
'"

A Comparison of TurboIMAGE and HPSQl
by larry Kemp, HP Bellevue, WA

This paper is intended as a primer on HPSQl for current users of the IMAGE
database management system on HP3000 computers. SQl, which is an acronym for
Structured Query language, is the new relational database management system
for the HP3000 family. SQl was originally implemented on IBM mainframes, and
has since been implemented on several other computer systems. SQl is an im
plementation of the original "System R" specification for relational data
bases. The ANSI committee has accepted SQl as the relational database model.

Users of TurboIMAGE will find that HPSQl provides considerably more flexibili
ty than does TurboIMAGE. IMAGE has probably gained most of its popularity due
to its ease-of-use and simplicity of design aspects. SQl should provide even
more ease-of-use and simplicity.

IMAGE has gained popularity due to its good performance, predominantly to do
with the ease with which the designer can take performance into account. For
example, the IMAGE designer can effectively, easily, and accurately utilize
blocking factors.

Another area where IMAGE excels is having a considerable knowledge and ex
perience base. IMAGE is installed on all HP3000 computer systems, and IMAGE
is the database management system used for most HP3000 applications. There
fore, there is considerable expertise available on good IMAGE design, both
from HP and from a large number of third party consultants. The IMAGE hand
book exemplifies the public knowledge base. There are a number of well known
implementation (and optimization) techniques for IMAGE.

There is a knowledge base for SQl, and for the most part that knowledge fo
cuses on high level design issues. There are well documented logical database
design techniques that utilize relational database constructs, one example
which is the normalization of databases to "third normal form".

The last, very positive trait of IMAGE has been its reliability. IMAGE data
bases rarely, if ever have integrity problems. And when some damage does hap
pen, there are accurate, if not time consuming, recovery techniques. Since
SQL is new, its reliability remains to be seen. SQL does have automated log
ging and rollback recovery, so SQL databases should not have integrity
problems.

The remainder of this primer will focus on the usage and features of IMAGE and
SQL on a sample database and problem. I will focus on data structure and
design, query (data manipulation) language, program-and-data independence,
security, and transaction management. I feel that these are the reasonings
for databases.

Structure.

IMAGE and HPSQL use different terms to describe database structure. IMAGE
uses the term "sets" to describe logical groupings of like described data. A
non-database user would call that construct a file, with a restriction that
all of the records are of the same record-layout. An SQl user calls that con
struct a "table". The IMAGE user refers to repetitive occurances in the set
as "entries", while the non-database user refers to that construct as records.

2054 - 1 -

The SQL user refers to those constructs as "rows". And lastly, the IMAGE user
refers to the individual components of an entry as "data items", where the
non-database user refers to them as fields. The SQL user refers to "columns".

Non-Database

File
Record
Field

IMAGE

Set
Entry
Item

~

Table
Row
Column

IMAGE datasets are defined as one of master datasets, or detail datasets.
Master datasets have unique keys and can be accessed by key or sequentially.
Entries in a detail dataset are chronologically organized by common key.
Entries can be accessed either sequentially, or along the chronological key
path. Master datasets can be related to details, and in a logical sense,
detail datasets can be related to masters. This results in the definition of
IMAGE has an extended two level hierarchy.

SQl makes no distinction of master versus detail datasets. Any two tables can
be related, allowing multi-level "Join" operations. And any table can be ac
cessed either by key/path, or sequentially. Furthermore, a given table can
have multiple keys, including keys which are formulated from several columns.
Generic and approximate searches are allowed.

Here is an example implementation using the two database management systems:

Produet

/V
PO-Une-ltems

V

PO-HeaderVendor

V~ /V~
Vendor-PO-Xret

VIMAGE

Produet

SQL

Vendor

I I

L PO_Header

I I 1&....._---'

L ,~I PO_IJDe_It~....

The most noticeable difference between the two implementations is the lack of
an artifical connecting dataset between Vendor and PO-header in the SQl data
base. Just as worthy, is that the SQl database implements the same
functionality as the IMAGE version. SQl, as in IMAGE, has the ability to de
clare unique keys for both the Vendor and PO-header tables. Also, the PO
number index for the PO-line-items dataset can be declared "clustering", which

2054 - 2 -

allows optimized physical placement along that index, in an analogous tech-
nique to the "primary path" for IMAGE detail datasets. .

Query Language.

Most users of IMAGE were introduced to IMAGE through QUERY. QUERY has a sim
ple, English-like syntax that allows command driven access to IMAGE databases.
Query is a good learning tool in that it is easy to learn, and allows exercis
ing of most IMAGE functions. Once the novice has mastered QUERY, he/she next
learns how to programmatically access IMAGE. This involves formatting subrou
tine calls to IMAGE. One record is accessed at a time, with one or two calls
necessary to access each record.

SQl, like IMAGE, has an ad-hoc program for accessing databases. (The SQl pro
gram is called ISQl, where the I stands for Interactive.) Most SQL users
learn SQl through ISQl, in an analagous manner to the IMAGE user with QUERY.
But unlike the IMAGE, programmatic access to SQl is nearly identical to ISQl
access. In other words, the user codes the same commands programmatically as
he/she uses in ISQl. Consequently SQl is easy to learn.

like Query, SQl allows conditional specifications of rows to be selected. And
like Query, SQl uses that specification to determine the access method. The
access method is determined by SQl, and not by the application program.

SQl implements the query language in COBOL and PASCAL by using pre-processors.
These pre-processors translate the high-level query commands into the ap
propriate subroutine calls. The only difference between the interactive com
mands and the programmatic SQl commands are the specification for where the
resulting data resides. (Programmatically, the INTO clause is specified which
says where in the program to store the result of a command.)

Here are sample interactive and programmatic SQl commands:

SELECT NAME FROM VENDOR WHERE VENDOR NUMBER = '0023'

SELECT NAME FROM VENDOR INTO :WS-NAME WHERE VENDOR-NUMBER = :WS-VENDOR-NUM

In this example, NAME is a column in the table VENDOR. A row with the VENDOR
NUMBER equal to the value of WS-VENDOR-NUM in the COBOL program is selected.
And from the selected row, NAME is delivered to the COBOL item NS-NAME.
Notice that the only significant difference is the specification of program
data names in the programmatic version. (You might also notice the substitu
tion of '-' for' '. SQl syntax wants an underscore, while COBOL wants
dashes, so the preprocessor converts dashes to underscores.)

Additionally, SQl commands have the ability to retrieve multiple records in a
single command. This eliminates the need to code loops in many transaction
processing programs. (It also speeds up performance, since it reduces the
number of entries and exits from SQl.)

Using the sample database, here are code comparisons for IMAGE versus SQl.
These statements display a purchase order. The SQl code is actual code, where
the IMAGE code is psuedo-code. Notice that the SQl version takes exactly one
SQl command to retrieve all qualifying rows.

2054 - 3 -

IMAGE:

SQL: BULK SELECT * INTO :PO-RECORDS
FROM PO-HEADER,VENDOR,PO-LINE-ITEMS,PRODUCT
WHERE PO-HEADER.VENDOR-NUMBER=VENDOR.VENDOR-NUMBER AND

PO-HEADER.PO-NUMBER=PO-lINE-ITEMS.PO-NUMBER AND
PO-LINE-ITEMS.PROD-NO=PRODUCT.PROD-NO AND
PO-HEADER. PO-NUMBER = :WS-PO-NUMBER

DBGET(MOOE7, PO-HEADER, PO-NUMBER, PO-RECORD)
DBGET(MODE7,VENDOR,VENDOR-NUMBER,VENOOR-RECORD)
DBFIND(PO-lINE-ITEMS,PO-NUMBER)
REPEAT

DBGET(MODE5,PO-lINE-ITEMS,lINE(I»
DBGET(MODE7,PRODUCT,PROD-NO,PROD(I»
ADD 1 TO I

UNTIL (END-OF-CHAIN(PO-lINE-ITEMS»

This particular example is a complex one, requiring accesses to four different
data sets or tables, and locating multiple records from the PO-LINE-ITEMS
dataset or table. Note that the SQl user can test out his/her query interac
tively, using ISQl, before coding the command.

Program and Data Independence.

One of the most significant advantages of a database system is the ability to
change the database without affecting the executing programs. All database
systems have this characteristic to some extent, really none completely imple
ment it. (One example is where a program accesses a field that has been
eliminated from a database.)

IMAGE allows addition and deletion of fields of a database by a database ad
ministrator. IMAGE allows changing of field definitions by the database ad
ministrator such that programs that do not access the changed fields need no
modifications.

The mechanism that IMAGE uses to implement this feature is called access by
"item list". Specifically, when a program asks IMAGE for data, it presents a
buffer, and a symbolic list of data items that describe the items that should
fill the buffer. For example, a program might present IMAGE with the item
list "VENDOR-NUMBER,VENDOR-NAME".

IMAGE databases are at least initially created by a text file called a "sche
ma". Adatabase administrator creates the schema which defines all sets,
items, relationships, and security. Subsequent structural changes can be made
to the database by modifying the schema, and recreating the database, or by
use of Adager, or a similar utility which recreates the affected datasets. In
all cases, the changes are made offline, and the database administrator will
probably want to maintain the schema file.

Like IMAGE, SQL provides item flexibility by having programs request data
using an item list. SQL also provides a significantly greater degree of pro
gram and data independence through a construct call a "View". A VIEW is a
logical window that a program uses to access the database. A VIEW might be
construed as a logical 'table' in that a program accesses a view just as it
might access a table. A view can contain join operations across multiple
fi 1es.

2054_ 4 -

Here is an example of a VIEW:

VIEW creation:

CREATE VIEW PURCHASE ORDER (PO NUMBER,VENDOR,AMOUNT) AS
SELECT PO HEADER.PO NUMBER,VENDOR NAME,AMOUNT

FROM PO-HEADER,VENDOR -
WHERE PO_HEADER.VENOOR_NUMBER=VENDOR.VENDOR_NUMBER

VIEW access (which could be programmatic):

SELECT * FROM PURCHASE_ORDER WHERE PO_NUMBER = '1020'

The VIEW facility allows external specification of not only the data elements
accessed by a program, but also the access path to the data. It allows a pro
gram to retrieve data with no knowledge of the access path. It also allows
the access path to be changed without requiring alterations to the program.

SQL databases are maintained by SQL commands. These can be given interactive
ly or programmatically, just as any other command. Physical database struc
ture changes can be made while the database is in use. For example, the fol
lowing command could be given while the specified table is in use:

ALTER TABLE VENDOR ADD CLASSIFICATION CHAR(2)

This command would add a new column CLASSIFICATION to the table VENDOR. Cur
rently executing programs would not be affected.

The following command could also be given while the database is in use:

CREATE INDEX PO_LINE_ITEM ON PO_LINE_ITEMS(PO_NUMBER,PART_NUMBER)

This command creates a combined index for the table PO LINE ITEMS using the
columns PO NUMBER and PART NUMBER. Applications using-the original database
and selectTng on PO NUMBER-and PART NUMBER would have used the PO NUMBER in
dex, and then searched sequentially-for the PART NUMBER. Now those applica
tions can use the new index PO LINE ITEM to go dTrectly to requested line
item. This change in access method-is transparent to application programs.

Secur;ty.

There is little doubt in the industry today that security is an important job
of a database management system. Ad-hoc programs, third-party applications,
and open computer systems have mandated externally managed security systems.

IMAGE implements security in the form of passwords. Data items and data sets
are passworded for a combination of read/update/none access to data items and
read/write/none access to data sets. Passwords are specfied by the applica
tion program when it opens the database.

Security in SQL is implemented through the granting of access rights to logon
user ids. Rather than use a separate password, SQL uses the user logon id,
and allows MPE security to be used for passwording. Access is granted against
tables or views. Since access to elements can be restricted by using views,
data element security is achieved. Hopefully, this will prove to be a simpler
technique.

2054 - 5 -

A view, however, is more than simply a subset of data. It can contain not
only access specification, but also selection criteria. Since access to data
can be granted on views, this allows security to be specified by value. For
example:

CREATE VIEW P023 AS
SELECT * FROM PO HEADER WHERE VENDOR NUMBER = '0023';

GRANT SELECT ON P023 TO VENDOR23@PURCHj-

This view allows the user VENDOR23 in the account PURCH to look at only his
own purchase orders in the PO_HEADER table.

Transaction Management.

One of the functions of a database management system is to coordinate data
between concurrent users. There are two issues: (1) protection against "race
conditions" where multiple users desire to access and update the same data,
and (2) guaranteeing logical integrity of data. A database management system
protects against race conditions by serializing access to the same data. And
a database management system guarantees logical integrity by ensuring that
either all of its database manipulations succeed, or none of it succeeds.

For example, a user is going to make a transaction which adds one part to in
ventory, and subtracts one part from a purchase order. The increment to in
ventory includes reading the data and then updating it. No other updating
transaction can be allowed to intervene between the read and update. If an
intervening transaction did update the inventory count, then this transaction
would make its changes to inventory using the old inventory count, effectively
undoing the other transactions inventory update. In the case of system or
program failure, the transaction must either have completed, or must be backed
out. Otherwise, the partially completed transaction might allow artificial
inventory growth.

IMAGE has two facilities to address transaction management: Locking and
Transaction Logging. Locking allows programs to logically reserve a specified
item before making a transaction against it. Locking is done explicitly by
the program. Transaction logging allows a program to declare the beginning
and ending of a logical transaction. In the case of system failure, the data
base can be recovered to last consistent (logically complete) point before the
failure. Here is an example of inventory receivings using the sample
database:

DBLOCK(product.prod-no=2666,po-line-items.prod-no=2666)
DBGET(product,prod-no=2666)
REPEAT

DBGET(po-line-items,prod-no=2666)
UNTIL (po-number=A2345)
DBBEGIN

DBUPDATE{product,qty-on-hand)
DBUPDATE(po-line-items,qty-received)

DBEND
DBUNLOCK

In this example, the program locks the item PROD-NO in both the PRODUCT and
PO-LINE-ITEMS datasets. Then it retrieves the requisite entries. Once the

2054 - 6 -

entries are found, then a logical transaction is started which updates quanti
ty fields in both datasets.

SQl implements the same constructs, but using a more automated technique.
Locks in SQl are implicit; the programmer never needs to code LOCKs into a
program. SQL determines concurrency conflicts by examining the data "pages"
(which are similar to blocks) accessed within a transaction. If one transac
tion conflicts with another transaction, then SQL will either wait for the
other transaction to complete, or return an error, allowing the transaction to
restart itself.

This technique is not only eaiser to use, but it can also be more efficient.
For example, a transaction which updates a bill-of-materia1s has no idea at
the start of the transaction which part-numbers to lock, since the parts
explosion is determined by reading the records to be updated. An explicit
locking technique would require either data set locking, or double accesses to
the parts dataset. The SQL technique allows maximum concurrency since it does
not require pre-determined locking.

Here is the SQL version of the parts receiving problem:

BEGIN WORK;
UPDATE PRODUCT SET qty on hand = qty on hand + 1

WHERE prod no = '2666';- - -
UPDATE PO LINE ITEMS SET qty received = qty received + 1

WHERE prod no = '2666' AND-po number = 'A2345';
COMMIT WORK; - -

SQL assures logical consistency of data using a similar technique to IMAGE:
each transaction is bracketted by the commands BEGIN WORK and COMMIT WORK.
After a system failure, the uncompleted transactions are backed out in a man
ner similar to IMAGE. SQL provides the additional feature that if a program
aborts, that any incomplete transactions will be rolled back.

A transaction roll-back can also be programmatically initiated by the ROLLBACK
WORK command. This feature can simplfy, and potentially optimize transaction
processing programs. For example: a program to fill sales orders might first
match requested line items against inventory to see if the order could be fil
led. If the order can be satisfied, then it would re-read, and update the
records from inventory. The SQL version of this program would simply read and
update inventory. If a line item could not be satisfied from inventory, then
it would request a rollback.

In Sunmary.

SQL provides all of the features of IMAGE, and in most cases in a significant
ly enhanced fashion. Additionally, SQL allows the user to administer data
bases at a considerably higher level. With SQL, the database administrator
has a high degree of program independant control over data and access paths.
In essence, SQl has provided the database adminstrator with many of the tasks
that require programming (and debugging) in IMAGE.

The simplicity of IMAGE has resulted in very good performance for well desig
ned IMAGE databases. IMAGE performance is well understood and reasonably
consistent.

2054 - 7 -

On the positive side of performance for SQl is that when a database perfor
mance issue arises after an application has already been implemented, that the
database administrator can take action without involving changes to program
logic. In other words, SQL allows the database designer to make mistakes in
the initial design, and correct them after the fact.

References.

Astraham, M. M., et al, "System R: A Relational Approach to Database
Management,1I ACM Transactions on Database Systems 1, No.2 (June 1976).

Codd, E. F., "Normalized Data Base Structure: A Brief Tutorial", Proc. 1971
ACM SIGFIDET Workshop on Data Description, Access and Control. Available
from ACM.

Codd, E. F., "Further Normalization of the Data Base Relational Model", in
Data Base Systems, Courant Computer Science Symposia Series, Vol 6,
Prentice Hall (1972).

Russell, Marguerite (ed.), The IMAGE Handbook, Wordware(1984), Seattle, WA.

Also, TurboIMAGE ~nd HPSQl Reference Manuals from Hewlett-Packard Co.

Comparison of Limits.

TurboImage HPSQl

Sets/Tables per Database 199 Unlimited

Items/Columns per Database 199 Unlimited

Items/Columns per Dataset/Table 255 64

Item Size 4094 3996

Items/Columns per Path/Index 15

2054 - 8 -

Sample SQL/COBOL program.

This program prompts the user for a product number, and displays all purchase
orders against that product, including which vendor that the purchase order
was issued to. Each SQl statement is bracketted by EXEC SQL/END-EXEC, to sig
nal to the pre-processor that these are SQL commands. Notice that the pre
processor also knows the data-division elements, allowing it to check on data
types and lengths.

IDENTIFICATION DIVISION.
PROGRAM-ID. POSe
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 I PIC S9(4) COMPo
EXEC SQL INCLUDE SQLCA END-EXEC. «SQL communication area»
EXEC SQL BEGIN DECLARE SECTION END-EXEC. «SQL data elements»
01 PURCHASE-ORDERS.

05 PURCHASE-ORDER OCCURS 20 TIMES.
10 PO-NUMBER PIC X(6).
10 VENDOR-NAME PIC X(20).
10 QUANTITY PIC 59(4) CaMP.

01 PROD-NO PIC X(4).
01 ERROR-MSG PIC X(72).
EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.
OPEN-DATABASE.

EXEC SQL WHENEVER SQLERROR GO TO SQL-ERROR END-EXEC.
EXEC SQL CONNECT TO 'PURCHDB' END-EXEC.

ASK-FOR-PART-NO.
DISPLAY 'ENTER PROD-NO FOR INQUIRY, OR CR TO STOP'.
MOVE SPACES TO PROD-NO.
ACCEPT PROD-NO.
IF PROD-NO EQUAL SPACES THEN GO TO CLOSE-DATABASE.
EXEC SQL BULK SELECT PO-LINE-ITEMS.PO-NUMBER,VENDOR-NAME,QUANTITY

INTO :PURCHASE-ORDER
FROM PO-LINE-ITEMS,VENDOR
WHERE PO-LINE-ITEMS.PO-NUMBER=PO-HEADER.PO-NUMBER AND

PO-HEADER.VENDOR-NUMBER=VENDOR.VENDOR-NUMBER AND
PO-LINE-ITEMS. PROD-NO = :PROD-NO END-EXEC.

IF SQLCODE GREATER THAN 0 THEN DISPLAY "NO POS FOR THAT PART-NO"
ELSE PERFORM DISPLAY-PO VARYING I FROM 1 BY 1 UNTIL I > SQLERRD (3).
GO TO ASK-FOR-PART-NO.

DISPLAY-PO.
DISPLAY "PO-NUMBER=" PO-NUMBER (I)

" VENDOR-NAME=" VENDOR-NAME (I)
QUANTITY=" QUANTITY (I).

SQl-ERROR.
EXEC SQL SQLEXPLAIN :ERROR-MSG END-EXEC.
DISPLAY ERROR-MSG.

CLOSE-DATABASE.
EXEC SQL RELEASE END-EXEC.
STOP RUN.

2054 - 9 -

	A Comparison of TurboIMAGE and HPSQL

