Help! Stack Overflow!
Alternatives for reducing stack size on MPE V/E HP 3000s

Lisa Burns Hartman
Hewlett-Packard
Corporate Offices
P. 0. Box 10301
Palo Alto, CA 94303

2067-1

STACK OVERFLOW! Those two words cause even the most experienced HP3000
programmers to groan and shake their heads. Writing a large applica-
tion and making it work within the HP3000’s stack limit of 32K words
can be a real challenge. In this article I will suggest some tech-
niques for handling large amounts of data within the constraints of the
3000°’s stack architecture.

What can cause a Stack overflow condition?

When a program aborts with a STACK OVERFLOW message, it means that the
32KW limit for stack size has been exceeded. If you are running a
brand new program and you encounter this message, it means that you
have simply placed too many variables on your stack at once. For a
COBOL program, this means that your Working Storage is too large for
the HP3000 to handle.

But what if you are maintaining an existing application which has run
successfully for some time and is now getting a STACK OVERFLOW message?
There are several possible reasons this might suddenly occur. Opening
additional databases or files will increase your stack size. Each ad-
ditional open adds between four and 16 bytes to this area. Another
programming change which may increase stack size would be a VPLUS form
change adding additional fields. VPLUS itself will use additional
buffer space for each added field, in addition to the necessary addi-
tional room within your program’s screen buffer.

Perhaps the most likely reason for an increase in stack size, however,
is a new call to an ‘additional subroutine. The linkage area necessary
to communicate with the subprogram will add permanent space to the
calling program. The local variables for the subprogram will add to
the stack size as well. If the subprogram is static, this additional
stack space will stay on the stack for the life of the process. If the
subprogram is dynamic, local variables will pop off the stack as soon
as control is returned to the calling program.

But, you protest, I haven’t touched the program! All I did was bring
up a new MIT, and now the application blows up. If your application
was running very close to the stack limit on one MIT, and you upgrade
your machine to the new MIT, this too can produce a stack overflow.
MPE intrinsic calls (file intrinsics, IMAGE calls, etc.) are frequently
changed for a new MIT. Just as for your own programs, their data usage
may go up as well. For example, an FOPEN on UMIT takes more space than
it did on T-MIT. Since all application programs call system intrin-
sics, changing a MIT can produce stack overflows in programs which ran
successfully on the previous MIT.

Stack Overflow
2067 - 2

Stack overflow: Quick fixes

Now that you have discovered the stack overflow, you have several op-
tions, some easy to implement, some harder. The first thing to try is
running your program with the MAXDATA parameter.

:RUN MYPROG ; MAXDATA=20000

The effect of this parameter is to increase the default stack size for
your program. The default stack size is set by the compiler and may be
inadequate for your program. It will certainly be inadequate for your
program if you are using VPLUS screens and intrinsics. Figure 1 shows
a diagram of the HP3000 stack structure. VPLUS intrinsics place data
in the DL to DB area of your stack. Compiler defaults for the DL to DB
area do not allow for this needed additional space. The MAXDATA param-
eter is therefore required to expand this area for VPLUS applications.
Note that the STACK parameter will not expand the DL to DB area and so
will not alleviate stack problems for VPLUS users.

The maximum value for the MAXDATA= parameter is 32000. The real word
count of this stack area is 31232, but MPE is nice enough to take 32000
and not make you remember that. Setting the value to the maximum will
not cause harm, since the stack space will be allocated as needed in 1K
increments. Thus, you may wish to go ahead and set MAXDATA to 32000.
If you would like to be more conservative, however, and have an idea of
how much stack size you really need for your application, experiment
with values until you find a minimum value which still avoids the stack
overflow. You can do this by beginning with MAXDATA=32000 and working
down by 5K increments, MAXDATA=31500, and so on, until you encounter an
overflow.

If you are fortunate enough to find a value of 32000 or less which
removes the stack overflow, congratulations! I recommend that you re-
PREP your program with this same MAXDATA option before releasing it to
your users. This will set the stack size for your object code to the
MAXDATA value permanently, so that if your user forgets to RUN your
program with the MAXDATA option, you will still be safe. Update your
PREP job to include this option, so that you will also be safe for fu-
ture program updates.

But what if you already have MAXDATA set at 32K, and you are still get-
ting an overflow? The second quick fix is to execute your program with
the NOCB (no control block) option:

:RUN MYPROG;NOCB

Stack Overflow
2067-3

The PCBX, or Process Control Block eXtention, is used by MPE to manage
the files and file equations used by your program (see figure 2a).
This area can be very large if your program opens multiple files. The
effect of the NOCB option is to move the PCBX area of your stack out to
an extra data segment, freeing up more space for your application
program’s data area (see figure 2b). Be aware, however, that this will
mean another data segment which must be CPU resident in order to ex-
ecute your program. If you are running on a machine which is memory-
bound, running your program with the NOCB option may increase memory
thrashing and degrade your application’s performance. Also, another
data segment means another DST (data segment table) entry. For MPE IV
and earlier MIT’s, the DST is limited to 192 entries. For machines
running these MIT’s, the NOCB option may cause the error "OUT OF DST
ENTRIES". MPE V machines will not be affected by an additional DST
entry, since the DST on these machines can be configured for up to 2048
entries. So, for most newer machines with adequate memory running MPE
V, the NOCB option poses no threat and may be a quick solution to a
sudden stack overflow.

Harder fixes

Suppose that you have tried the above two methods and are still en-
countering an overflow. You’re going to have to work a little harder
to solve your problem. The next thing to do is to look at your sub-
programs. Static subprograms, $CONTROL SUBPROGRAM in COBOL, place data
on the stack for the life of your process (see figure 3). This can be
a problem, especially if their data areas are large. Dynamic sub-
programs, $CONTROL DYNAMIC in COBOL, free up stack space once control
is returned to the calling program (see figure U4).

There are some things to be careful of when using dynamic subprograms.
Remember that since local data areas disappear once a subprogram is ex-
ited, care must be taken that any permanent data be passed back to the
calling program. Also, initialization routines will need to be ex-
ecuted each time a call is made to the dynamic subprogram.

Subprograms can have another effect on stack space. What if your main
program, PROG A, calls a subprogram, PROG B, which then makes its own
call to a third program, PROG C? What effect will nesting these sub-
programs have on your process’s stack? Figure 5 illustrates the effect
of this nesting. At the point it time when PROG C is being executed,
the data areas of all three subprograms will be resident on the stack.
This is true whether or not PROG B and PROG C are dynamic. Deep nest-
ing can thus greatly affect stack space. This is another area to
examine when checking your subprograms.

Stack Overflow
2067- 4

Still no 1luck, huh? You changed your subprograms to dynamic, you
eliminated excessive nesting of subprograms, and you are still aborting
with a stack overflow. It’s time to look at your data areas themsel-
ves. Do you duplicate data in several areas in your global data areas
(working storage and linkage in COBOL)? Are you passing more data than
is necessary to called subprograms? Structured analysis and design
techniques can help you identify necessary data flows. Taking the time
to examine what exactly is needed by a called module instead of simply
passing that variable called “01 Kitchen-sink-data-area” can help
reduce stack space.

Hardest fixes for big problems

Some applications are just plain big and need just plain big data
areas. If you suspect that this is your situation, you are going to
have to work still harder. The first thing to consider is storing
needed data outside of your stack. This can be done using extra data
segments or using MPE temporary files. In either case, the program
which needs access to the externally stored data will have to work har-
der than if the data were available directly.

An extra data segment (XDS) is an unstructured block of memory as-
sociated with your process. It can be used for large data areas, like
a report page which is being formatted all at once, or for a table
structure which occurs repeatedly. Programs accessing XDS must have
the special capability PH enabled. Programming with XDS requires XDS
intrinsics, GETDSEG, FREEDSEG, DMOVIN and DMOVOUT. The data segment is
created with GETDSEG, and then loaded with data via the DMOVOUT intrin-
sic. Once loaded, the data in the XDS cannot be accessed directly. To
access it, the programmer must bring the data into the stack using the
DMOVIN intrinsic, and then manipulate it within the stack (see Figure
6). Since the DMOVIN and DMOVOUT intrinsics work with byte addresses,
the programmer must keep an accurate count of where data is located
within the XDS. Finally, the programmer should destroy the XDS with
the FREEDSEG command. This will avoid problems with creating a data
segment which already exists if the program is run a second time from
the same session.

The advantages of XDS use is its speed. Since externally stored data
is memory-resident, access is very quick. There are some disadvant-
ages, however, and one is the programming complexity mentioned above.
An additional wrinkle is that if your data area will not fit in one
XDS, which has a maximum size of 32KW, you may need to work with
several. This will further complicate your programming. Also, since
the use of an XDS means an additional data segment for every user of

Stack Overflow
2067-5

the application program, this technique has the same problems as the
NOCB option. But for MPE V machines with adequate memory, the use of
XDS is a good solution.

An alternative to XDS use is the use of MPE temporary files for exter-
nal data storage. Temporary files have advantage that programming is
very simple. Programmers are typically familiar with file intrinsics
and are comfortable using them. Like XDS, temporary files can be used
for large data areas or for tables. Using the command intrinsic and
the BUILD command, the temporary file can be built within the program.
Simple reads and writes are used to access the data. The temporary
file will be destroyed when the process quits, or it can be destroyed
with the PURGE command within the program before the process
terminates.

Temporary files have the additional advantage that they are not limited
to 32KW and can be expanded as needed. And with disc caching enabled,
performance is comparable to XDS use. This is because the cache domain
for the temporary file will be memory resident, and reads and writes
will be done through memory transfer and will be very fast. However,
if you cannot guarantee that your program will run on a machine with
caching enabled, MPE file access will significantly affect your
program’s performance, since accessing the data stored in the file will
mean waiting for disc I/0. In this case, you should stick with XDS.

A final technique for solving stack overflow problems is Process
Handling. Process Handling (PH) capability allows a process to RUN
another program by creating a child process. The child process has its
own stack and is independent of its parent (see Figure 7). PH can be
used to treat a standalone subroutine, a print program for example, as
a separate process. Like XDS, PH has its own set of intrinsics. The
parent (calling) program uses the CREATE intrinsic to set up the child
process, and then initiates its execution with the ACTIVATE intrinsic.
At this point the parent program may use the SUSPEND intrinsic to stop
its own processing until the child’s function is complete. When the
child has completed its task, it wakes up the parent with the ACTIVATE
intrinsic, and then SUSPENDs itself. Finally, when the child will not
be called again, the parent process destroys the child using the
TERMINATE intrinsic.

PH has the advantage that the new child process gets its own stack --
another 32KW of space. There are some significant disadvantages to PH,
however, the worst of which is probably the programming complexity
described above. Care must be taken to synchronize the parent and
child as they ACTIVATE and SUSPEND each other. If this logic is
incorrect, data may be lost, or worse, both processes may be SUSPENDed

Stack Overflow
2067-6

at once, so that nothing will happen at all! It should also be noted
that since there is noticeable performance overhead on the first call
to the child, the child process should not be TERMINATEdA until it is
clear that no further calls are needed.

Programming with PH is further complicated by the fact that since the
child process is independent of its parent, it must perform its own
database opens and file opens, even if the parent has already opened
these files. It will then have its own file pointers and database con-
trol blocks. And since it cannot make use of linkage areas or passed
variables like a subprogram can, the child must use inter-process com-
munication techniques such as XDS or Job Control Words (JCW’s) in order
to pass data back to the parent.

A final caution about PH is that it will double the number of processes
running for a given application. This must be taken into account as
far as DST use and PCB entries are concerned, especially on MPE IV and
earlier MIT’s. Database applications must also remember that there
will now be twice as many processes accessing a given database, which
may affect IMAGE logging and database locking strategies.

How to avoid stack overflows in the future

The best way to avoid being surprised by stack overflow is to know how
much stack you are using in all areas of your application. The process
display within the process context of OPT.PUB.SYS can show you the ap-
proximate stack usage for a given program. By running the program on
one terminal and monitoring the stack use on another, you can see stack
size change as you perform different functions within your program.

Figure 8 shows an example of the process display. The process shown
has at one point used 27648 words of stack (SIZE). This is its "high-
water” mark, the largest the stack has been. Its PCBX area is 1329
words (SYSOV). Its VPLUS area is 7640 words (DL-DB). Its main program
has a data area of 10967 (DB-QI), and it has one subprogram with a data
area of 3924 words (QI-Q). To determine how large its stack is at
present, we need to subtract 3779 (S-Z), the space between the current
stack pointer and the high-water mark, from the high-water mark, 27648
(SIZE). Thus, the current stack usage for this program is 23869.

An alternative to OPT is available for programs which do not call VPLUS
intrinsics. For these programs, adding the data areas your main
program and subprograms will give you a close estimate of stack space.
This data area is shown in octal at the end of each compile listing.

Stack Overflow
2067-T

Keep in mind, however, that this total will not reflect the PCBX
portion of your stack.

Once you have established your current stack size, be aware of how
programming changes and enhancements will affect stack use. Increases
in linkage areas and global areas will add space, as will new called
modules and additional file opens. These increases must be considered
as you design these changes.

If you are dangerously close to the magic maximum value of 32636 words
(the PCBX area plus the MAXDATA area) take steps NOW to overcome the
problem, not when you blow up! Consider using XDS or temporary files.
Rewrite called subprograms as process handled programs. Break up one
program into several if possible. Buy yourself some room for growth.
You will sleep better at night if you know that your maximum stack use
is 22000, not 31999 words.

Of course, the real answer to stack space is to port to Spectrum, where
the 32K word limit will be a thing of the past. I can’t wait!

Stack Overflow
2067-8

HP3000 Data Stack

DL
VPLUS/3000

DB

Figure 1

Stack Overflow
2067- 9

:RUN MYPROG

PCBX

DL

DB

Stack Overflow
2067-10

Figure 2a

:RUN MYPROG;NOCB
XDS Stack

DL

DB
Q
Q
S
Z

PCBX

Figure 2b

Stack Overflow
2067-11

Static Subprbgram

Global Data

Local Data

Stack after GOBACK from subprogram

Figure 3

Stack Overflow
2067-12

Dynamic Subprogram

Global Data

Stack after GOBACK from subprogram

Figure 4

Stack Overflow
2067~ 13

Nesting Subprograms

Prog A Data

Prog B Data

Prog C Data

Figure 5

Stack Overflow
2067-14

Stack XDS

g

DMOVIN

-3

DMOVOUT

Figure 6

Stack Overflow
2067-15

Process
Handling

Figure 7

Stack Overflow
2067-16

Pigure 8

Process display within Process context of OPT.PUB.SYS

PIN: 403 MYPROG.MYGROUP.MYACCT USER: ME.MYACCT (s227) 1:12 PH
STACK INEORMATION | CPU TIME: 7057 MSEC|STATUS FLAGS:
DST: 1403% SYSov: 1329 4.8%| |
SIZE: 27648 DL-DB: 7640 27.6%| PRIORITY: 152 IMBNG GRIN LRIN
MAXDATA: 31223 DB-QI: 10967 39.7%| CAPABILITIES: ND SE|BIO 1/0 ucop
MAX Z-DL: 22955 QI-Q: 3924 14.2%| BA IA PH DS |JUNK TIME MSG
Q-S: 9 .0%| [

S-Z: 3779 13.7%| |

Stack Overflow
2067-17

A version of this article originally appeared in the Nov. 1987
edition of HP Professional magazine.

Stack Overflow
2067-18

	Help! Stack Overflow! Alternatives for reducing stack size on MPE V/E HP 3000s

