
What's in HP Pascal:
A Systems Programming Language

Sue Kimura

Hewlett-Packard Company
19447 Pruneridge Avenue

Cupertino, California 95014

Introduction

HP Pascal has been enhanced to Include features which allow it to be a systems
programming language. These features have made it possible to write the MPE/XL
operating system in HP Pascal. The HP Pascal compilers are available on Hewlett-Packard
Precision Architecture (HPPA) systems. 1

Historically, Pascal has had a reputation as a student's language. It is known for its
structured constructs and strict typing rules. There is no doubt that its structured
constructs make it attractive as a programming language. Its strict typing rules, however,
while helping the programmer avoid run-time problems, have made it difficult for it to be
used as a systems programming language.

This paper focuses on the following systems language features:

New Data Representation
Type Coercion
Generic Pointers
Procedure and Function Extensions
Dynamic Routines
Exception Handling
Move Routines
Building Intrinsic Files

While descriptions and examples of these features are given, this paper is not a tutorial.
The HP Pascal Reference Manual and HP Pascal Programmer's Guide are available for
complete explanations of these features.

To permit access to these system language features, either of the compiler options
standard level 'hp_modcal' or standard_level ' ext_modcal' is required.

IHP Pascal is a superset of the ANSI/IEEE770X3.97-1983 and ISO 7185:1983 standards.

2069- 1
What's in HP Pascal

New Data Representation

A short integer data type, generic pointer types, procedure and function types, and a
crunched attribute have been added to UP Pascal.

Shortint

A predefined, short integer data type is available in UP Pascal. Short int is a
16-bit, 2-byte aligned data type. Note that shortint is not the same as the subrange
-32768.. 32767 which in UP Pascal is a 32-bit, 4 byte-aligned data type.

Its purpose is to handle compatibility with the MPE/V operating system. It is
analogous to the SPL/V integer data type.

The shortint data type does not require the compiler option standard level
'hp_modcar or standard_level 'ext modcal'.

Localanyptr, Globalanyptr, Anyptr

Another set of new data types are the generic pointer types: loca lanypt r,
globalanyptr, and anyptr. We will discuss these pointer types later, under the
topic Generic Pointers.

Procedure and Function Types

Procedure and function types are used to define routines which are dynamically
invoked at run-time. We will discuss these types later, under the topic Dynamic
Routines.

Crunched Structures

In addition to allowing packed structures, HP Pascal allows bit packing of data with
crunched structures. In this form of data representation no bits are wasted. This
allows the programmer to have the greatest control in determining the layout of
data.

The crunched attribute in a structure declaration overrides the alignment restriction
for allowed types. The allowed types are integer, shortint, boolean, char,
enumeration, and subrange of integer, boolean, char, and enumeration. Crunched
structures (e.g., array, record, set) of these types are also allowed.

For example, an integer is 4-byte aligned in an unpacked or packed record. In a
crunched record it is bit-aligned.

Note the difference in the data representation of the following records, which are
unpacked, packed and crunched:

2069- 2
What's in HP Pascal

unpacked_record = RECORD
f1 0 •• 7; {1 byte, 1-byte aligned}
f2 o.. 255; {1 byte, 1-byte al igned}
f3 o.. 65535; {2 bytes, 2-byte aligned}
f4 -32768 .. 32767; {4 bytes, 4-byte aligned}
f5 short int; {2 bytes, 2-byte al igned}
f6 integer; {4 bytes, 4-byte aligned}
END;

{total size = 16 bytes, record alignment = 4-bytes}

0 •. 7;
o.. 255;
O•• 65535;
-32768 .. 32767;
shortint;
integer;

= 12 bytes, record alignment = 4-bytes}

f1
f2
f3
f4
f5
f6
END;

{total size

packed_record = PACKED RECORD

{3 bits, 1-bit aligned}
{1 byte, 1-bit aligned}
{2 bytes, 1-bit aligned}
{2 bytes, 1-bit aligned}
{2 bytes, 2-byte aligned}
{4 bytes, 4-byte aligned}

1-bit aligned}
1-bit aligned}
1-bit aligned}
1-bit aligned}
1-bit aligned}
1-bit aligned}

CRUNCHED RECORD
{3 bits,
{1 byte,
{2 bytes,
{2 bytes,
{2 bytes,
{4 bytes,

crunched record
f1 0.. 7;
f2 O•• 255;
f3 o.. 65535;
f4 -32768 .. 32767;
f5 shortint;
f6 integer;
END;

{total size =91 bits, record alignment = 1-bit}

A crunched record is most useful when the programmer needs to control the layout
of data. For example, he may need to copy the data layout of other machines.
However, accessing data when they are not aligned on byte-boundaries is costly.
Obviously, it is a space over performance tradeoff.

Type Coercion

Type coercion is a mechanism for circumventing the strict typing rules of Pascal. It is
enabled by the compiler option type_coe rc ion.

Type coercion allows one type of data to be represented as another type. The type of the
expression being coerced is called the source type, and the type the expression is being
coerced to is called the target type.

The syntax of type coercion is identical to that of a function call:

target_type (source_expression)

2069- 3
What's in HP Pascal

Note the term source expression. This term indicates that type coercion may not be
used on the left-hand side of an assignment statement.

There are five levels of type coercion. In order of decreasing restrictiveness these levels
are:

conversion
structural
representation
storage
noncompatible

Conversion type coercion is of two types: ordinal type conversion and pointer type
conversion.

Ord ina 1 type conversion is used to convert an ordinal type (integer, shortint, enumeration,
boolean, char, subrange) to another ordinal type. It is most useful when converting from
an enumerated type to an integer type and vice versa. Range checking is done to insure
that the value of the source expression is within the range of the target type. '

Example

{i := 1}

spectrum;
integer;

$standard level 'ext modcal'$
$type coercion 'conversion'$
PROGRAM ordinal type coercion;
TYPE --

spectrum = (red t orange t yellow t green, blue, violet);
VAR

rainbow
i

BEGIN
rainbow := orange;
i := integer (rainbow);
i := i + 1;
rainbow := spectrum (i); {rainbow:= yellow}
END.

Pointer type conversion is used to change from one pointer type to another pointer type.
It may be a short-to-short, short-to-Iong, long-to-Iong, or long-to-short pointer
conversion. Long-to-short pointer conversion may cause a run-time range error. We will
discuss short and long pointers later, under the topic Generic Pointers.

The remaining levels of coercion may be viewed as the overlaying of storage of tagless
variants within a record. This form of coercion is also called free union coercion.
Unlike conversion type coercion, no range checking is done.

The differences in these levels are based on the restrictions regarding the storage allocated
for the source and target types, their alignment and their type compatibility (Table I).
The specific rules for type compatibility are described in the HP Reference Manual.

2069- 4
What's in HP Pascal

level of Type
Coercion Storage Alignment Compatibility

Structural S = T S = T Compatible

Representation S = T NR NR

Storage S >= T NR NR

Noncompatible NR NR NR

S = Source Type
T =Target Type
NR = No Restriction

Table 1. Restrictions tor Free Union Coercion

St ructu ral type coercion, the most restrictive form of free union coercion, requires that
the storage and alignment of the source and target type be the same. Their types must also
be compatible. If the source and target types are structures, their component types must
also follow these rules.

Example

-1000}
-1000}

a2[10] :=
a1 [10] :=

-1000,
-1000,

{a2[1] :=
{a1 [1] :=

$standard level 'ext modcal'$
$type coercion 'structural'$
PROGRAM structural type coercion;
TYPE - -

arrtype1 ARRAY [1 .. 10] OF integer;
arrtype2 = ARRAY [1 .. 10] OF minint •. maxint;

CONST
ca2 = arrtype2 [10 OF -1000];

VAR
a 1 arrtype1;
a2 arrtype2;

BEGIN
a2 := ca2;
a1 := arrtype1 (a2);
END.

Structural type coercion is used to assign a2 to a 1. It is allowed because both a 1 and a2
are arrays with elements that have the same size (32 bits), have the same alignment
(4-byte), and are type compatible. The result of the assignment is that each element of a 1
has the value - 1000.

2069-5
What's in HP Pascal

The remaining three levels do not have alignment and type restrictions. Representat ion
type coercion requires the same storage for the source and target types. Storage type
coercion requires the target type to be the same size or smaller than the source type.

Both representation and storage type coercion guarantee that no undefined bits in the
target type are accessed. However) undefined bits in the source type may still be accessed
This may occur if the source type has undefined bits because of its packing.

Example

$standard level 'ext modcal'$
PROGRAM representation and storage type coercion;
TYPE - - --

rectype1 = RECORD
f1 : integer; {4 bytes, 4-byte aligned}
END;

{total size 4 bytes, alignment = 4 bytes}

rectype2 = RECORD
f1 : short int;
f2 : shortint;
END;

{total size

{2 bytes, 2-byte aligned}
{2 bytes, 2-byte aligned}

4 bytes, alignment = 2-bytes}

rectype2 [f1: 0, f2: 1];
rectype3 [f1: false, f2: false, f3: 3, f4: -32768];

6 bytes, alignment

rectype1 ;
rectype2;
rectype3;

'representation'$
(r2);
'storage'$
(r3);

2-bytes}

{initialize r2}
{initialize r3}

{r1.f1 := 1}

{ r 1•f 1 : = 3}

1-byte aligned}
1-byte aligned}
2-byte aligned}
2-byte aligned}

{1 byte,
{1 byte,
{2 byte,
{2 byte,

rectype3 = RECORD
f1 boolean;
f2 boolean;
f3 shortint;
f4 shortint;
END;

{total size
CONST

cr2
cr3

VAR
r1
r2
r3

BEGIN
r2 := cr2;
r3 := cr3;
$type coercion
r1 :=-rectype1
$type coercion
r1 : =-rectype1
END.

Representation type coercion is used to assign r2 to r1. Both r1 and r2 are records and
take the same amount of storage. Note, however, that r1 and r2 do not have the same

2069-6
What)s in HP Pascal

alignment; r1 is 4-byte aligned while r2 is 2-byte aligned. The result of the assignment is
that r1 •f1 has the value 1.

Storage type coercion is used to assign r3 to r1. R3 is larger than r1; consequently, any
bits not defined for the type rectype1 is not accessible to r1. Specifically, r3. f4 is not
accessible to r1. The result of the assignment is that r1 •f1 has the value 3.

Finally, noncompat ible type coercion allows any type to be coerced to any other type.
As the least restrictive form, it is the most dangerous to use.

Example

$standard level 'ext modcal'$
PROGRAM noncompatible type coercion;
TYPE - -

rectype1 = RECORD
f1 : integer; {4-bytes t 4-byte aligned}
END;

rectype4 = RECORD
f1 : boolean; {1-byte t 1-byte aligned}
END;

rectype1 ;
rectype4;

VAR
r1
r4

BEGIN
r4. f1 : = false;
$type coercion 'noncompatible'$
r1 :=-rectype1 (r4);
END.

{r1.f1 := ??}

Noncompatible type coercion is used to assign r4 to r1. Because r4 is smaller than r1,
r1 •f1 accesses bits not defined for r4. The result of the assignment is a garbage value in
r1.f1.

As shown in the above examples, the general rule when using type coercion is obvious: use
the most restrictive form of coercion that gets the job done.

Note also that type coercion is applicable at the statement level. Only statements that
need type coercion should be bracketed with the appropriate level. A common method
used to bracket a type coercion statement is to use the compiler options push and pop:

$push t type coercion 'representation'$
r1 := rectype1 (r3);
pop

2069- 7
What's in HP Pascal

Generic Pointers

Generic pointers are different from the typed pointers in Pascal which manipulate the
heap. They are true addresses.

There are two types of generic pointers on a HPPA system. A long pointer can point to
any addressable object on a HPPA system. A short pointer points to a subset of these
addressable objects.

HP Pascal defines three pointer types: localanyptr, globalanyptr and anyptr.
Localanypointer is a 32-bit or short pointer. Globalanypt r is a 64-bit or long
pointer. Anyptr on a HPPA system is a globalanyptr. Since the definition of anyptr may
change from system to system, it is wise to use localanypt r if a short pointer is desired,
or globalanyptr if a long pointer is desired.

A long pointer is created using the compiler option extnadd r in a type, variable, or formal
parameter declaration. Long pointers are primarily used by the operating system and
subsystems. Users do not normally need to use long pointers.

Generic pointers are assignment compatible with any other pointer type. Their primary
restriction is that they may not be dereferenced. In other words, to access data, a generic
pointer must be assigned or coerced to a typed pointer.

Two predefined routines allow the manipulation of these pointers. The predefined
function add r creates a reference to data. The address returned may point to data in the
heap, or to local or global data.

The predefined function addtopointer allows for arithmetic manipulation of an address.
Addtopointer returns a pointer value that is a programmer-specified number of bytes
away from the current pointer value.

The preferred way to perform address manipulation is to use these generic pointers and
predefined routines, rather than to use tagless variant records. Using these routines allows
the HP Pascal compiler to generate more optimal code.

The following is an example of walking through an array and printing out contents of its
elements:

2069-8
What's in HP Pascal

intarrtype;

loca lanypt r;
iptrtype;

Example

$standard level 'ext modcal'$
PROGRAM generic pointer (output);
TYPE -

intarrtype = ARRAY [1 .• 201 of integer;
iptrtype = ~integer;

CONST
cintarr = intarrtyPe [20 of 0];

VAR
intarr
ptr,
endptr
iptr

BEGIN
{initialize elements of intarr to o}

intarr := cintarr;
{determine the starting address of intarr}

ptr := addr (intarr);
{determine the ending address of intarr}

endptr := addtopointer (ptr, sizeof (intarr»;
WHILE ptr <> endptr DO

BEGIN {print next element}
iptr : = ptr;
writeln (iptr~);

ptr := addtopointer (ptr, sizeof (integer»;
END; {print next element}

END.

In this example, addr is used to set the base address of the array intarr. Addtopointer
is used to determine the ending address as well as to determine the address of the next
element of intarr. Sizeof is used to obtain the size in bytes of the array intarr and of
the type integer. Because pt r is a localanyptr it cannot be dereferenced to access the
data in intarr. Consequently, ptr is assigned to a typed pointer, iptr, and iptr is
dereferenced.

Procedure and Function Extensions

New features have been added to the mechanism for declaring a routine and its
parameters. These include an anyvar reference parameter, and options for providing
default values for parameters, for making parameters extensible, and for duplicating
routine code.

ANYVAR

A formal parameter may be declared as ANYVAR. An anyvar parameter is a
reference parameter that accepts an actual parameter of any type. The data that are

2069- 9
What's in HP Pascal

passed are treated as the type of the formal parameter. In other words, ANYVAR is
a form of noncompatible type coercion.

When a parameter is declared as ANYVAR a byte count representing the size of the
actual parameter is also passed along with the address of the actual parameter. This
information may be used to insure that storage allocated for the actual parameter is
not overwritten, as well as to refrain from accessing undefined storage in the actual
parameter. The byte count may only be accessed by calling the predefined function
sizeof.

The following is an example of copying data from one array to another using an
ANYVAR parameter and a VAR parameter.

Example

$standard level 'hp modcal'$
PROGRAM anyvar parm;
TYPE -

spac PACKED ARRAY [1 .• 10] Of char;
lpac = PACKED ARRAY [1 .• 20] Of char;

VAR
i : integer;
sp spac;
lp : lpac;

PROCEDURE copy data (
ANYVAR fromparm : spac;
VAR topann: spac);

VAR
i : integer;

BEGIN
i := 1;
WHILE (1 <= sizeof (fromparm»

AND
(i <= sizeof (toparm» DO

BEGIN
toparm[i] := fromparm [i];
i := i + 1;
END;

END;

BEGIN

copy data (i, sp);
copy-data (lp, sp);
END.-

{firs t ca 11 }
{second call}

In this example, the difference between fromparm and toparm is that a variable of
any type may be passed to fromparm, but only a variable of type spac may be passed

2069- 10
What's in HP Pascal

to topa nn. Si zeof (frompa nn) is called to insure that only the data defined for
fromparm is assigned to topann, as in the first call to copy data
Sizeof(toparm) is called to insure that toparm does not go beyond its bounds in
the case that fromparm is larger than toparm, as in the second call to copy_data.

Uncheckable_anyvar

If the byte count of an anyvar parameter is not needed or desired, the anyvar
parameter should be declared as OPTION uncheckable anyvar. In this case the
s izeof function returns the size of the formal parameter:-rather than the size of the
actual parameter.

Example

PROCEDURE copy data (
ANYVAR fromparm : spac;

fromparmlen : integer;
VAR toparm: spac)
OPTION uncheckable anyvar;
external c; -

In this example, OPTION uncheckable anyvar is used to eliminate the byte count
and the caller is responsible for passing the size of fromparm.

OPTION uncheckable anyvar should be used when declaring non-Pascal routines
which do not support ANYVAR, or when declaring Pascal routines which are to be
called from non-Pascal routines.

Default Parameters

Initialization of parameters is provided by declaring default parameters. Default
parameters allow empty actual parameters to be passed.

Default parameters are declared with OPTION defau 1t pa rms following a routine
parameter list. A value is required for each of the -defaulted parameters. A
reference parameter is only allowed the default value nil.

In a routine with default parameters, the predefined function haveoptvarparm may
be used for a formal reference parameter to determine whether an actual parameter
was defaulted or supplied by the caller. For a formal value parameter, there is no
way to determine whether an actual parameter was defaulted or supplied.

The following is an example of opening a Pascal textfile using default parameters for
the name of the file to be opened and length of the file name.

2069- 11
What's in HP Pascal

Example

$standard level 'ext modcal'$
PROGRAM default parms;
CONST -

maxlen = 1024;
TYPE

lenrange = O.• maxlen;
pac = PACKED ARRAY [1 .. maxlen] Of char;

VAR
pacv : pac;
f text;

PROCEDURE open_file
VAR f text;
VAR filename: pac;

length : len range
) OPTION default parms (filename := nil,

- length := 0
) ;

VAR
i : integer;
fname : PACKED ARRAY [1 .. maxlen+1] OF char;

BEGIN
IF (haveoptvarparm (filename»

AND
(length> 0) THEN
BEGIN {file name has been passed}
FOR i := 1 TO length DO

fname[i] := filename[i];
fname[length+1] := ' ';
rewrite (f, fname);
END {file name has been passed}

ELSE
rewrite (f, '$stdlist');

END;

BEGIN
pacv := 'xxxxx';
open file (f,pacv, 5);
open-fi Ie (f);
END.-

{first call}
{second call}

In the above example, the first parameter, f, must be passed because it does not have
a default value. The remaining two parameters, fi lename and length, have
default values and do not need be passed by the caller.

The first call to open fi Ie opens the file called 'xxxxx'. The second call opens the
standard output file because no parameters were passed for filename and length.
The predefined function haveoptvarparm is called to determine if an actual

2069- 12
What's in HP Pascal

parameter was passed, as in the first call, or defaulted, as in the second call. Length
is checked to verify that it is at least 1.

Extensible Parameters

A routine may also have extensible parameters. Extensible parameters are those
which are not required at the end of a parameter list when the routine is called.

Extensible parameters are declared with OPTION extens ible n following a routine
parameter list. The value n indicates that the first n parameters are required. In
other words, these are the non-extensible parameters. The value of n may be
between 0 and the number of parameters declared for the routine.

In the extensible routine, the predefined function haveextens ion may be used to
determine if an extensible parameter has been passed.

The following is also an example of opening a Pascal textfile. In this instance,
however, the extens ible, rather than the defau 1t_parms option is used.

2069- 13
What's in HP Pascal

Example

PROGRAM extensible_parameters;

PROCEDURE open file (
VAR f - text;
VAR filename: pac;

length : len)
OPTION extensible 1;

VAR
i : integer;
fname : PACKED ARRAY [1 •. maxlen+1) Of char;

BEGIN
If (haveextension (filename»

AND
(haveextension (length» THEN
BEGIN
fOR i := 1 TO length DO

fname[i) := filename[i);
fname[length+1] := ' ,
rewrite (f, fname);
END

ELSE
rewrite (f, '$stdlist');

END;

BEGIN
pacv:= xxxxx';
open file (f,pacv, 5);
open-file (f);
END.-

{first call}
{second call}

In this example, the first parameter is non-extensible and must be passed by the
caller. The remaining two are extensible and do not need to be passed. In the
procedure open fi Ie the predefine haveextens ion is called to determine if the
extensible parameters have been passed.

Note that the calls to open file are identical to those in the default parameters
example. -

The extens i ble and defau It pa rms options may be used together. The semantics
of combining these options are described in the HP Pascal Programmer's Guide.

Inlining Routines

Sometimes it is useful to have routines that have very simple bodies, such as routines
to push and pop items from a stack. The programmer has a choice of calling a
procedure or duplicating the same code in each place it is needed. A procedure call

2069-14
What's in HP Pascal

may be more readable and maintainable, but does require more execution overhead
than duplicated code.

An inline routine allows code for a routine to be duplicated in the place that it is
called. It also allows parameters to be passed to such a routine.

In HP Pascal, an inline routine is declared with OPTION in line following the
routine parameter list.

The use of inlined routines is a performance-for-space tradeoff. Consequently, these
routines should be short and include only the code for the most frequently taken
path. Large blocks of code that handle special cases should be made into routines
that are called from the inlined routine.

The following are examples of inlined procedures for pushing and popping items from
a stack.

Example

PROCEDURE push (item itemtype)
OPTION inline;

BEGIN {push}
If tos = topofstack THEN

setuperror (stackoverflow)
ELSE

BEGIN
tos := tos + 1;
stack[tos] := item;
END;

END; {push}

PROCEDURE pop
OPTION inline;

BEGIN {pop}
If tos = bottomofstack
THEN

setuperror (stackunderflow)
ELSE

tos := tos - 1;
END; {pop}

These examples show that the error conditions, stack overflow and stack underflow,
are handled by calls to the procedure setupe r ro r. The bodies of these procedures
are very simple.

Other potential uses of inlined routines include performing operations such as
exponentiation and exclusive-or which are not defined in Pascal.

2069-15
What's in HP Pascal

PROCEDURE (i : integer);
FUNCTION : integer;

Dynamic Routines

Procedure and Function Types

UP Pascal has been extended to to include procedure and function types. Procedure
and function types are used to declare routines which are dynamically invoked at
run-time. Procedure and function types are also called routine types.

Routine types are defined in the TYPE section. A routine type has no routine name
associated with it. It only has its parameters, if any, in its parameter list.

A routine variable is a variable of a routine type. It is assigned a value by calling the
predefined procedure add r on an actual routine. The actual routine must have
parameters which are congruent to the parameters of the routine type. The rules for
congruency are the same as those for procedural and functional parameters and are
described in the HP Pascal Reference Manual.

In addition, for a function tyPe, the type of the actual function return must be
identical to that of the function type.

The predefined procedure ea 11 is used to invoke an actual procedure. The first
parameter to ea 11 is a procedure variable or the result of the predefine add r on the
actual procedure. The remaining parameters are the actual parameters
corresponding to the parameters declared for the procedure type, if any.

Similarly, the predefined function feall is used to invoke an actual function. The
parameters to f ea11 are analogous to those of ea 11.

The following is an example using these routine types.

Example

PROGRAM proeedure_and_funetion_type;
TYPE

ptype
ftype

VAR
pvar : ptype;
i integer;

PROCEDURE proe (i : integer); external;
FUNCTION fune : integer; external;
BEGIN
pvar := addr (proe);
call (pvar,1);
i := feall (addr (fune»;
END.

In this example, the type declaration ptype declares a procedure type with one value
parameter of type integer. The type declaration ftype declares a function that

2069-16
What's in UP Pascal

returns an integer type. It has no parameters. The variable pvar is of type
ptype.

Add r is called to create a reference to procedure proc and the value is assigned to
the variable pya r. The procedure proc is invoked by the predefine ca 11. The
parameters to ea 11 are the procedure variable pya r and the value 1 for the
intege r value parameter of the procedure type ptype.

The funet ion fune is invoked by the predefine fea 11. The parameter to fea 11
is the result of addr applied to the function fune. There are no other parameters
because the function type ftype has no parameters.

Unresolved Routines

HP Pascal allows a routine to remain unresolved through the link and load process. 2
At runtime, the predefine add r may be called to determine if an unresolved routine
has been resolved. If the routine has been resolved, it may be invoked with the
predefines ca 11 or fca 11.

An unresolved routine is declared with OPTION un reso 1ved following a routine
parameter list. The EXTERNAL directive must also be used. It must be a level one
routine.

The following is an example of invoking unresolved routines.

2Unresolved routines are not supported on HP-UX systems.

2069- 17
What's in HP Pascal

Example

$standard level 'ext modcal'$
PROGRAM option_unresolved;
VAR

pvar1 procedure;
pvar2 procedure;

PROCEDURE proc1
OPTION unresolved;
external;

PROCEDURE proc2
OPTION unresolved;
external;

BEGIN
pvar1 := addr (proc1);
pvar2 := addr (proc2);
IF pvar1 <> nil THEN

call (pvar1)
ELSE IF pvar2 <> nil THEN

ca 11 (pya r2) ;
END.

In this example there are two unresolved procedures, proc1 and proc2. Neither
procedure has any parameters. The predefine add r is called to determine if these
procedures are resolved. The check for nil is to verify that add r as returned a valid
value.

Exception Handling

When a program is running four forms of exceptions may occur. These forms are:
hardware errors, oPerating system errors, UP Pascal run-time errors, and
programmer-defined errors.

In UP Pascal, a TRY-RECOVER block statement has been added to handle these exceptions.
On an MPE/V system, the only way to trap runtime exceptions is to use intrinsics such as
xlibtrap, xaritrap, and xsystrap.

The TRY-RECOVER construct consists of two parts: the TRY block and the RECOVER
statement. In other words, for each TRY block there must be an associated RECOVER
statement. A BEGIN END is not needed in the TRY block but is necessary for multiple
statements in the RECOVER part.

When executing the statements in the TRY block, execution transfers to the RECOVER
statement if an exception is raised. If no exception occurs in the TRY block, execution
transfers to the statement following the RECOVER statement.

A user-defined exception is raised by calling the predefined procedure escape with a
value for the exception. In the RECOVER statement, the value of the exception is
accessed by calling the predefined function escapecode.

2069- 18
What's in HP Pascal

The following is an example of a programmer-defined exception:

Example

PROCEDURE try_recover (parm integer);
CONST

lessthan = 0;
greaterthan = 1;

TYPE
small 0 .. 10;

VAR
local small;

BEGIN
TRY

IF parm < 0 THEN
escape (lessthan)

ELSE IF parm) 10 THEN
escape (greaterthan)

ELSE
local : = parm

RECOVER
CASE escapecode OF

less than : writeln ('< 0');
greaterthan : writeln (') 10');
END;

writeln ('done');
END;

In this example, there are two exceptions. One exception is that pa rm is less than O. The
other exception is that pa rm is greater than 10. If either exception is encountered, the call
to escape causes execution to transfer to the RECOVER statement. If the value of the
escape code is lessthan the string '< 0' is written, if greaterthan, '> 10' is written.

If neither of the exceptions is encountered, the variable local is assigned the value of
parm and execution transfers to the statement after the RECOVER part, namely the
wr i te In ('done') statement.

This example can also take advantage of the Pascal run-time range checking if the
programmer does not care whether the error was less than 0 or greater than 10.

2069- 19
What's in HP Pascal

Example

PROCEDURE try_recover (parm
TYPE

small 0 •• 10;
VAR

local small;
escapeval : integer;

BEGIN
TRY

local : = parmi
RECOVER

BEGIN
escapeval := escapecode;
writeln (escapeval);
END;

END;

integer) ;

In this example) the try block contains only the assignment statement. If pa rm is not
within the range 0.. 10 an HP Pascal run-time exception is raised and the escape code is
set. When execution transfers to the RECOVER part) the predefine escapecode accesses
the HP Pascal escape code and the its value is written.

Note that in the RECOVER part, the value returned from the predefine escapecode is
assigned to a local variable escapeval. This is a necessary precaution because
system-level escapes may change the escape code. In this example, the call to writeln
results in a system fwri te call which may modify the escape code.

On an MPE/XL system, the run-time escape codes for HP Pascal are available in the file
PASESC. PUB. SYS.

The above examples are examples of local escapes. A local escape is an escape invoked
within the static scope of the TRY block. In other words, it is an escape invoked within
the statements in the TRY block.

Raising exceptions is not limited to local escapes. An escape may occur anywhere within
the dynamic scope of the TRY block. That is, an escape may also occur within a routine
called from a statement in a TRY block. This form of escape is called a non loca I
escape. Raising an exception in the dynamic scope of the TRY block also causes
execution to transfer to the RECOVER statement. When more than one TRY block is
active) execution transfers to the innermost RECOVER state~ent.

2069-20
What)s in HP Pascal

Example

PROCEDURE try_recover (parm integer);
CONST

ItO 0;
gt10 1;
gtS 2;

TYPE
small 0 .. 10;

VAR
local small;

PROCEDURE inner proc (parm integer);
BEGIN -
IF parm > 5 THEN

escape (gtS);
END;

BEGIN
TRY

IF parm < 0 THEN
escape (ItO)

ELSE IF parm > 10 THEN
escape (gt10)

ELSE
BEGIN
inner proc (parm);
local-:= parm
END

RECOVER
CASE escapecode OF

ItO writeln ('< 0');
gt10 writeln ('> 10');
gtS writeln ('> 5');
END;

writeln ('done');
END;

In the procedure inne r proc an exception is raised if pa rm is greater than 5. In this case
the assignment of parmto local in the TRY block does not occur, and execution transfers
to the recover statement which handles three exceptions. If parm is in the range 1..4, no
exception occurs and execution continues at the assignment statement of pa rm to Ioca 1
and then jumps to the wr i te In (done) statement following the RECOVER statement.

Move Routines

There are three predefined procedures, move faa t, move I to r, and move r to 1, for
efficiently moving data from one array (source array) to anotherarray (targetarrayI The
move predefines require that the element type of the source and target arrays be identical.
Type coercion may be used to copy arrays that have different element types.

2069-21
What's in HP Pascal

ARRAY [1 .. 5] OF rec;
ARRAY [1 .• 5] OF integer;

These predefines have five parameters:

move fast (n, source, soffset, target, toffset)
move-l to r (n, source, soffset, target, toffset)
move-r-to-l (n, source, soffset, target, toffset)

These parameters are:

n Number of elements to move
source Source array
soffset Source offset
target Target array
toffset Target offset

The source and target arrays may be the same array. The differences in these predefines
stem from the assumption regarding the addresses of the source and and target arrays.
Move fast assumes that the source array address does not overlap the target array
address. In other words, the programmer is not depending on the rippling of data.
Move 1 to r and move r to I do not have this assumption. Move 1 to r performs a
left to rIghtcomponent move from the source address to the target address. Move r to I
performs the move from right to left. - - -

Example

$standard level 'ext modcal'$
PROGRAM move routines;
TYPE -

rec = RECORD
f1 : short int;
f2 : shortint;
END;

recarrtype
intarrtype

VAR
recarr recarrtype;
intarr intarrtype;

BEGIN
intarr[1] := 0;
move I to r (4, intarr, 1, intarr, 2);
$push,-type coercion 'representation'$
move fast (5, intarr, 1, intarrtype(recarr), 1);
pop
END;

The move I to r statement uses the rippling effect to initialize the elements of intarr
to o. The-fOilowtng move fast uses intarr to initialize recarr. Type coercion is used
to coerce recarr to intarrtype because the elements of recarr and intarr are
different. Since the element type of recarr is a record, each shortint field of the record is
initialized to O.

2069- 22
What's in HP Pascal

Building Intrinsic Files

HP Pascal provides the facility for creating, modifying and listing an intrinsic file for
HPPA systems. An intrinsic file is called a SYSINTR file on HPPA systems. On a MPE/V
system, the program BUILDINT.PUB.SYS is available to add intrinsic declarations to an
intrinsic (SPLINTR) file.

The compiler option bu i Id int is used to build or modify an intrinsic file. The file to be
built or modified is specified in the string associated with the buildint option. On
MPE/XL the default intrinsic file is SYSINTR.PUB.SYS if no intrinsic file name is
specified. Note that, in this case, the program must have write access to
SYSINTR. PUB. SYS.

Each routine declared in a program with the buildint compiler option is added to the
intrinsic file. Information about each declared routine and its parameters is added, as
well. If a routine with the same name already exists in the intrinsic file, the new
declaration replaces the one in the intrinsic file.

Routines are declared with the EXTERNAL directive. The parameter mechanisms for
extensible and default parameters may be used. The language specification on the external
directive may also be used.

A program with bu i Id int is similar to any other HP Pascal program except that there are
only external declarations and no main body.

Only certain Pascal types may be used as intrinsic parameter types. In general, the types
that may be used are limited to those which are available in most languages supported by
Hewlett-Packard. These types are described in the HP Pascal Programmer's Guide.

2069-23
What's in HP Pascal

Example

$buildint 'sysintr'$
$standard level 'ext modcal'$
PROGRAM build intrinsic file;
TYPE - -

pac = PACKED ARRAY [1 .• 1024] OF char;

PROCEDURE xxx (VAR x1 : pac; x2
external;

integer) ;

PROCEDURE yyy (ANYVAR y1 : pac; y2 : integer)
OPTION default parms (y1 := nil, y2 := 0)

uncheckable anyvar;
external; -

PROCEDURE zzz (parm1 : integer; parm2
external ftn77;

BEGIN
END.

integer) ;

In this example, the intrinsic file name is sys int r in the user's group and account. Three
procedures xxx, yyy and zzz are added to the intrinsic file. Procedure xxx is a simple
declaration which does not use any new system programming features. Procedure yyy, in
contrast, uses OPTION defau 1t pa rms and OPTION uncheckable anyva r. Procedure
zzz, according to the language directive, is a FORTRAN?? subroutine-:-

The contents of a SYSINTR file may be listed with the compiler option 1ist int r. If no
string parameter is supplied to 1ist int r the contents of the SYSINTR file is output to the
formal designator pas l1st.

The information in a SYSINTR file may be accessed with the INTRINSIC directive. Each
intrinsic declaration accesses the intrinsic file specified in the sys int r compiler option. If
the compiler option sys int r is not specified, the default intrinsic file is
SYSINTR. PUB. SYS.

2069- 24
What's in HP Pascal

Example

$sysintr 'sysintr'$
PROGRAM intrinsic_calls;

VAR
a : PACKED ARRAY [1 .• 1024] Of char;
i, j : integer;

PROCEDURE xxx; intrinsic;
PROCEDURE yyy; intrinsic;
PROCEDURE zzz; intrinsic;

BEGIN
xxx (a, j);
yyy (i);
22Z (i, J);
END.

When the INTRINSIC directive is encountered, the HP Pascal compiler accesses the
information in the intrinsic file 'sysintr' and uses it for checking actual parameters and for
code generation.

For procedure yyy, i is a legal actual parameter for the first parameter because it is an
anyvar parameter. The length of i is not passed, however, in the call to yyy, because it is
an uncheckable anyva r parameter. The default value 0 is passed for the second
parameter since itwas not supplied by the caller.

In the case of procedure ZZ2, the compiler knows that it is a FORTRAN77 subroutine and
provides reference parameters even if they were declared as value parameters in the
external declaration.

2069- 25
What's in HP Pascal

Conclusion

This paper has highlighted the new systems language features available in HP Pascal. You
are encouraged to try these features when writing new HP Pascal programs or enhancing
current programs.

References

HP Pascal Reference Manual (31502-60005)
HP Pascal Programmer's Guide (31502-60006)

Acknowledgments

I would like to thank Jon Henderson, Ron Rasmussen, Jean Danver, and members of the
Pascal project, past and present, who reviewed this paper.

2069-26
What's in HP Pascal

	What's in HP Pascal: A Systems Programming Language

