
The Advance of HP SQl - Towards

the OlTP Market

Alberto lutgardo

Distributed Data Management Lab
Hewlett-Packard

19447 Pruneridge Avenue
Cupertino, CA 95014

Abstract

One of the attributes of an Online Transaction Processing system Is to provide to the
user a high level of throughput. The purpose of this paper Is to explain to the user how
to Increase the throughput of a given application by the use of the Isolation level
concept, and how this concept was Implemented In the HP SQl product. This paper
shows the relationship between the concept of Isolation level and the concept of
consls tency levels.

Isolation Level Is a property of data base access from the point of view of concurrency
control while the level of consistency Is defined as the effects the user experiences due
to the concurrency control. There are three Isolation levels that stand among all. The
Repeatable Read Is the HP SQl default. It Implies that all locks acquired by a
transaction are held until transaction commits, rolls back, or It Is terminated by the
system due to deadlock. Cursor Stability holds the read locks only until after a
subsequent read occurs. Read Uncommitted does not acquire locks for read operations;
In other words, It only provides physical consistency. Write locks are the same for all
Isolation levels and are held until transaction commits or rolls back.

1. Introduction

HP SQl Is a transaction oriented system: therefore, It will provide a high level of
transaction throughput. This Is vital for a product to be competitive In tlie OlTP market.
An Increase of concurrent access to common data Increases the transaction throughput
In the system. There are two ways to Increase concurrency to common data. The first
Is to relax the locking scheme by using weaker locks, and the other one Is to release

The Advance of HP SQL - Towards the OLTP Market
2055-1

the locks on common data as soon as possible. The HP SQL product has Implemented
the concept of Isolation level to achieve this purpose. The HP SQL product provides the
option of Isolation Levels to allow the user to control the concurrency of his/her
applications.

This paper assumes that the reader Is familiar with the concepts of concurrency control
as defined In [2] and also familiar with HP SQL concurrency control mechanism as
described in [5].

The concept of Isolation Level In the HP SQL product applies only to PUBLIC tables. A
PUBLIC TABLE Is a table that allows multiple writers and multiple readers concurrently.

.Cursor Stability is one of the Isolation levels Implemented In the HP SQl product that
releases read locks before the transaction Is committed. Cursor Stability releases read
locks between SQl FETCH commands. The feature Is provided for applications that
scan a table In one direction.

The organization of the rest of the paper Is as follow: Section 2 provides the HP SOL
definition for Isolation level. Section 3 describes the Implementation of Isolation level
within the HP SQl product. Section 4 describes an application that takes advantage of
the Isolation level concept to Increase the throughput of the system. Section 5
describes some performance results. Section 6 offers some conclusions. and It
describes new features that HP SQl is planning to provide to the user In the near future
to be even more competitive In the OlTP environment.

2. Isolation Level Definition

The concept of Isolation level has been reported as a level of consistency In [2.3.4].
level of consistency Is defined as the kind of anomalies that can occur In the system
during the execution of concurrent transactions. Some of these anomalies are:

• "dirty read": a transaction T1 can read a tuple that has been just created by another
transaction T2 which Is aborted after T1 has read the tuple.

• "non-repeatable read": transaction T1 Is not guaranteed to get the same tuple If It
re-reads It.

• "phantom read" transaction T1 Is not guaranteed that It will ge1 the same set of
tuples matching a given search condition if It re-reads the tabje using the same
search condition

The level of consistency for O. 2. and 4 are defined In (4]. The user might experience all
three anomalies When he uses consistency level O. with consistency level 2 the user
might experience non-repeatable reads and phantom reads. and with consistency level
4 the user will not experience any anomaly.

HP SQL defines Isolation Level as a property of an access to a table. defined In the data
base. through a cursor from the concurrency point of view. A cursor In the HP SQl Is an
address of some specific tuple in a table. A cursor Is associated with a type of access
to a table. The HP SQl product prOVides internally Index access and sequential access.
A cursor can be defined explicitly by the user through the SQl DECLARE command or
Implicitly by the HP SQl product. There are eight Isolation levels of which The HP SQL

The Advance of HP SQL - Towards the OLTP Market
2055-2

product currently support five. The relationship between Isolation level and level of
consistency Is shown In Figure 1.

A description of each Isolation level and an example of how to use It using the
"accounts" PUBLIC table are provided below. let us assume that the "accounts" table
has four columns: account number, account name, debit, and credit. Each example
shows the type of locks that the HP SQl product acquires on behalf of the transaction.
However. In order to describe the concurrency between transactions. two concepts
must be Introduced first. READ ONlV TRANSACTION Is an HP SQl feature under
investigation In which updates are not allowed, while in a READ-WRITE TRANSACTION,
retrievals and update are allowed. Only the READ-WRITE transaction Is currently

. supported by the HP SQl product.

The definition of each Isolation level Is based on the set of tuples that the transaction
retrieves through a cursor and the protection that this transaction provides to the set
from the concurrency point of view. A cursor Is associated with the type of scan done
to a table. There two types of scans, index scan and relation scan.

Isolation Level Level of
Consistency

Repeatable Read with Intent Update

4
Repeatable Read

Phantom Read with Intent Update

3
Phantom Read

Cursor Stab~ity with Intent Update

2
Cursor Stabftity

Read Committed 1

Read Uncommitted 0
Figure 1

The Advance of HP SQL - Towards the OLTP Market
2055-3

2.1 Repeatable Read

The set of tuples obtained- through a cursor, matching the search condition, within a
transaction can not be updated by another transaction; however, It can be read by
another READ-WRITE transaction. No data can be added to the table that matches the
search condition of the cursor through another transaction. Therefore, the same set of
tuples are generated If the data Is re-read using the same cursor.

EXEC SQl BEGIN WORK RR;

EXEC SQl SELECT * FROM accounts WHERE
credit > 1500.00;

EXEC SQl UPDATE accounts SET credit =credlt*1.1
WHERE debit =0;

EXEC SQl COMMIT WORK:

In order to explain the type of locks that the HP SQl product acquires on behalf of the
SQl SELECT command, we can loosely say that the SQl SELECT command Is divided
internally into a) open scan, b) several Internal FETCH commands, and c) close scan.

• Index scan: Subshare lock on the "accounts" table Is acquired by the HP SQl product
at open time. When the Internal FETCH command Is executed, a share lock Is
acquired by the HP SQl product for Index and data pages. Once the SQl UPDATE
command Is executed, the subshare lock In the "accounts" table is promoted from
subshare to subexcluslve. Besides, for each updated page, there Is a promotion of
the lock from share to exclusive.

• Relation scan: Share lock is acquired by the HP SQl product on the "accounts" table
at open time. When the Internal FETCH command Is executed, no locks are acquired
by HP SQl product. Once the SQl UPDATE command Is executed. the share lock on
the "accounts" table Is promoted to share subexcluslve.

• Concurrency: Other READ/WRITE transactions can be executed concurrently with the
above transaction between the SQl SELECT and the SQl UPDATE commands.
Deadlocks can occur In this scheme during lock promotion.

• Usability: This Isolation level should be used If the set of tuples to be retrieved willnet' be updated within the transaction. The user should either specify or let It default
to the RR option In the SQl BEGIN WORK command. If the user only wants to retrieve
and not update the data using the SQl FETCH command, the user ~1j?iRr{l n9~: use the
FOR UPDATE clause In the SQl DECLARE command.

The Advance of HP SQL - Towards the OLTP Market
2055- 4

2.2 Repeatable Read with Intent Update

The set of tuples obtained through a cursor. matching the search condition, within a
transaction can not be updated by another transaction. Also, this set of tuples can not
be read by another transaction unless It Is a READ ONlV TRANSACTION and the data has
not yet been modified. READ ONlV TRANSACTION is an HP SQl feature under
Investigation in which updates are not allowed within the transaction. No data can be
added to the table that matches the search condition of the cursor through another
transaction. Therefore, the same set of tuples are generated if the data is re-read
using the same cursor.

EXEC SQl BEGIN WORK RR;

EXEC SQl DECLARE c1 CURSOR FOR SELECT • FROM accounts WHERE
credit > 1500.00 FOR UPDATE OF credit;

EXEC SQl OPEN c1;

EXEC SQl FETCH c1 INTO :hostvar;

EXEC SQl UPDATE accounts SET credit =:credlt*0.1 WHERE CURRENT OF c1;

EXEC SQl CLOSE c1;

EXEC SQl COMMIT WORK;

• Index scan: Subexclusive lock on the "accounts" table Is acquired by the HP SQl
product at open time. When the SQl FETCH command Is executed, share locks are
acquired for non-leaf index pages. and share subexcluslve locks are acquired for
leaf Index pages and data pages.

• Relation scan: Share subexcluslve lock is acquired by the HP SQl product on the
"accounts" table at open time. When the SQL FETCH Statement is executed, share
subexcluslve locks are acquired by the HP SQL product on data pages that match
the search condition (credit> 1500.00)

• Concurrency: Only READ ONLV transactions can execute concurrently with the above
transaction between the SQl FETCH and SQL UPDATE commands. READ-WRITE
transactions can execute concurrently with the above transaction if the READ-WRITE
transaction Is doing only retrieval on a different subset of tuples than the above
transaction and It Is using index scan. Once the SQL UPDATE command is executed,
the lock on each updated page Is promoted from share subexcluslve to exclusive.
Promotion of a lock from share subexcluslve to exclusive does not generate a
deadlock.

• UsabUlly: This Isolation Level should be used If the set of tuples to be retrieved will
be updated within the transaction. The user should either specify or let It default to
the RR option In the SQl BEGIN WORK command and should use the FOR UPDATE
clause In the SQL DECLARE command.

The Advance of HP SQL - Towards the OLTP Market
2055-5

2.3 Phantom Read

The set of tuples obtained through a cursor. matching the search condition. within a
transaction can not be updated by another transaction; however. It can be read by
another transaction. Data can be added to the table that matches the search condition
ih~~l~!.;through another transaction. £Ifj ,!"~ ~(' ~~i(~, i'q@! DI i.!l ~~pP*?~l

2.4 Phantom Read with Intent Update

The set of tuples obtained through a cursor. matching the search condition. within a
transaction can not be updated by another transaction. Also. this set of tuples can not
be read by another transaction unless It Is a READ ONLV TRANSACTION (updates are not
allowed within the transaction). Data can be added to the table that matches the
~e.arch col1dltlon ()f theC?ursor through another transaction. rh.- IJP ~q~, pr~u~l ~~§.

;,ot Yet .~pport :~IJ~s f~r'li~';

2.5 Cursor Stability

The set of tuples obtained through a cursor. matching the search condition. within a
transaction can not be updated by another transaction while the cursor has
addressabUity to the set of tuples; however. It can be read by another READ-WRITE
transaction. Data can be added to the table that matches the search condition of the
cursor through another transaction.

EXEC SQL BEGIN WORK CS;

EXEC SQL SELECT - FROM accounts WHERE
credit> 1500.00;

EXEC SQL UPDATE accounts SET credit = credlt-1.1
WHERE debit = 0;

EXEC SQL COMMIT WORK;

In order to explain the type of locks that the HP SQL product acquires on behalf of the
SQL SELECT command. we can loosely say that the SQL SELECT command Is divided
Internally Into a) open scan. b) several Internal FETCH commands. and c) close scan.

• Index scan: Subshare lock on the "accounts" table Is acqUired by the HP SQL product
at open time. When the Internal FETCH command Is executed. share locks are
acquired for the leaf Index pages and for data pages containing tuples that match
the search condition. No locks are acquired for the non-leaf index pages. and
non-exclusive locks are released between Internc:1 fETCH commands.

The Advance of HP SQL - Towards the OLTP Market
2055-6

• Relation scan: Subshare lock Is acquired by the HP SQL product on the "accounts"
table at open time. When the Internal FETCH command Is executed. share locks are
acquired by the HP SQL product for each page that contains tuples that match the
search condition. Non-exclusive locks are released between Internal FETCH
commands.

• Concurrency: READ-WRITE transactions can be executed concurrently with the above
transaction. Once the SQL UPDATE command Is executed. for each page that Is
updated. the lock Is promoted from share subexcluslve to exclusive. Deadlocks can
occur In this scheme during the promotion of a lock.

.• Usability: This Isolation Level should be used If the set of tuples to be retrieved will
np't: be updated within the transaction. and the user will not re-read the data again
within the transaction. The user should specify the CS option In the SQL BEGIN WORK
command and should ijp.~ use the FOR UPDATE clause In the SQL DECLARE command.

• h'~t~:~~gl; Since cursor stability holds locks only for the current FETCH command.
phantom rows can show up for the above transaction when another transaction
Inserts or updates tuples containing the credit column that matches the search
condition of the above SQl SELECT command. Therefore. If the user tries to
re-execute the SQl SELECT command within the same transaction. the user might
not get the same set of tuples. More Important. a set of tuples previously read may
be updated by another transaction and If It Is re-read some of the tuples would
contain new data. In other words. repeatable reads are not guaranteed by the HP
SQL product when the user uses cursor stability. Furthermore. a loss of
serializabillty can occur among transactions since locks are released before the
transaction Is committed. The execution of a set of transactions Is said to be
serlalizable If and only If It produces the same result as some serial execution of
those same transactions. To guarantee serializablllty locks should only be released
at the end of the transaction; otherwise, a loss of serlalizablllty occurs [2]. For
example. a loss of serlalizabUity might occurs If transaction T2 Is waiting for
resource R1 held by transaction T1. and transaction T1 releases resource R1 before T1
commits, then It Is possible for transaction T1 to walt for transaction T2 sometime
before transaction T1 Is committed. The user Is also advised not to use the scanned
data to update other tables of the data base since serlalizability among transactions
Is lost.

2.6 Cursor Stability with Intent Update

The set of tuples obtained through a cursor. matching the search condition, within a
transaction can not be updated by another transaction while the cursor has
addressabillty to the set of tuples. This set of tuples on which the cursor has
addressability can not be read by another transaction, unless It Is a READ ONLV
TRANSACTION and the data has not been modified yet. Data can be added to the table
that matches the search condition of the cursor.

EXEC SQL BEGIN WORK CS;

EXEC SQL DECLARE c1 CURSOR FOR SELECT * FROM accounts WHERE
credit> 1500.00 FOR UPDATE OF credit:

The Advance of HP SQL - Towards the OLTP Market
2055- 7

EXEC SQl OPEN c1;

EXEC SQl FETCH c11NTO :hostvar:

EXEC SQl UPDATE accounts SET credit =:credlt*O.1 WHERE CURRENT OF c1:

EXEC SQl CLOSE c1:

EXEC SQl COMMIT WORK:

• Index scan: Subexcluslve lock on the "accounts" table Is acquired by the HP SQl
product at open time. When the SQl FETCH command Is executed, a share
subexclusive lock Is acquired by the HP SQl product for the leaf Index page, and for
data pages that contain a tuple that matches the search condition. No locks are
acquired for the non-leaf Index pages, and non-exclusive locks are released
between two SQl FETCH commands.

Relation scan: Subexcluslve lock Is acquired by the HP SQl product on the
"accounts" table at open time. When the SQl FETCH Statement Is executed, share
subexcluslve locks are acquired by the HP SQl product for each page that contains
tuples that match the search condition. Non-exclusive locks are released between
two SQl FETCH commands.

• Concurrency: Only READ ONlV transactions can be executed concurrently with the
above transaction between the SQl FETCH and SQl UPDATE commands. READ-WRITE
transactions can execute concurrently with the above transaction If they are
working In a different set of tuples. Once the SQl UPDATE command Is executed, for
each page that Is updated, the lock Is promoted from share subexclusive to
exclusive. Since share subexclusive locks are compatible only with Intent to share
lock, there Is not deadlock during the promotion of a lock.

• Usability: This Isolation level should be used If the set of tuples to be retrieved will
be updated within the transaction, and the user will not re-read the data again within
the transaction. The user should specify the CS option In the SQl BEGIN WORK
command and should use the FOR UPDATE clause In the SQl DECLARE command.

• fltl:r~'~i.t.g·;;· The cursor stability warning applies to this Isolation Level.

2.7 Read Committed

The set of tuples obtained through a cursor, matching the search condition, within a
transaction does not have any locks associated with It, when the data Is presented to
the user. locks are acquired during the data retrieval to guarantee that only committed
data Is read.

EXEC SQL BEGIN WORK RC:

The Advance of HP SQL - Towards the OLTP Market
2055- 8

EXEC SQL DECLARE c1 CURSOR FOR SELECT • FROM accounts WHERE
credit > 1500.00;

EXEC SQL OPEN c1;

EXEC SQL FETCH c1;

EXEC SQL CLOSE c1;

EXEC SQL COMMIT WORK;

• No locks are held when the data Is returned to the user regardless of the type of
scan. The Read committed option guarantees that the set of tuples Is committed and
It Is not being updated at the Instant that HP SQL retrieves the set of tuples.
Subshare lock Is used on the "accounts" table. and share locks are used on the leaf
Index pages and data pages; however. all locks are released before the retrieved
data Is exposed to the user.

• Concurrency: READ-WRITE transactions can be executed concurrently with the above
transaction.

• Usability: This Isolation Level should be used If the set of tuples to be retrieved will
not be updated within the transaction and the user will not re-read the data again
within the transaction. The user should specify the RC option In the SQL BEGIN WORK
command and should use the FOR UPDATE clause in the SQL DECLARE command.

• flarningt The cursor stability warning applies to this Isolation Level plus data being
looked at may be updated. Data should not be updated based on reading with read
committed.

2.8 Read Uncommitted

The set of tuples obtained through a cursor, matching the search condition, Within a
transaction does not have any locks associated with It. No locks are acqUired during
data retrieval; therefore, the uncommitted data may be read. lt~~i tl~ §~~; ~g~9,~, ~~Io

ntiJ yeOt §."'ippg,,:~: ll:rlf rt~~~~~l;

3. HP SQl Isolation Level Implementation

This section describes the Implementation of the Isolation level concept. The major
challenge In the Implementation of the Isolation level concept was to answer the
following questions:

The Advance of HP SQL - Towards the OLTP Market
2055- 9

• Which type of lock should be acquired?

• Which locks should be released before the transaction Is committed?

• When the locks should be released?

In order to answer the above questions, the HP SQl Lock Manager was modified by
building relationships between the cursor and the lock requests. In other words, the
Implementation of the Isolation Level concept was only possible with the help of the lock
manager, since the control of concurrency among transactions is done by the lock
manager.

3.1 Type of lock acquired by the HP SQl product

For each new lock requested, the lock manager allocates a lock control block on behalf
of the transaction. The type of lock depends on the Isolation Level that the user has
specified in the SQL BEGIN WORK command, and whether or not the user has specified
the FOR UPDATE clause In the SQL DECLARE command. Intent to write locks are used for
any update command (I.e. SQL DELETE and UPDATE commands). The HP SQL product,
depending on the Isolation Level, might release non-exclusive locks before the
transaction Is committed.

3.2 Which locks to release

In order to know which lock control blocks the Lock Manager has to release. the Lock
Manager builds two linked lists to remember what was locked In the previous FETCH
command, and what is being locked In the current FETCH command. Both linked lists are
chained off the scan control block. A scan control block Is created by the HP SQl
product whenever a cursor Is opened. Therefore, when the lock Manager Is requested
to release locks, It gets the locks associated with the previous FETCH command by
finding the approplate linked list pointed by the scan control block.

3.3 When to release locks

A lock request keeps an Isolation Level flag and a counter In each lock control block In
order to know when to release a lock. The Isolation Level flag Is defined to allow the
Lock Manager to release a lock before the transactIon Is committed. The counter Is
defined In order to know when to release the lock. If the Isolation Level flag Is off. the
lock Is not released until the transaction Is committed. The counter Is Incremented each
time the page Is locked on behalf of a cursor (scan control block) and It Is decremented
whenever the lock manager Is requested to release the lock. The lock Is released when
the counter becomes zero, and the Isolation flag Is set to true.

The Advance of HP SQL - Towards the OLTP Market
2055-10

4. Benchmark Example

In order to measure the performance gain of an application that uses the concept of
Isolation Level. a banking transaction benchmark was designed and Implemented. The
benchmark simulates a banking system where tellers update bank accounts on-line
(done by a foreground process). The generation of reports and bookkeeping work are
done In background (done by three background processes).

The benchmark accesses the following tables defined within the data base.

• Accounts Table. It has four columns: account-number. account-name. debit. and
credit. A unique Index is defined on the account-number column.

• Tellers Table. It has three columns: teller-number. teller-name. and branch-number. A
unique Index Is defined on the teller-number column.

• Branches Table. It has four columns: branch-number. branch-name. debit. and credit.
A unique Index Is defined on the branch-number column.

• History Table. It has seven columns: voucher-number. account-number. teller-number.
action. amount. date. and status. A unique Index Is defined on the voucher-number
column and another unique Index Is defined on date column.

• Voucher Table. It has only one column named voucher-number.

Descriptions of the transactions for the foreground process and background processes
are explained In the following paragraphs.

4.1 Transactions for the foreground process

The foreground process executes three types of transactions to simulate a banking
system application. The first transaction executes an update of an account In the
"accounts" table when money Is withdrawn. The second transaction generates a small
report on the status of each account. The third transaction Increments the voucher
number In the voucher table.

4.1.1 First transaction for tbe foreground process

The client enters the account number. and the teller number and the branch number are
entered by the banking system where the client withdraws the money. The execution
of the withdrawal transactIon Involves four steps.

• update to the ·'deblt.. field for a given account number In the "accounts" table.

The Advance of HP SQL - Towards the OLTP Market
2055- 11

• get a "branch_number" for a given "teller_number" In the "tellers" table.
• update "debit" field for a given "branch_number" In the "branches" table.
• insert a tuple In the "history" table to Indicate that an action was done.

4. 1.2 Second transaction for the foreground process

The second transaction generates a report for all accounts that are between a range of
values provided by the banking system.

4.1.3 Third transaction for the foreground process

The third transaction gets the voucher number from the voucher table and Increments It
by one (1).

4.2 Transactions for the first background process

The first background process executes two types of transactions. The' first transaction
uses cursor stability to retrieve data from the "history" table. The second transaction
updates the "debit" field on the "accounts" table, and updates the "status" field In the
history table.

4.2.1 First transaction for the first background process

The first transaction retrieves tuples from the "history" table which have a value of
Z(;(o (0) In the "status" field. In this example, a scan on the whole table Is done;
however. concurrency among transactions Is allowed, since cursor stability Is used.
Cursor stability only holds locks between two SQL FETCH commands, and the BULK
SELECT command Is broken down Internally as a set of calls. loosely speaking. each
call Internally executes a FETCH command.

If repeatable read were used Instead of cursor stability, serialization among
transactions would have happened because a share lock on the "history" table would
have prevented writers from accessing the table.

4.2.2 Second transaction for the first background process

The second transaction executes two updates. The first update Is done to the "debit"
field in the "accounts" table, and the other update Is done to the "status" field In the
"hlstory" table.

The Advance of HP SQL - Towards the OLTP Market
2055-12

4.3 Transactions for the second background process

The second background process executes two types of transactions. The first
transaction uses cursor stability during the retrieval of tuples from the "hlstory" table.
The second transaction deletes tuples from the "hlstory" table that match a given
voucher number.

4.3. 1 First transaction for the second background process

The first transaction scans the whole table to find tuples which have a status value of
one (1) In the "hlstory" table. Since cursor stability Is used. concurrency among
transactions Is allowed during the scan of the "history" table. Cursor stability only holds
locks between two SQL FETCH commands. and the BULK SELECT command Is broken
down Internally as a set of calls. Loosely speaking. each call Internally executes a
FETCH command.

If repeatable read were used Instead of cursor stability. serialization among
transactions would have happened because a share lock on the "hlstory" table would
have prevented writers from accessing the table.

4.3. Z Second transaction for the second background process

The second transaction deletes from the "hlstory" table all tuples that match a given
voucher number.

4.4 Transactions for the third background process

The third background process executes only one transaction using cursor stability. It
produces a report from the "account" table. Cursor stability only holds locks between
two SQL FETCH commands. and the BULK SELECT command Is broken down Internally as
a set of calls. Loosely speaking. each call Internally executes a FETCH command.

If repeatable read were used Instead of cursor stability. serialization among
transactions would have happened because a share lock on the "hlstory" table would
have prevented writers from accessing the table.

5. Performance Results

Two metrlcs were used to measure the performance of the HP SQL product. The first
one was response time. and the second one was the number of transactions executed
per hour.

The Advance of HP SQL - Towards the OLTP Market
2055-13

The following table describes results demostrated by the benchmark when It was run on
the on a HP-840 series, with HP-UX release 2.0, 24 Mbytes of memory, and 1 swap
space. The benchmark used a 13 secnd delay, and only the third background process
was run.

Using only Repeatable Read

'# of users '# of TranX Ave. Elap(sec) TranXlHr # of Deadlocks

1 50 36199.76 5 0
3 150 35427.99 15 0
5 250 37848.40 24 0

Using Cursor Stability and Repeatable Read with Intent Update

'# of users '# of TranX Ave. Elap(sec) TranXlHr '# of Deadlocks

1 50 1241.38 145 0

7 350 1238.94 1017 0

13 650 1222.57 1914 0

17 850 1282.34 2667 0

23 1150 1280.15 3234 0

Figure 5

The above performance table shows us that the throughput Is about 20 times higher
when the benchmark uses cursor stability and repeatable read with Intent update
Instead of repeatable read only. Better results have been obtained when the concept of
dlsabUng data definition was Introduced. Disabling data definition Implies that no data
definition operations are allowed to execute concurrently with the normal data
operations. Performance results using the disabling data definition feature can be found
In [1].

The Advance of HP SQL - Towards tIle OLTP Market
2055-14

6. Conclusions and Future Work

It Is clear. from Section 5. that the HP SQL strategy. of allowing the user to specify the
Isolation level. allows the user to see a tremendous Increase In throughput of the
system. HP SQL allows the user to control the concurrency of his applications to
generate fewer locks and better concurrency. because the user knows the semantics
of the data. The Isolation Level concept was Implemented to allow the user to control
the concurrency of his application programs. The benchmark described In Section 4 was
used to show that repeatable read with Intent update and cursor stability have provided
an Increase of throughput 20 times better than the case In which only repeatable read
Is used.

Online transaction processing applications are characterized by large numbers of users
concurrently accessing and updating very large data bases. HP SQL has Implemented a
flexible synchronization scheme that coordinates the accesses to the data base. and
provides a good crash recovery mechanism that preserves the logical and physical
consistency of the data base. Section 3 described the modification done to the Lock
Manager to achieve a high level of concurrency without perturbing the logical and
physical consistency of the data base.

In order to be even more competitive HP SQL Is Investigating. as a further concurrency
enhancement. providing read uncommitted for users who only need physical
consistency. Furthermore, the HP SQL product is investigating a feature that allows the
user to commit a transaction. thereby releasing both read and write locks. but
preserves the scan position for use in the subsequent transaction.

AcknOWledgments:

Dora Lee and Edward Cheng were key players In the Implementation of cursor stability.
Birgit Luebke wrote the benchmark. Birgit Luebke With the help of Edward Cheng were
able to collect the performance data. Discussions with Frank Dean and Emmanuel
Onuegbe helped me to clarify the concept of Isolation Level. Alex Carlton provided
valuable editorial help In the draft version of the paper. The author Is also grateful to
Sena Palanlsaml. Scott Walecka. and Sam Prather who supported this Implementation.

References

[1] Edward Cheng. Performance In HP SQL. INTEREX. August 1988.

[2] C.J. Date An Introduction to Database Systems Volume II. Addison-Wesley PUblishing
Company.

[3] J.N. Gray, R.A. Lorle. G.R. Putzolu. I.L. Tralger. GranUlarity of locks and Degrees of
Consistency In a Shared Data Base. Modeling In Data Base Management Systems. G.M.
Nijssen. (ed.) North Holland Publishing Company. 1976 (pages 365-392)

The Advance of HP SQL - Towards the OLTP Market
2055- IS

{4] Jim Melton ISO-ANSI (working draft) SQL2. Jim Melton (ed.). April 1988. (pages 23.
24.190)

[5] Ragaa K. Ishak. Concurrency Control In HP SQL. INTEREX. May 1988.

The Advance of liP SQL - Towards the OLTP Market
2055- 16

	The Advance of HP SQL - Towards the OLTP Market

