version:
Version:
Version:
Version:
Version:
Version:
Version:
Version:
Version:

A0103023
A0103024
A0103000
A0103010
A0103014
A0103001
A0103000
A0103002
A0103005
A0103006
A0103016
A0103043
A0103004 .

Node Management Services 32098-20010 overall version = A.Ol.03

As you can see above, none of the Internal Software levels match for NMS.
However, since the VUUFF portion matches, the overall VUF is consistant
and therefore the software is consistent.

Appendix A contains a partial list of HP software products and how to get
their version numbers.

HARDWARE: For hardware-oriented calls (as in the smoking system example
given above), the most important piece of information you have is the
serial number. A serial number is required whenever the Response Center
has to place a call to your local CEO.

Oft~n, contract information is also useful. If you are familiar with your
support contract (hours, response times, etc.) it will help you make a
more informed decision about whether or not to call the CE out at 3:00 AM
for a down printer.

To combine the two, make a ccpy of your hardware support contract. Write
the ldev number next to the serial number of each device listed on your
contract. Keep this copy in your gold book.

PATCH INFORMATION: Suppose we have a segment (or a SOM for you XL fans)
that doesn't have a version associated with it. How do we find out if a
change has been made?

2023-6

Each segment has a unique checksum associated with it (quite by accident
in the beginning). Nowadays we store the checksum as it was at compile
time in the patch area ot each code segment. There is a program in
te1esup called CHECKSUM (amazing how they came up with that name) that
will extract the segment checksum and compare it to one that the program
calculates. There are three reasons tor using this program:

1) IF the checksums match (stored and calculated) we have a compiled
version ot the segment. In other words, nobody went in and
mucked about with SLPATCH and changed the segment (of course,
they could have changed the checksum once they changed the
segment but it's doubtful).

2) IF the checks..dlls do not match, we either had a binary patch
applied or sODiething trashed the segment. Good time to do an
update.

3) We can compare the checksum as given by CHECKSUM to the checksum
of a patch for that segment. If they match, the patch has
already been installed.

Another way to tell (not as accurate but easier to read) is to look in
the MPEMIT33/HPSWINFO file. All install jobs for patches from IND and CSY
now include a section which places the date/time/patchid in the MPEMIT33
or BPSWINFO file. This info is at the end of the file.

Why is this not as accurate? It happens when the install job is streamed,
not when the patch is installed. If the install job completes
successfully but nobody ever does a COLDSTART, the patch really hasn't
been put in but the MPEMIT33/BPSWINFO file will reflect that it has. Take
the information in these files as an indication but not as gospel truth.

What about MPE XL? Currently we have two kinds ot patches available -­
SOM (Software Object Module) replacement and binary. Currently the most
prevalent are binary patches, as the NL is all one HUGE SOM and therefore
is difficult to replace.

Binary patch tracking on XL is done through the patch program (SOMPATCH)
i'tself. Before any information in the SOM can be changed, SOMPATCH
requires the user to enter logging information. All changes are then
logged (old values and new values) and may be listed out as follows:

(SOM O),ID: 523563 Duane Souder SR: 4700-523563
Wed Apr 13 07:11:58 1988

----523S63----Compiler Library----Duane Souder
U resume execution calls P close files on
ICS and page faulted. 10/30/87 KF. Apply to
9.91, 9.92, X.Ol. To START image only.

2023-7

; Offset chan~~d on the X.Ol line. Change offset
; from 1
U_get_escapecode + 54 e85f1f8d 8000240

Since this information is part of the SOM, if it is present then the
patch is present.

Unfortunately, there is no equivalent to CHECKSUM on the MPE XL machines
at this time. Fo!' ~:he most part it is unnecessary, as all modules of the
OS and compiler l~brarys have associated version numbers. It has always
been a useful tool for users to use in tracking versions, however, and
perhaps someday a checkswn program for XL will show up.

ERROR INFO: All too often, diagnosis of a problem is impossible because
the error that occured is (or becomes) unknown. There are cases in which
errors speed by at a rate too fast for the human eye to capture, but
there are also cases in which the user s imply fails to note the error
message. A knowledge of how to collect 'lost' error messages can help a
system manager solve many problems without a call to the response center.

In the system environment, error messages may come up on the user's
screen or on the console. If the message comes up on the console and gets
lost (scrolls off, console gets cleared, whatever) CONSOLE LOGGING can
save the day. Logging all console messages will vastly increase the size
of your system log files, but looking at the log (entry type 15 for MPE
V, entry type 115 for MPE XL) will retrieve information you sometimes
didn't know the system told you. As an as ide, console log records are
also useful tor security monitoring, tape drive usage monitoring (how
many tape requests did you get?), and terminal usage (what ldevs logged
on between 8:00 and 5:001). To keep disc space usage down, make it a
sta.ndard practice to store/purge log files immediately after each full
backup. You might want to leave a few days' worth on the system for easy
accessability.

Messages that appear on the user's screen and then vanish are much more
diff:icult to find. Prevention and/or duplication is a much better bet.
Here are some methods for tracking, finding, and displaying hidden error
messages:

1) Perform all error checking possible within your application. When
you do this, you can store the error number and message in a disc
file or send it to the console and ~o avoid losing error info. In
many languages (COBOL, for instance), if you do not handle the
errors explicitly the program will abort however the system
wants.

2) If a VPLUS screen is causing problems identifying an error
message, redirect the screen to another terminal. You can do this
by issuing a file equation on the filename in the VOPENTERM
intrinsic call (example: FILE A262X,NEW; DEV=ldev; ACC=INOUT).

2023-8

Now any non·VPLUS 10 will go to the terminal that the program is
running on, while VPLUS 10 will go to the other terminal. Note:
both terminals must be from the same product family when you do
this (as in 262x, 264x, etc.).

3) Some HP Products log their own errors (TOP FINAL, KS, etc.).
Errors on these products can be found after the fact by looking
in the product-specific log file. Some products must have logging
enabled for this to work -- refer to the product manuals for
details.

4) On MPE XL, the CI VARIABLES may be used to pass error numbers and
messages back to the CI (to a UDC or command tile, for instance).

5) ESC 0 on terminals with printers hooked up can log all pertinant
information if the users are trained to use it by habit. LOG
BOTTOM or COPY ALL can be used for non-VPLUS applications. Set a
standard that users cannot report errors unless they have a hard
copy of the screen with as much error information as possible.

6) Also on MPE XL, errors from MPE subsystems are logged to a
PROCESS ERROR STACK. Currently, not all subsystems use this stack
(which is available in DEBUG with the pm errors macro). However,
it is still a good resource for tracking chain-reaction type
errors.

TIPS: Here are some tips that could be useful to help you
communicate vital information quickly and clearly:

1) Track the vers ion number, not the MIT name or liThe vers ion of
QUERY that came out on UB-delta-4. II Using the exact version
number of the OS and products saves you lookup time when checking
for known problems.

2) The file HPSWINFO contains the released version of every HP
product on the current release. If a product has problems, check
to see if its version matches that listed in HPSWINFO. For those
on earlier releases of MPE (pre-UB-delta-4 [G.B2.o4]), MPEMIT33
serves the same function. If the version number is LOWER than
that in HPSWINFO or MPEMIT33, you may have a bad version.

3) When you are asked for product version information do NOT use the
HPSWINFO version number! You may have had patches installed, be
running an old version due to a problem with AUTOINSTALL, or have
fallen victim to any number of quirks which may cause the version
to be different than that released with the system.

4) Keep the versions of frequently-used products close at hand so
that you won't have to run the products. See the job streams

2023-9

provided with this paper for examples ()f va.t·ious methods used to
track versions at coldstart/update time.

5) For MPE XL users, remember that the Command Interpreter and the
Operating System have different versions now. What you see when
the eI starts up is the version number of the CI, NOT the OS.

6) Information on patches applied since OS or product installation
is good to keep as well. Keep the patch ID number, who got you
the patch (RC, SE, by mail from SDC, etc.), and when it was
actually 'coldloaded' into the system.

III. HELPFUL INFORMATION

The information mentioned above is Ojsually sufficient to solve most
common problems. There are times, however, when a problem is so nasty and
vicious that it continues to hide deep in the bowels of the system
despite all efforts to dig it out. This means additional, environmental
information may be needed.

Everyone has run into a problem that only comes up sometimes, even in the
same fUnction of ~~e same program. The solution to this kind of error
almost always involves the interaction of the program with other programs
running on the system at the same time.

How can we find out what these environmental factors are? Can we get
general system trend information which will give us an idea of what might
be running at a given time of the day? Here are some methods to get that
very information:

SYSTEM ACTIVITY: Some disc errors, memory pressure-related errors, and OS
table-related errors occur only at certain levels of certain types of
system activi~y. If you know the way your system tends to run at certain
times of the day, investigation of the causes of these problems becomes
muc~ easier (and faster).

Of course, the easiest way of tracking overall levels of system activity
is to let us do it for you. HPTREND gives hourly averages of CPU usage,
10 activity, disc usage, and other resource activity. This type of
indication will help define if an intermittent problem occurs only during
periods of high <fill-in-the-blank> access.

Suppose you either don't have HPTREND (why not?) or your usage changes
daily such that a monthly average doesn't help much. There are methods
which, though they take a lot of time and manual calculation, can give
the same figures.

The tools are OPT, SHOWJOB, the streams facility, a spare terminal, and
(optfonally) a spreadsheet program. The general method is as follows:

2023-10

1) Get the following data from tA'le batch report in OPT on an hourly
(or more often) basis.

-CPU : Busy, Pause Disc & Swap, MAN-ICS, Cache MAM-PROC STK,
Cache HAM-ICS, Overhead.

-Disc: All I/O, Reads, Writes, Control Cps.

-Launches: Process Launches, Process Swap-Ins, Process
Pre-empts.

2) Take this information and plug it into your spreadsheet on an
hourly (or more often) schedule.

3) If you can plot from your spreadsheet, you can directly see how
busy your system is in given time intervals. If not, you may wish
to graph the results over time.

For a detailed look at how various programs or users affect your
statistics, you may add the following processes to your setup:

1) Set the interval for the job above to no more than 5 minutes.

2) Stream a job which does a SHOWJOB with output appended to a
permanent file, then streams itself 4.5 to 5 minutes later.

3) Run OPT from an unused terminal and get a program report logged
every 5 minutes (300 seconds).

The combination of all this information tells you which users and/or
which programs tend to have the greatest impact on the activity levels of
your system. They also tell you what programs are run at the same time
under normal circumstances -- meaning that if an intermittent problem
shows up it will be easier to spot any deviation from normal processing.

This is excellent information to have at hand, but the amount of time
involved in manually transferring and calculating the results of this
activity is very high. It may be worth it in shops where usage fluctuates
wildly from hour to hour or day to day, and of course the technique is
very useful once an intermittent problem rears its ugly head.

Unfortunately, supported tools to provide all of these functions do not
exist yet on MPE XL. HPTREND should be available Real Soon Now, and other
performance related products should follow.

APPLICATION INFORMATION: Just as a large number of calls are solved using
standard information as listed above, a large number of calls are solved
by tracing the onset of the problem to a change in application code. How

2023-11

do we find ou't whether changes were made, and how do we track who made
'them?

Unfortunately, BP does not rigidly force application version tracking. We
do not require a version number as part of the object code, and we do not
force an update to this version number with every compile. All of the
me'thods available can best be expressed as voluntary and circumventable.
For MPE V, we are very limited in our ability to imbed vers ion
information in object code. The most sophisticated method uses the Pascal
$COPYRIGHT compiler option (als\) available in FORTRAN 77). Even though
'this places user written version information in the segment itself, there
is no good way to print it out or access it.

One method of making sure changes have not been mad~ is to always use the
OLDDATE option on any RESTORE. This insures that the previous file create
date (the compile date, for object code) is kept across restores. If a
file's create date is recent, then, it follows that it is a new version
of that particular program file.

In COBOLI I , the DATE-COMPILED paragraph will bind a compile date into
your object code. The WHEN-COMPILED reserved word may be used in your
program code to reference or display this date.

On MPE XL, this issue is made a little easier. The program VERSION, which
is in PUB.SYS and replaces PROGINFO and other unsupported utilities,
accesses a part of the SOM known as 'the version area. In FORTRAN 77 and
Pascal, a compiler directive, $VERSION, places user specified information
in this area for VERSION to access. As an aside, the VERSION program also
returns program capabilities, skeleton stack information, and maximum
heap size, among others.

IV. TRACKING OS TAPES AND LISTINGS

If you have called the Response Center with a particularly solitary,
nas'ty, brutish, and short problem there is a good chance that the
solution path will come down to two options. One is to continue having
'the problem while a full-scale investigation continues. The other is to
clean up the current version of MPE loaded on the system through an
UPDATE or COLDSTART -- an action which will often clear the problem
without a trace.

On a production system, clearing the problem is usually the choice. After
all, the point of the system is to serve the users, not perform as a
'troubleshooting system for an obscure, one-time problem.

Too many times 'this-~o~uti~n fails because the caller could not locate a
COLDLOAD TAPE from .before the problem started occurring! In a worse
scenario, the system is down, the only way to start it is from tape, and
ther~ is no tape to be found.

2023-12

Anyone who has been in this situation has learned the hard way how
important it is to keep track of OS tapes and their listings. It is
equally important to toss old tapes and listings so that contusions (and
sometimes career affecting actions) do not occur.

COLDLOAD TAPES: A COLDLOAD TAPE is defined as 'a tape created by SYSDUMP
which includes system programs, drivers, the operating system, and
@.PUB.SYS.' It is probably the most important tape you can have in
regards to operating system integrity.

When you install your OS with AUTOINSTALL, the last thing it does is
create a tape to load your system. THE INSTALL HAS NOT COMPLETED UNTIL
YOU DO THIS! This tape is your ORIGINAL COLDLOAD TAPE.

From this point on, any time you make a configuration change, install a
patch, or do any activity that requires creating a coldload tape, you
will UPDATE from the IMMEDIATELY PREVIOUS COLDLOAD TAPE. This will insure
that you have a completely clean version of the OS before you cut your
new tape.

For example: you installed vers ion X. yy •ZZ of MPE V last week. Now you
need to add a printer. Before going into SYSDUMP to make the
configuration change and cut the new coldload tape, you should UPDATE
from the OCT (Original Coldload Tape). The new tape created by SYSDUMP
will then have the exact same things (except for the new configuration)
as the OCT, and any corruption which might have crept in during the week
will not be propagated onto the new tape. This new tape now becomes the
IPCT (Immediately Previous Coldload Tape).

From this the question arises: how many of these tapes should I keep? The
answer, as usual, is that it depends on your site. It you do not make
many configuration changes or install many patches, it certainly wouldn't
hurt to keep all your coldload tapes for your current version of the os.
This gives you the option of backing up to any previous level of patches
and/or configuration with just a single coldload.

If you have an active shop, however, the number of tapes could well be
more than the amount of tape storage space you have. Your best bet would
be to keep the OCT, the coldload tape just previous to the most recent
change, and (of course) the coldload tape used to make the most recent
change. You may want to keep more tapes than this if you change your
system often (the more frequently changes are made, the more tapes back
you may need to go to back out a problem). You should also store all
patch files given to you before purging them from your system -- this way
if you have to back out further than the number of tapes you kept you can
still recreate your patch environment.

On MPE XL, the equivalent to the coldload tape is the SLT/STORE tape
combination. Unlike MPE V, MPE XL does not store OS information and user
files on the same tape set.

2023-13

I~ is HIGHLY recommended ~hat MPE XL users do a SYSGEN TAPE generation
every ~ime ~hey do a full backup of the system. Also, for the store tape
to be a true equivalent of the MPE V coldload user file portion, the
store must be done with the DIRECTORY option.

BACKUPS: It only takes one RELOAD without a recent backup to discover
that full and partial backups are necessary for the mental health of any
good system manager. This is an example of ilephant Learning -- once you
learn the hard way, you never forget.

Your operators should know where your most recent backups are. You should
always keep at least the last full backup and all partial backups since
on site. This is irrespective of security considerations, which may
dictate restricted access to backup tapes and/or that all backups be kept
offsite. Bear in mind that many system problems occur at night and
gaining access to these tapes quickly could make the difference between a
completed production run (albeit slightly late) and an open system
management job. Seriously, security arrangements for tapes should include
fast access for those authorized t not just safety for the tapes and
privacy of the data.

OTHER CONFIGURATIONS: Many other products (datacomm, office products,
etc.) require their own separate, more detailed configurations. Never
forget that these configurations can be destroyed! Some sites maintain a
separate tape which contains nothing but configuration files for their
products (they use the indirect file feature of the STORE command to help
in this). Keep in mind that often these products must NOT be in use (or
even up) for the configuration file to be accessable.

V. IN CONCLUSION

The suggestions made in this paper are only a few of the ways to insure
that important information about your system and its environment is
always available. Every site has its own methods and standards for
hanQling system information, but these methods should always include
immediate access when needed as one of their goals.

If you follow the guidelines given above, you will find that the most
tedious part of supporting your system -- gathering data -- will take
less time and less effort. In addition, the data you have (especially in
a down system environment) will be more accurate and therefore more
useful to you, to HP, and ultimately to your users.

2023-14

APPENDIX A
LIST OF PRODUCTS AND HOW TO GET THEIR VERSIONS

PRODUCT NAME

ADCC SOFTWARE
ATP SOFTWARE
BASIC
BASIC COMPILER
BUSINESS BASIC
C

COBOLI I
COBOLII XL
CS DOWNLOAD FILES
CS INTRINSICS
DS
DS!X.25
DTS
DTe FIRMWARE

EDITOR
FORTRAN
FORTRAN 77
FORTRAN 77 XL
IMF/3000
IMAGE INTRINSICS

KSAM INTRINSICS
MRJE
MTS
NRJE
KS
Pascal
Pascal XL
QUERY
RJE
SPL
SNA LINK
SNA/IMF
SORT/MERGE
TDP
VPLUS

METHOD (MPE V)

:RUN TERMDSM. PUB. SYS
:RUN TERMDSM. PUB. SYS
:BASIC
:BASICOMP
:BBASIC

:COBOLI I

:RUN CSLIST.PUB.SYS
:RUN CSLIST.PUB.SYS
:RUN DSLIST.PUB.SYS
:RUN DSLIST.PUB.SYS

:EDITOR
:FORTRAN
:FTN

: IMFMGR (MCHECK)
:RUN QUERY.PUB.SYS

(VERS)
:RUN KSAMUTIL.FUB.SYS
:MRJE
:RUN MPMON.PUB.SYS
:RUN NMMAINT. PUB. SYS
:RUN NMMAINT. PUB. SYS
:PASCAL

:RUN QUERY.PUB.SYS
:RJE
:SPL
:RUN NMMAINT. PUB. SYS
:RUN NMMAINT. PUB .SYS
:RUN SORT.PUB.SYS
:RUN TDP.PUB.SYS
:RUN FORMSPEC.PUB.SYS

2023-15

METHOD (MPE XL)

:BBASIC
:CCXL

(no prompt, enter
:EOD)

:COBOLI I
:COB74xL or C0B85XL

:RUN NMMAINT. PUB. SYS
:DUI
:RUN TERMDSM

ST
DTn

:EDITOR

:FTN
:FTNXL

:RUN QUERY. PUB. SYS
(VERS)

:RUN KSAMUTIL.PUB.SYS

:RUN NMMAINT. PUB. SYS
:RUN NMMAINT. PUB. SYS
:PASCAL
:PASXL
:RUN QUERY.PUB.SYS

:SPL
:RUN NMMAINT. PUB. SYS
:RUN NMMAINT. PUB. SYS
:RUN SORT.PUB.SYS
:RUN TOP.PUB.SYS
:RUN FORMSPEC.PUB.SYS

SAMPLE JOB STREAM -- MPE V

«any changes?»
«system ID»
«memory size»
«10 Config Changes?»
«List 10 devices?»
«List CS devices?»
«device defaults»
«highest DRT»
«ldev I»~

«max open spoolfiles»
«list 10 devices»
«list CS devices»
«terminal type changes»
«class changes»
«list 10 devices»
«driver changes»
«10 configuration changes»
«System Table Changes?»
«CST»
«XCST»
«DST»

Version E.OO.OO : MPE VIE

This job provides standard information
for use when placing support calls.

lrun sysinfo.prv.telesup
all
exit

In some cases this listing may be more useful since
it includes VM address information for each system
disc.

In place of the SYSDUMP, you could use the
following:

First, version and 10 configuration info

y

y
y
y

ljob coldinto,manager.sys;hipri;outclass=lp,l,l
1comment
1comment
1comment
1comment
1comment
1comment
1comment
1comment
1comment
1comment
1continue
1comment
1comment
1comment
1comment
1comment
1comment
1comment
1comment
1comment
1comment
!comment
1comment
lsysdump $null
y

2023-16

y
y

y
Y

y

y

y
y

y

«PCB»
«lOQ»
«DRQ»
<<TERMBUFF>>
«SYSBUFF»
<<SWAPT> >

«PRlMSG»
< <SECMSG»
«SPEC RT»
«lCS»
«LST»
«UCOP RQ»
«TRL»
«BKPT TABLE»
«max user logging processes»
«max users per logging process»
«Misc config?»
«List Global RINS»
«delete global rins»
«~I of rins»
«~I of global rins»
«~I of seconds to logon»
«max sessions»
«max jobs»
«default job CPU limit»
«catalog changes»
«softdump changes»
«Logging Changes?»
«List logging status?»
«status changes»
«logfile rec size»
«log file size»
«Disc allocation changes?»
«max directory size»
«List volume table?»
«delete volume»
«add volume»
«list volume table»
«Virtual memory changes?»
«List virtual memory?»
«vol name»
«VM changes»
«max # of spoolfile ksectors»
«# sectors per spoolfile extent»
«scheduling changes»
«Segment limit changes?»
«concurrent programs»
«max code seg size»
«max seg per process»
«max stack»

2023-17

How check tor Datacomm things

Write information as to startup
into COLDDATE.PUB.SYS.

«max xds size»
«max xds per process
«standard stack size»
«system program changes»
«system SL changes»
«dump date»

1comment
1comment
!comment
!continue
!run nmmaint.pub.sys
!continue
lrun dslist.pub.sys
!continue
!run cslist.pub.sys
y
y
N
!comment
1comment
!comment
1comment
Ifile datetime,new;temp;rec=-80"f,ascii;nocctl
lshowjob ;*datetime
!setjcw cierror=O
!continue
!listt colddate;$null
lif cierror=O then
feditor
text colddate.pub.sys
join datetime (10/#0)
change l,"System tape loaded on ",LAST
keep colddate.pub.sys,unn
exit
lelse
Ibu~ld colddate.pub.sys;rec=-80"t,ascii
leditor
text colddate.pub.sys
join datetime ('0/10)
change l,"System tape loaded on ",LAST
keep colddate.pub.sys,unn
exit
lendit
!eoj

2023-18

Version X.OO.OO : MPE XL

First, version and 10 configuration into

This job provides standard information
tor use when placing support calls.

Now check for Datacomm things

Write information as to startup
into COLDDATE.PUB.SYS.

SAMPLE JOB STREAM - - MPE XL
!job coldinfo,manager.sys;hipri;outclass=lp,l,l
1comment
1comment
1comment
1comment
1comment
1comment
1comment
1comment
1comment
1comment
1continue
1sysgen
io
lc
ld
lp
Iv
ex
10
sh
ex
mi
sh
ex
sy
sh auto
sh dcc
ex
sh
ex
1comment
1comment
1comment
1continue
lrun nmmaint.pub.sys
1comment
1comment
1comment
1comment
Ifile datetime,new;temp;rec=-80"f,ascii;nocctl
lshowjob ;*datetime
!setjcw cierror=O
1continue
llistf colddate;$null
lif cierror=O then
Ieditor
text colddate.pub.sys
join datetime (10/10)

2023-19

change it "Sys"tem "tape loaded on .. tLAST
keep coldda"te.pub.systunn
exit
lelse
lbuild colddate.pub.sys;rec=-80 tt f tascii
1editor
text colddate.pub.sys
join datetime ('0/10)
change 1 t "System tape loaded on .. tLAST
keep colddate.pub.syStUDD
exit
lendif
leoj

2023-20

UPDATE
STREAMS 10
STREAM DATAJOB.PUB.SYS

COLDSTART
STREAMS 10
STREAM DATAJOB.PUB.SYS

SAMPLE SYSSTART FILE

2023-21

*- END OF FORMATTING **
TDP/3000 (A.~4.01) HP36578 Formatter
MON,JUN 6, 1988, 10:06 AM
NO ERRORS
INPUT = EDITOR WORKFILE, TEXT FROM PAPERl
OT1fY·PUT = *HP2680

	Managing MPE For Support

