
MPE XL Mapped Files

Bryan Carroll
Computer Systems Division

Hewlett Packard
Building 44-MV

19111 Pruneridge Avenue
Cupertino, Ca. 95014

Introduction

The MPE XL operating system introduces many new, exciting and
powerful features to make programs more efficient and perform
more effectively. Perhaps the single most powerful and
exciting new feature of MPE XL is User Mapped File Access.
User Mapped File Access can increase the efficiency of an
application causing it to run many times faster than it would
without User Mapped File Access. This paper will explore how
mapped files are implemented, the performance gains possible,
and some uses of User Mapped Files to replace MPE V features
and increase application performance.

User Mapped Files are possible because of the HP Precision
Architecture's expanded 64 bit address space. A Mapped File
is a disc file that is mapped directly into the virtual
address space. User Mapped Files are managed with pointers
that are returned from a new system intrinsic, HPFOPEN, which
has similar functionality to the existing MPE V FOPEN. The
use of pointers allows a programmer to view a Mapped File as
if it were a large array. Once the Mapped File is open, the
file system is not needed to access the file until you are
ready to close the file. As a program moves through a file it
will eventually access a part of the file which is not in
memory. The memory manager will be invoked to bring the
missing part of the file into memory so it can be accessed by
the program.

Impressive performance gains have been observed with Mapped
Files. with the use of pointers, all file system overhead can
be bypassed which increases performance. User Mapped File
Access essentially replaces MPE Disc Caching functionality in
many cases without the overhead of the file system or Disc
Caching software which further increases performance.

Mapped •
2066~1

Happec! :riles

User Mapped File Access is available directly to MPE XL userswithout special capabilities via the HPFOPEN intrinsic (newwith MPE XL). User Mapped File Access is also available tothe various modules in the operating system and, in a way, allfiles on the system are accessed as Mapped Files. Thedifference between User Mapped Files and Mapped Files accessedthrough the file system is who controls the pointer to thefile. If a file is accessed with the file system intrinsics(FREAD, FWRITE, etc), the file system will maintain thepointer to the file. If a file is opened with HPFOPENspecifying the appropriate options, a pointer is returned tothe caller who can access the file by referencing the pointer.A file can be opened with User Mapped Access and accessed witha pointer as well as accessed with the file system intrinsics.In this case, there are two separate pointers for the file,one maintained by the file system and the other maintained bythe user program.

MPB XL File Sys1:em

The major advantage in using User Mapped File Access is theperformance benefit that can be realized in bypassing the filesystem. Let's take a look at some of the tasks performed bythe MPE XL File System so we can better understand the size ofthe performance gains possible with User Mapped File Access.

File System Example - FREAD

Let's examine a commonly used intrinsic like FREAD. The paththrough FREAD can be broken down into three major sections;the FREAD Intrinsic itself, the Type Manager, and the StorageManager.

The FREAD intrinsic is responsible for the usual checking ofparameters that takes place for all intrinsics. FREAD mustalso obtain the Process Local File Descriptor (PLFD) entry forthe given file. The PLFD is like the MPE V Active File Table(AFT) which keeps track of all open files. The FREADintrinsic must also verify your access rights to the file eachtime the intrinsic is called.

The Type Manager is a new concept within MPE XL. There is aType Manager for each specific type of file such as FixedRecord Length disc files, or Variable Record Length disc

Mapped
2066-2

files. The Type Manager is responsible for obtaining the
Global Data Pointer Descriptor (GDPD), which is very similar
to the virtual address used for User Mapped Access which we
will discuss later. The Type Manager is also responsible for
locking the Global unique File Descriptor (GUFD), which is
like a combination of File Control Blocks (FCB) used on MPE V.
The final task of the Type Manager is to check the connection
between this file and another new MPE XL concept, the
transaction manager. The transaction manager is an operating
system subsystem which provides data integrity to many disc
resident structures including selected user files.

The third section of the FREAD path involves another new
concept, the s~oraqe Hanager. There is a unique storage
Manager for each type of physical storage device such as
discs, tapes and printers. In the FREAD path, the storage
manager is responsible for determining if a prefetch must be
performed. The storage Manager is also responsible for
informing the memory manager when an I/O must be performed.
The memory manager is responsible for all I/O on MPE XL
systems.

The prefetch defined by the storage Manager comes in two
varieties: hard prefetches in which a process must block, and
soft prefetches which do not require a process to block. The
storage Manager will prefetch from two pages (8K bytes) to a
maximum of 64 pages (256K bytes) depending on the method of
access (random or sequential). The storage Manager optimizes
the prefetch very well. If four consecutive reads take place
to consecutive addresses in the file, the storage Manager will
recognize this as sequential I/O and perform a prefetch of 32
pages EVEN IF YOU ARE USING FREADDIR!

User lIappe4 Piles

User Mapped File Access bypasses all of the above file system
code and allows the user to directly access file pages. A
file page is just a main memory copy of a 4K byte portion of a
Mapped File. User Mapped File Access works by referencing the
file as an array. A reference to a part of the file that is
not already in memory will result in a page fault and the
memory manager will bring the needed file page into memory,
just as when a fault on a code page causes the memory manager
to bring in the needed code page.

Mapped

2066~3

Mapped File
BUF := PTR

A

Perform 1/0

File System

FREAD
INTRINSIC

- Parameters

- Obtain PLFD

- Check Acce88

Type Manager
- Obtain GDPD
- Lock GUFD

- Check XM
Storage Managel

- Check Preftec.
- Inform MM

Perform 1/0

Kapped piles XL.. pile system.

The performance gains possible with User Mapped Files whencompared with using the MPE XL File System vary depending onthe operation. In general, the CPU time required to perform aset of file operations will always be less when using UserMapped Files. The elapsed times however, will vary dependingon the access (random or sequential). In general, the elapsedtimes for random access using User Mapped Access will be lessthan when using the file system. The elapsed times forsequential access of large files is often longer when usingUser Mapped File Access because of the prefetching the MPE XLFile System can perform. Consider the following two examples:

Mapped
2066-4

Example 1 - Random Reads

Environment: Native Mode Pascal/XL program, 2 HP7933
Discs, 25000 record (100 MB) file,
blocking factor = 1.

Test:

Results:

500 Random Reads

User Mapped File:
MPE XL File System:
Performance Gain:

C~

913 ms
1629 ms

78%

Elapsed
9958 ms

28459 ms
186%

Example 2 - sequential Reads

Environment: Native Mode Pascal/XL program, 2 HP7933
Discs, 25000 record (100 MB) file,
blocking factor = 1.

Test: 25000 Sequential Reads

Results:

MPH Disc caching

User Mapped File:
MPE XL File System:
Performance Gain:

C~

41017 ms
73277 ms

79%

Elapsed
917393 ms
307447 ms

-66%

User Mapped File Access is a new and improved implementation
of MPE V Disc Caching for some situations. The overhead
involved with searching cache domains and mapped entries is
eliminated when compared with User Mapped File Access.

The concepts of User Mapped File Access are very similar to
MPE V Disc Caching except for the reduced CPU overhead of
Mapped Files, and the prefetch or domain size is fixed at 4K
bytes. When performing random access, the reduced CPU
overhead allows User Mapped Files to perform better than all
other access methods as illustrated in Example 1 above.
Despite the larger prefetches available through the file
system, User Mapped File Access can sometimes outperform the
file system even when performing sequential operations because
of the greatly reduced CPU requirement of User Mapped File
Access.

Mapped

2066-5

Languages

User Mapped File Access requires the use of a "pointer type"variable and therefore can only be used with languages thatwill support a pointer type variable. User Mapped File Accessis also not available in compatibility mode. The onlylanguages that currently meet these requirements are HPPascal/XL and HP C/XL. A possible third alternative is theSPL language when used with the native mode SPLash compilersince SPL supports a pointer variable type. Please contactthe SPLash vendor, Software Research Northwest, for moreinformation about the use of SPLash with User Mapped FileAccess.

It is possible to use User Mapped File Access from languagesthat do not support a pointer type variable by using
procedure~, functions or subroutines. A routine could bewritten 1n a language that does support the pointer typevariable like Pascal/XL which could then be called from themain application which could be written in a language withoutpointer types like COBOL/XL or FORTRAN/XL. This option shouldbe carefully considered since it adds complexity to the designof the application and therefore reduces supportability. Thisadded level of complexity may not be worth the potentialincreased performance of User Mapped File Access.

BPJ'OPEN

The new MPE XL File System Intrinsic, HPFOPEN, provides accessto the file pointers needed by programs wanting to use UserMapped File Access. Although the FOPEN intrinsic is stillavailable, the new HPFOPEN intrinsic is a native mode supersetof FOPEN and should be used in all native mode applications.
The new HPFOPEN intrinsic uses the following format.
HPFOPEN(FlLENUM, STATUS, itemnum, item,

itemnum, item,

. .
itemnum, item);

The itemnum/item pairs replace the positional FOPEN parametersand are used for specifying all file open criteria to HPFOPEN.A complete list of the item numbers, which currently rangefrom 0 to 59, is available in the MPE XL Intrinsics ReferenceManual (Part Number 32650-90028). There are item numbers for

Mapped

2066-6

all FOPEN parameters like record size, file code and blocking
factor, as well as many new parameters like the 'will access'
parameter to specify your anticipated access (Random or
Sequential), and the 'long mapped' option for use with User
Mapped Files.

User Mapped Access BPFOPEH Parameters

There are only two HPFOPEN parameters that are specific to
User Mapped File Access, Long Mapped and Short Mapped. Since
all files are really mapped files, the only thing we must do
to receive mapped access to the file is to obtain the pointer
to the file. This ability is provided in two different forms;
a 64 bit long pointer (Long Mapped) and a 32 bit short pointer
(Short Mapped). Specifying either of these two parameters to
the HPFOPEN intrinsic will return the appropriate length
pointer to your program. Opening a file with either of these
mapped parameters does not prevent you from using any of the
file system intrinsics like FREAD and FWRITE. File system
intrinsics and User Mapped File Access can be used together by
the same application.

Once the file is opened by HPFOPEN using either' the Long or
Short Mapped options, data can be read from or written to the
file by indexing off the pointer. The pointer returned by
HPFOPEN points to the first byte in the first record of the
file. Unpacking of records in a variable length or undefined
length record file must be performed by the user program. If
the file has user labels, these can be accessed by negatively
indexing from the pointer returned by HPFOPEN.

The following example contains portions of a Pascal/XL program
which randomly reads and writes to a file using User Mapped
File Access:

const
t~e

var

page len = 4096;
page-t~e = packed array [l •• page_len]
file~ointer_t~e= A $extnaddr$ page_t~e;
base_file-ptr : file-pointer_t~e;

file-ptr file-pointer_type;
rec num integer;
num-recs integer;
filename packed array [1 •• 38] of char;
perm file integer;
update access integer;
buf - page_type;

Mapped

2066-7

of char;

begin

HPFOPEN(fi1e num, file status,
2 , fIlename, -
3, perm file,

11, update_access,
21, base_fi1eJ)tr); (Long Mapped Pointer)

file-ptr := addtopointer(base_fi1e-ptr, rec_num * page_len);if read only then
buf := file-ptrA; Read record 'rec_num' into buf }else
file-ptrA := buf; write buf into record 'rec num'

In the above example, a file is opened with the HPFOPENintrinsic and depending on the 'read only' flag, data iswritten to or read from the file -using the Long Mappedpointer. Part of the power of User Mapped File Access can beseen in this example. The reading and writing of the file isperformed by the memory manager when the pointer is simplyreferenced in an assignment statement. Notice in the examplethat the pointer returned by HPFOPEN which points to the firstbyte in the file is retained and a second pointer is used tomove through the file.

programming Considerations and Limitations
Most new features and enhancements have tradeoffs and it is nodifferent with User Mapped File Access. The benefits ofbypassing the file system with User Mapped Files also has thecost that some file system operations must still be performedand are left to the user. Designers and Programmers must beaware of several considerations and limitations involving the

Mapped

2066-8

use of User Mapped Files. We have already discussed the
Language considerations and will now introduce other
considerations and limitations one at a time.

End of pile Pointer

One of the benefits of using User Mapped Files is that the
file system overhead can be eliminated. Some functions that
the file system would normally perform, like maintaining the
end of file (EOF) pointer, must still be performed. Since the
file system is not normally called when using User Mapped
Files, the user must maintain the end of file pointer.
Anytime data is added to a file beyond the current end of file
pointer, this data will be lost unless the program also moves
the end of file pointer. The end of file pointer can be
maintained with the FPOINT and FCONTROL intrinsics as in the
following example.

const
type

var

begin

page len = 4096;
page-type = packed array [l .• page_len]
file~ointer_type= A $extnaddr$ page_type;
base_fileJ>tr : fileJ>ointer_type;
fileJ>tr fileJ>0inter_type;
new eof integer;
current eof integer;
num recs integer;
filename packed array [1 •• 38] of char;
perm file integer;
update_access integer;

of char;

hpfopen(file num,file status,
2, fIlename, -
3, perm file,

11, update access,
21, base_fIleJ>tr);

{ Get the current EOF }
flabelinfo(filename, 0, error, itemnums, items, itemerrors);

Mapped

2066-9

new eof := current eof + num recs:
fpolnt(file_num, new_eof): -
if ccode <> cce then error:

Compute new EOF }
Move the File Pointer

fcontrol(file num, 6, dummy):
if ccode <> cae then error:

Post the new EOF }

In the above example, a User Mapped File is opened and
'num recs' records were added to the end of the file. In
order to preserve these records, the end of file pointer had
to be moved out 'num recs' records which is performed by
moving the current record pointer with FPOINT and posting the
end of file pointer at that point with the FCONTROL intrinsic.
If the end of file pointer had not been moved by the program
which added records to the User Mapped File, the new records
would have been lost since they were added to the file beyond
the file limit.

User Happed Files and File Types

Opening a file with User Mapped File Access allows the user to
manipulate the data within the file, including any file
structure information like end-of-record markers in variable
length record files without restriction. In order to preserve
the integrity of file types that incorporate file structure
information in the file along with the data, User Mapped File
Access will not be granted to certain file types. File types
restricted from User Mapped File Access include Relative I/O
files (RIO), Circular files (CrR), Message files (MSG) and any
non-disc files. Files with variable length records and KSAM
files can be opened as User Mapped Files only if they are also
opened with read only access.

Concurrent User Happed File Access

When a User Mapped File is opened with a Short Pointer, space
for that file is allocated from a finite set of virtual
addresses that I will refer to here as Short Pointer space.
This space for Short Pointers with finite capacity is a
central pool of space for the entire system. Because it is a
finite resource, its usage is limited to a maximum of four
megabytes per file opened with a Short Pointer, and a maximum
of six megabytes of Short Pointer Space used for User Mapped

Mapped

206.6-10

Files at anyone time. A four megabyte file is equivalent to
a file holding about 15000 sectors while a limit of six
megabytes for all files opened with Short Pointers is
equivalent to files consuming about 23000 sectors.

An additional consideration regarding pointers is also related
to the finite capacity of Short Pointer Space. If a file is
first opened as a User Mapped File with a Long Pointer, any
subsequent attempt to open the file as a User Mapped File with
a Short Pointer will be denied because the file cannot be
re-mapped into Short Pointer Space. If, however, the file was
first opened as a User Mapped File with a Short Pointer, it
could be opened as a User Mapped File with a Long Pointer with
the above file size constraints. The default for both HPFOPEN
and FOPEN is to open a file with a Long Pointer. Once a file
has been opened with HPFOPEN (using defaults), FOPEN or User
Mapped File Access with a Long Pointer, it cannot be opened
with User Mapped File Access using a Short Pointer until all
accessors have closed the file.

Pro~ec~iOD ID's

Another consideration involving User Mapped File Access
involves the way the memory manager keeps track of the pages
that are in main memory. The memory manager maintains a table
called the Page Directory (PDIR). There is one entry in the
Page Directory for each page in memory. Each entry contains
information about the page such as its disc address and a
Protection ID or PID. Every time a page is referenced (such
as when a record in a User Mapped File is read or written),
the page directory is searched for the referenced page. This
search is performed in hardware and is very fast (usually
completing in 1/2 of one machine cycle). Once the entry is
located, the Protection ID is compared to a cache of
Protection ID's for the process which has just referenced the
page. If the Protection ID is not found, a software routine
must be invoked (an expensive operation) to determine if
access to this page can be granted to this process. Since the
Protection ID's are associated with the process, mUltiple
processes that share pages with other processes or access a
large number of pages randomly will require the software
routine to be invoked frequently to determine if access can be
granted to the new process. This software routine will add
the Protection ID to the processes Protection 10 cache and
remove the oldest entry in the cache. Consider the following
example:

Assume a process was accessing a User Mapped File.

Mapped

2066-11

Assume

that this process also accessed many other memory structures
such as code objects, data objects and other files. When the
process began, it would access the Mapped File and the file's
Protection ID would be added to the Protection ID cache for
the process. If the process continued to access other memory
structures, it is possible to create a situation where system
software would have to be invoked every time a page was
referenced to add the new Protection 10 to the user Protection
IO cache. This Protection IO thrashing could degrade system
performance when compared to using the file system since the
file system does not use the users Protection 10 cache. The
savings of bypassing the file system however, will usually
allow improved performance when compared with access through
the file system. We have not seen any cases where shared User
Mapped Files have degraded performance, but the potential is
there at least in theory.

ApplicatioDS for User Happed piles

There are many applications for User Mapped Files. This
efficient access method can be used to enhance the performance
of many applications. The most obvious application for User
Mapped Files is when a new application is being designed that
requires random access. User Mapped Files could be
implemented to store and retrieve data quickly and
efficiently.

User Happed Iil§a Replace Bxtra Data segments

When migrating an application from MPE V to MPE XL, there are
several MPE V features which have been duplicated in MPE XL,
but may not be as efficient as another MPE XL feature. MPE V
Extra Data Segments (XDS) is one such feature that has been
provided in MPE XL, but it is still in compatibility mode and
the original MPE V, design remains which prevents it from
performing as well as it could. One use of User Mapped Files
is to replace the Extra Data Segment procedure calls with
calls to user written native mode procedures that access User
Mapped Files.

One approach to this problem would be to write several
procedures with the same names as the Extra Data Segments
(GETDSEG, DMOVIN, DMOVOUT, FREEDSEG, ALTDSEG). These
procedure could then be added to a library that is referenced
by the main program which uses the Extra Data Segment
Intrinsics. The translation could be made between what the
Extra Data Segments expect and a User Mapped File in the user

Mapped
2066-12

written procedures. These procedures could be adapted to work
with several different applications and even third party
applications or applications where source code is not
available.

summary

User Mapped Files are a powerful tool to add to the
proqramminq and desiqn tool kit. As with most new features,
there are drawbacks, but in most cases, the drawbacks are far
outweiqhed by the benefits of User Mapped Files. Impressive
performance improvements have been observed from a variety of
applications runninq on MPE XL. User Mapped Files is one
benefit of the new Hewlett Packard Precision Architecture
which will prove very beneficial.

Mapped

2066-13

	MPE XL Mapped Files

