
New Features of the MPE XL User Interface

by Thomas Shem & Jeff Vance
Hewlett-Packard Company
19447 Pruneridge Avenue

Cupertino CA. 95014

Introduction

The User Interface to the MPE operating system is the sum of the components which allow
users to direct the HP 3000 in its execution of given tasks. The MPE V User Interface. consisting
of commands. job control words (JCWs) and intrinsics. provides the user with t.he basic
mechanisms to acconlplish jobs. The User Interface t.o MPE V. while functional in nature. can
hardly be considered "user friendly". Although some operations can be accomplished in a
straightforward manner. the user mllst frequently rely on programs to perform tasks.

Much of this has changed with the MPE XL User Interface. This new User Interface while
designed to be compatible with MPE V. was also designed to provide a powerful. flexible. and
productive environment for the general user. The experienced user will find many new features
which expose simple straightforward solutions to previously tedious and complex problems.
Tasks. which on MPE V. required programs to solve, may now be accomplished though the new
User Interface.

This paper describes the new MPE XL User Interface. focusing on the extensions beyond fvfPE
VlE. The command language aspect of the User Interface is emphasized. and examples are
provided to illustrate some of the simple straightforward solutions previously thought tedious
and complex on MPE V.

The Command Interpreter

The Command Interpreter (CI) is central to the user interface. It is the mechanism whereby
users of the HP 3000 access system functionality. An examination of the MPE V CI and the
MPE XL CI will show how the user environment has been enhanced. It will also show how
those enhancements create an environment which assists user.

The MPE V CI is a line oriented interface through which user commands are routed to the ap­
propriate command executor (see figure I). The st.atus of the command string routing and sub­
sequent command execution are indicated through JCWs (job control words).

MPE XL User Interface.

2070-1

MPE V or Interactions

Command

Executors

User command strings may be fed to the CI through a variety of paths (see figure I). Command
strings can be input directly from a job or session, reissued or modified via the REDO command.
invoked from a predefined UDC (user defined command), or issued from a user progranl or sub­
systems via the COMMAND intrinsic.

The MPE V Command Interpreter performs three major functions (see figure 2). Its first func­
tion is to interpret the input command string. The CI analyzes the command string for valid
commands (either MPE commands or user defined commands). Another function of the CJ is to
determine if the user has the proper attributes to use the command. The CI compares the user
capabilities against those assigned to the command. Lastly, the CI invokes the appropriate com­
mand executor. The executor completes the parsing of the command string. then performs the
desired function.

MPE f/ Command Interpreter

elr
Parses for MPE Command

DJcfJonllry

Searches
Gets Command Attributes~ Hardcoded

from Dictionary
Array

Calls Executor

CommandlExecutor

Parses Command String
For Parameters

Figure 2. MPE V Command Interpreter

MPE XL User Interface.

2070-2

The MPE XL Command Interpreter performs the same basic functions as that of the MPE V
Command Interpreter, since it was designed to be externally similar. The MPE XL CI has three
major differences from the MPE V CI: it is implemented as an executable program instead of as
a system process~ the interfaces to the XL CI have been expanded and improved~ and the struc­
ture of the CI has changed.

HPE XL or Interactions

Command

Executors

The MPE XL CI interacts with the same components as those on an MPE V system (see figure
3). However. these components have been specialized to facilitate usability. Command strings
are still fed to the CI through a variety of paths. They can be input directly from a job or ses­
sion. reissued or modified via the new REDO facility, invoked from predefined UDCs or com­
mand files (discl1ssed later) or issued from the COMMAND or HPCICOMMAND intrinsics.

The XL CI has been restructured (see figure 4). It now consists of two parts: a centralized sc'1n­
ner/parser part and a command interpreter part. Command strings are first checked for correct
syntax in the scanner/parser. The correct command executor is then invoked if the syntax is
valid.

MPE XL User Interface.

2070~3

H='E XL Command Interpreter
Scanner 1 Parser

Scans Command String

Verifies/Validates Syntax

c I r

Looks Up Command Executor
Calls Executor

IConTIPIInd ex"culDr
Figure 4. MPE XL Command Interpreter

The new structure of the MPE XL CI separates and specializes the parts of the system which
deal \\'ith user interactions. This specialization gives the XL User Interface the ability to become
a powerful tool which can be used when directing the system in a given task.

The User Environment

As can be seen from the two CI interaction diagrams (figures 1 and 3). many of the mechanisnls
existing in MPE V have been enhanced. These enhancements serve to make the XL CI more
powerful. more flexible and much easier to use than its predecessor. A comparison of the dif­
ferences in these features will show how they benefit the user, and serve to show how they in­
teract to form a customizable user environment

Je,l's vs. Variables

Local to the user's sessions and jobs on MPE V are job control words. These words are tem­
porary numeric indicators which provide statuses to the user \\'henever a command is executed
(i.e. CIERROR). Additionally. users may use them to indicate the status of a program's execution.
MPE V also provides several pre-assigned JCWs to indicate system information (HPt\10NTH.
HPDAY. HPYEAR. etc.). JeWs are essential for controlling the flow of command execllt ion
within large batch jobs or complex User Defined Commands (UDCs).

In MPE XL. the idea of providing users with temporary variables has been expanded to include
data types other than numeric. Variables can retain data in boolean form. 32-bit numeric form.
string form. and JC\V format

These new variable types have also made it possible for MPE XL to provide more complete sys­
tem information. The data in these predefined variables range from system global information
(Le. system time. system date, job count. and jobfence) to job or session system infomation (Le.
logon ID. capability lists. $STDIN Idev. $STDLIST Idev. interactive state. and CPU time used).
Additionally. some variables are used to control the user environment. Modifying these variables

MPE XL User Interface.

2070-4

changes aspects of the session environment For example, when the variable HPAUTOCONT is
set to TRUE, the effect is the same as if a CONTINUE statement preceded every command.

To support the variables, three new commands are provided: the SHOWVAR command displays
variable and JCW information information; the SETVAR command assigns values to variables:
and the DELETEVAR command removes variables. The SETJCW and SHO\\,JCW comnlands
can be thought of as a subset of the variable commands.

The value of a variable is referenced by preceding the variable name with a 'T' (e.g.
!HPA'CCOUNT). The referenced variable is then replaced with its value (e.g. !HPACCOUNT is
replaced by SYS if the user is logged into the SYS account). This is called dereferencing the
variable (specifically, explicit dereferencing).

Variables may be dereferenced in two additional ways, implicit and recursive. Implicit
dereferencing is simply the substitution of a variable's value for its name.

An example of implicit dereferencing occurs in the statement

IF VAR = 0 THEN .••

In the above example the variable name (VAR) is replaced by its value without requiring a 'T'.

Recursive dereferencing of variables occurs when a variable contains the name of another vari­
able. The following statement personalizes the CI's prompt to contain your username followed
by "(current system time):". e.g "TOM (12:0 It.". The predefined variables HPUSER. HPHOUR. and
HPMINUTE contain the username, the current system hour, and the current system minute.

:setvar hpprompt "!hpuser (!!hphour:!!hpminute):"

The expression to be assigned to the global variable is evaluated in the following manner:

- the quotes cause the variable's type to be a string

- !hpuser is explicitly dereferenced as the user ID

- the" (" is evaluated as a string literal

- the doubled exclamation points (',!!") have a SPecial meaning and are used to represent a single
exclamation point (i.e. they are folded into one; however, in general an even number of ex­
clamation points do not cause dereferencing while an odd number of exclamation points do
cause dereferencing - pairs are then folded) and are evaluated as a string containing a"!".

- the "hphour:" is evaluated as a string (combining with the previous exclamation point to form a
dynamic variable; a variable within a variable)

- the doubled exclamation points are again folded into a single exclamation point", then
evaluated as a string

- the "hpminutet... is evaluated as a string.

The string stored into HPPROMPT then looks like this:

TOM (!hphour:!hpminute):

MPE XL User Interface,

2070-5

When the variable HPPROMPT is referenced (it is referenced by the CJ before displaying the
pronlpt), recursive dereferencing occurs on the !hphour and !hpminute to obtain the current
values stored in the system. As can be seen in the example, recursive dereferencing becomes very
handy when the value of a dynamic variable is needed

REDO vs The REDO Facility

One of the most useful commands available to the user of MPE V is the REDO command. Users
do all sorts of amazing things with this command: re-execute their last command; correct errors
in their last command with the editing features of the command: capture a previously typed
command with the enter key, edit the captured command string then re-execute it: and capture
some data (such as the capability list from the ALTUSER cierror message). add a valid command
to the list then execute it The main benefit of this command is that it saves the user from ex­
cess typing. The main drawback is that the user is limited to the last command entered.

On MPE XL, this command has grown into a facility of its own. The REDO facility now en­
compasses a command history stack, two new commands and enhanced editing features. The
REDO buffer has been replaced by a command history stack. Whereas in fvlPE V only one
comnland was able to be saved, the history stack allows users to save up to 1000 previous com­
mands (although the default is 20). The history stack was designed to be user configurable. so
users can control the depth of their own command history stack through the variable
HPREDOSIZE. The history stack is supported by the new LISTREDO and DO commands and
also the enhanced REDO conlmand.

The LISTR EDO commnnd gives the user the opt.ion of defining the range of history stnck to be
displayed, and the option of referencing previous commands in one of three manners.
Commands may be listed either numbered relative to the top command in the stack. or num­
bered relative to the first command entered during the session, or unnumbered.

For example:

:LISTREDO ;ABS
1) commandone
2) commandtwo
3) LISTREDO ;ABS

:LISTREDO ;REL
-3) commandone
-2) commandtwo
-1) LISTREDO ;REL

:LISTREDO ;UNN
commandone
commandtwo
LISTREDO ;UNN

Re-execution of commands from the history stack is accomplished with the DO and REDO
commands. The two commands are identical in nature, except that the REDO command allows
internctive editing. Previous commands may be executed by using a relative or absolute com­
mand number.

Additionally. prior commands may be retrieved by dereferencing an absolute or relative history
stack command number (e.g. !I or !-2). The absolute command number must be within the range
available on the current history stack. The predefined variables HPREDOSIZE and
HPCMDNUM are provided to show the current redo stack size and current absolute command
number.

Editing of previous commands may be accomplished by apPending an edit string to the DO or
REDO commands. or by using the interactive method. similar to that available on MPE V" with
the REDO command. The basic editing directives available on MPE V are all available: i (insert).
r (replace), d (delete), and u (undo) Several new directives have also been added: d> (delete to end

MPE XL User Interface.

2070-6

of line). > (append to end of line), >d (delete from the end of line), >r (replace at the end of line).
and c (change one string for another).

For example:

:00 ;EOIT=">dddd"

will result in the following, given any of the three previous :LISTREDO examples:

:LISTREDO
1) commandone
2) commandtwo
3) LISTREDO ;ABS
4) LISTREOO

UDCs vs. Command Files

:LISTREDO
1) commandone
2) commandtwo
3) LISTREDO ;REL
4) LISTREOO

:LISTREDO
1) commandone
2) commandtwo
3) LISTREDO ;UNN
4) LISTREDO

Whereas REDO is one of the most useful commands on MPE V. UDCs (User Defined
Commands) are one of the most used feature. UDCs allow users to build a set of personalized
commands since they are executed before MPE commands. They provide users with the ability
to override or supersede MPE commands. UDCs offer a method for sinlplifying MPE com­
mands. A sequence of commonly used commands can be bundled into one user command.
simplifying user invocation and execution of tasks. Automatic invocation of a UDC at logon
time can set up the user environment or be used to restrict users to a particular environnlent
Perhaps the most useful aspect of UDCs is that they provide a mechanism to avoid typing conl­
plex instructions.

\Vith all of these useful functions, there wasn't much for MPE XL to improve upon. However.
MPE XL has added several new features to UDC control and maintenance. Two new options
have been added which control whether UDCs may recursively call themselves (OPTION
RECURSION/ NORECURSION), and whether UDCs may be executed programmatically
(OPTION PROGRAM/NOPROGRAM; more on this later). Maintenance of UDCs has been
simplified via the new :APPEND, and :DELETE parameters to the SETCATALOG command.
UDC files may be appended or deleted without having to uncatalog a session·s current UDCs.

In MPE XL. an additional method for users to define their own set of custonlized commands has
been provided through command files. Command files are simply files which contain one or
more commands, nlllch like UDCs. Commands within a command file may be ~1PE commands.
UDCs, or filenames. They are similar to UDCs in all resPects except for three differences:

- Command files are s~,rched for after UDCs and MPE commands.

- Command files don't have the requirement of having to be cataloged.

- Comnland files do not support the control of recursion that UDCs provide via the
RECURSION option. or the control for logon invocation via the LOGON option. In the case
of recursion, the command file name need only be specified within the s.1me command file in
order to invoke recursion (UDCs require that the RECURSION option be specified). In the
case of logon invocation, command files can not be invoked automatically at logon (except
via a logon UDC).

MPE XL User Interface.

2070-7

Command files, like UDCs, may accept parameters by defining them in the header line and may
use options. Invocation of command files, unlike DOCs, is executed by entering the filename.

Inlplied Run and Search Path

Program files like command files may now be invoked by entering the program filename. This is
referred to as "implied run". The R UN command need no longer be specified to execute a
program file in most cases. The optional INFO and PARM parameters are supported through
the implied run. Use of any of the other optional parameters when invoking a program file will
require that the RUN command be specified.

To enhance the user environment and to support invocation of command files and program files,
a predefined variable HPPATH is provided to allow users to define a search path for the CI.
The CI will follow the search path when a command has not matched a UDC or MPE com­
mand. The HPPATH variable virtually eliminates the need to explicitly specify a group or ac­
count with the command or program file name.

For example, suppose the HPPATH variable is set to t1pub.sys,pub,!HPHGROUP, !HPGROUP" and
a non-UDC/non-MPE command is entered. The CI will use the search path specified in the
HPPATH variable to attempt to find a command or program file to execute. The CI will first
look in the "pub.sys" group/account, then the "pub" group of the current logon account. then the
user's home group. and finally the user's current logon group. Failing to find a command or
program file at this point will result in an "UNKNOWN COMMAND NAME" message.

CI Flow Control Structures

The control of the sequence for execution of command statements in MPE V consists of the
simple branching mechanism provided by the IF _THEN _ ELSE .. ENDIF commands. As ev­
ery programmer knows, branching mechanisms are adequate to get the job done. but just barely.

MPE XL expands upon t.his simple control structure by introducing a looping structure and a
recursion structure. The WHILE _ DO.. ENDWHILE commands provide the users with a much
needed control structure to repeat tasks. Another structure to accomplish looping as well as
recursive executions is now supported through UOCs and command files. UDCs may invoke
themselves if the RECURSION option is specified. Command files may also invoke recursion by
using the filename within the command script. A predefined variable. HPUSERCMDEPTH. is
provided to indicate the depth of nested UDCs and/or command files.

Additionally. a new RETURN command has heed provided to cause the execution of a User
Conlmand (UOC or command file) to return to the calling environment. User Comnlands in­
voked fronl the CI will return to the CI. Nested User Commands will return to calling UDC or
conlmand file.

Whereas in the past t.he command structure provided by MPE V did not allow users to get into
conlplicated situations, the command structures provided by MPE XL can easily get the inex­
perienced user into a lot of trouble. Care should be used to prevent endless looping. Break will
usually end an endless loop.

Expression Evaluator

In MPE V expressions are used in the IF .. THEN _ ELSE .. ENDIF control structure to indicate
the truth or falsehood of the control structure. Expressions on MPE V consisted of the
conlparison of a JCW to another JCW. or a JCW to a fixed numeric value.

MPE XL User Interface,

2070-8

On MPE XL, evaluation of expressions has been separated into a new facility referred t.o as the
expression evaluator, which provides the user with a rich set of features.

The expression evaluator supports a large set of functions. Many arithmetic operations are al­
lowed. including; absolute value (ADS), modulo (MOD) and exponentiation r'). Many string
operations are defined, such as: concatenation (+), length (LEN), ordinal (ORO), extraction (LFT,
RHT. POSt STR). and case shifting (OWNS. UPS). Special variable functions include: existence
(BOUND) and type (TYPEOF). Bit operations include: bitwise and (BAND), bitwise or (BOR).
bitwise not (BNOT). bitwise exclusive or (BXOR), shift left (LSL). and shift right (LSR). Numeric
conversion functions are: convert to octal (OCTAL) and convert to hexadecinlal (HEX). Finally.
some special functions provided via FINFO include: file existence (FINFO(O». file creation date
(FINFO(6». file modification date (FINF0(8». file code (FINF0(9». fopt.ions (FINFO(13» and
others.

Expressions may be implicit or explicit. Implicit expressions are only available in in four com­
mands: CALC, SETVAR, IF. and WHILE. Explicit expressions may be dereferenced in any
conlmand by enclosing the expression within square brackets and preceding it with an exclama­
tion mark (e.g. ~expression1 referred to as "expression substitution"). For example. If11i"+"str'] will
cause the LISTF command to be executed.

Mixed expressions are not allowed, for example. the expression "a" + 1 would result in an error.
Standard precedence rules apply. with explicit variable dereferencing superseding all other
operations.

1\1iscellaneous New Commands

Several new commands have also been provided to enhance the new User Interface. These in­
clude the CALC. CHGROUP. COpy, ECHO. INPUT, PRINT. and XEQ commands. A complete
description of each of these commands can be found in the MPE XL Comnlands Reference
Manual (Part Number 32650-90003); however. specific usage of some of these commands is
described below:

- the CALC command provides easy access to the Expression Evaluator for quick evaluation
of expressions_

- the CHGROUP comnland gives users an easy way to switch from one group to another.
without logging off.

- the COpy command provides for simple fast file copies even in br~1k mode.

- the ECHO command displays text to $STDLIST (this is particularly useful in conjunction
with expression substitution. I' l' . and explicit variable dereferencing).

- the INPUT command can be used to prompt a user for data. and is a convienent. way to load
a string variable. Also. note the timed read feature.

- the PRINT command provides a quick way to display a file.

- the XEQ command will execute a comnland or program file, even if the file contains the
same name as a UDC or MPE command.

COl\11\1AND vs HPCICOJ\1MAND

MPE XL User Interface.
207.0-9

FKEY
Sets A SINGLE function key in one invocation.
The "L" parameter is the label, the "s" parameter
is the string to be generated when the function
key is pressed, and the "A" parameter is the
key attribute parameter, where O=Normal, 1=Local,

Programmatic invocation of MPE commands on MPE V is accomplished via the COMMAND
intrinsic. Unfortunately, the COMMAND intrinsic does not perform all the functions available
through the MPE V CI. On MPE XL, the introduction of the new HPCICOMMAND intrinsic
provides users with a programmatic method for accessing most of the MPE XL CI functions. as
well as command files, UDC invocation. and implied run.

The Command Language

The combination of commands, variables, expression evaluations, control structures, UDCs. and
command files all come together to form a command language. With MPE V. end-users needed
system programmers to build complex programs to assist in the operation of their HP3000. Now.
non-programmer end-users. as well as experienced users and programmers. will be able to control
their system without writing a program. The "language" of MPE XL exposes the power of the
HP3000 at the level of the command interpreter instead of hiding it

To illustrate the power available through the MPE XL command language. several examples are
provided. These examples show how common operations which are tedious or cumbersome can
be made simpler.

1. "CENTER" - this command file is an example of some of the string manil)ulation functions
supported by the expression evaluator. It will echo to $STDLIST a centered string. It is used
later in the "CALCIT" example.

Parm string
COMMENT
COMMENT +---+
COMMENT I CENTER
COMMENT I Note: cent spc is loaded with a blank string I
COMMENT +-----------=---------------------------------------+
COMMENT
setvar cent spc II

echo ![lft(cent spc,(80-len{l!string"»/2)]!string
deletevar cent spc
comment end of-center

Usage:
:center 'Center this string'

Center this string

2. "FKEY" - this command file is an example of how escape functions to a terminal can be done.
It will set up one function key.

PARM KEY,L1=" ",S1="UO",A1=2
COMMENT
COMMENT +---+
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT

MPE XL User Interface.
207.0-10

COMMENT I and 2=Transmit attributes for each key. The "KEY" I
COMMENT I is, of course, the key to set. I
COMMENT +---+
COMMENT
IF (HPJOBTYPE="S") AND (HPDUPLICATIVE=TRUE) THEN

setvar esc chr(27)
SETVAR vars "!S1"
SETVAR varl "!L1"
SETVAR lens LEN(vars)
SETVAR 1en1 LEN(varl)
SETVAR wkey "!esc"+U&f!a'''+la!key''+''k"+&

u!len1 u+"d tl +"!lens tl +&
"L"+II!varl"+tI!vars li

echo !wkey
ECHO !esc&jB
DELETEVAR esc,vars,varl,lens,lenl,wkey

ENDIF
COMMENT end of fkey

Usage:
:fkey 1,test,'echo this is a test'

now using the f1 key will perform the following:
:echo this is a test
this is a test

3. ''TRIM'' - this command file will trim all characters of a specified type fron1 a variable name.
It is an example of how string manipulation can be done.

parm varname,trimchar=" ",from=RIGHT
COMMENT
COMMENT +---+
COMMENT I TRIM I
COMMENT I Trims all trimchar from varname, starting at from. I
COMMENT +---+
COMMENT
if not (bound(!varname» then

echo (TRIM): The variable !varname is not defined.
else

if not(ups(lft('!from' ,1» = 'L') then
setvar trim off 'RHT'
setvar trim-save 'LFT'

else
setvar trim off 'lFT'
setvar trim-save 'RHT'

endif
while (len(!varname»O) and (!trim off(!varname,1)='!trimchar')

setvar !varname !trim save(!varname,len(!varname)-1)
endwhile -

deletevar trim off,trim save
endif --
comment end of trim

~1PE XL User Interface~

2070-11

Usage:
:setvar string 'this string needs the question mark stripped off?????'
:trim string,?
:showvar string
STRING = this string needs the question mark stripped off

4. "ADDCAP" - this command file provides a simple method for adding capabilities to a "user"s
existing capability list Note the re-Iogging on option at the end of the command file.

parm cap="
'COMMENT
COMMENT +---+
COMMENT IADDCAP I
COMMENT IAdds a new capability to the "user"s existing capabilities. AM I
COMMENT lis required to execute the :ALTUSER command. The new capabilityl
COMMENT lis only available after re-Iogging on, which the user will be I
COMMENT Iprompted for. I
COMMENT +---+
COMMENT
if ('!cap' = ") then

echo (ADDCAP): Your capabilities are: !hpusercapf.
return

endif
if (pos('![ups('!cap')]','!hpusercapf') (> 0) then

echo (ADDCAP): You already have !cap.
echo (ADDCAP): The capabilities are: thpusercapf.
return

endif
setvar addcap temp "!hpusercapf,!cap"
setvar cierror 0
continue
altuser !hpuser;cap=!addcap temp
if cierror <> 0 then -

echo (ADDCAP): The capabilities remain: thpusercapf.
else

setvar addcap temp,ups(addcap temp)
echo (ADDCAP): thpuser new capabilities are: !addcap_temp.
setvar addcap temp 'N'
input addcap temp,'(ADDCAP): Log off/on now (Y/N) ==>',10
if cierror =--9003 then

comment: Timed read expired.
echo
echo (ADDCAP): Timed 10-second read expired. Logon cancelled.

else
if not(lft(ups(addcap temp),1) = 'y') then

echo (ADDCAP): New-capabilities take effect at next logon.
else

hello !hpjobname,!hpuser.!hpaccount,!hpgroup
endif

endif
endif

MPE XL User Interface,

2070-12

deletevar addcap temp
COMMENT end of addcap

Usage:
:listuser foo

USER: FOO.UI

HOMEGROUP:
MAXPRI 150
LOGON eNT: 0
CAP: AM,BA,IA

PASSWORD: **
LOe ATTR: $00000000

:addcap
(ADDCAP): Your capabilities are: AM,BA,IA

:addcap am
(ADDCAP): You already have
(ADDCAP): The capabilities are

AM
AM,BA,IA

:addcap ds
(ADDCAP): FOO new capabilities are: AM,BA,IA,DS
(ADDCAP): Log off/on now (Y/N) ==>n
(ADDCAP): New capabilities take effect at next logon.

5. "FINFO" - this command file will display the file label information for a given file. Note the
use of finfo in the IF..THEN control structure.

PARM file
COMMENT
COMMENT +------------------------------------+
COMMENT I FINFO I
COMMENT I Use finfo to show file label info. I
COMMENT +------------------------------------+
COMMENT
if not(finfo('tfile',O» then

comment File does not exist.
if lft('tfile' ,1) <> '*' and Ift('!file',1) <> '$' then

comment Qualify file before reporting non-existence.
if pos('.' ,'!file')) 0 then

if pos('.',rht('tfile',len('tfile')-pos('.' ,'!file'»)) 0 then
echo ![ups('tfile')] does not exist.

else
echo ![ups('!file')].thpaccount does not exist.

endif
else

echo ![ups('!file')].!hpgroup.thpaccount does not exist.
endif

else
echo !file does not exist.

endif
else

r~PE XL User Interface.

2070-13

comment ** formal file designator **
echo (FINFO): Full file description for ![finfo('!file',1)] follows:
comment ** creator and create/modify dates **
echo Created by ![finfo('tfile',4)] on ![finfo('!file',6)].
echo Modified on ![finfo('!file',8)] at t[finfo('tfile' ,24)].
comment ** file code **
if finfo('tfile' ,9) = " then

echo Fcode: t[finfo('!file',-9)].
else

echo Fcode: t[finfo('!file',9)] (![finfo('tfile' ,-9)]).
endif
comment ** rec size, eof, flimit **
echo Recsize: ![finfo('tfile',14)], Eof: t[finfo('tfile',19)], &

Flimit:t[finfo('!file' ,12)].
comment ** foptions **
setvar fopt finfo('!file',-13)
echo -Foptions: ![finfo('!file',13)] (#!_fopt, ![octal(_fopt)],&

t[hex(fopt)]).
deletevar fopt

endif -
COMMENT End of finfo.

Usage:
:finfo a
(FINFO): Full description for A.GROUP.ACCT follows:

Created by TOM on SUN, MAY 29, 1988.
Modified on SUN, MAY 29, 1988 at 3:21 PM.
Fcode: o.
Recsize: -80, Eof: 5, Flimit:5.
Foptions: ASCII, FIXED, NOCCTL, STD (#5, %5,$5).

6. "PURGESP" - this command file will purge multiple spool files. Note the nUlltiple entry points
. nnd the use of the Command Interpreter. CI.PUB.5VS.

parm user= ..@.. ,grp= .. pub.. ,entry_point=.. purgesp.. ,command=....

COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT

+---+
PURGESP
This file will purge all spool files which belong to the
specified user (ie - @, @.@, mgr.test, etc.).
Only spool files in the READY state are purged.

+---+

COMMENT « this entry point is the main body»
if "!entry point" = "purgesp" then

COMMENT «cleanup temporary files from a previous run of this file»
if FINFO ("spin.tgrp", 0) then

purge spin.! grp
endif

MPE XL User Interface.

2070-14

if fINfO ("spin2.!grp", 0) then
purge spin2.!grp,temp

endif

if fINfO ("spout.!grp", 0) then
purge spout.!grp

endif

if fINfO ("purgein.!grp", 0) then
purge purgein.!grp

endif

if fINfO ("purgein2.!grp", 0) then
purge purgein2.!grp,temp

endif

COMMENT « build temporary files »
build spin.!grp;rec=40"f,ascii;disc=10000
build spout.!grp;rec=40"f,ascii;disc=10000
build purgein.!grp;rec=40"f,ascii;disc=10000
file spin2.!grp;rec=40"f,ascii;disc=10000
file purgein2.!grp;rec=40"f,ascii;disc=10000

COMMENT « generate the input file for spook »
run ci. pub. sys; info="purgesp ,,'getspin' , , s ! user'" &

;stdlist=spin.!grp;parm=3

COMMENT « extract only the lines that contain spook commands »
print spin.!grp,*spin2.!grp;start=3

COMMENT « get a list of the spool files to purge »
run spook.pub.sys;stdin=spin2.!grp &

;stdlist=spout.!grp

COMMENT « convert the list of files to the format "p 0####" »
run ci.pub.sys;info="purgesp "getxddno" &

;stdin=spout.!grp &
;stdlist=purgein.!grp &
;parm=3

COMMENT « extract only the lines that contain xdd numbers »
print purgein.!grp,*purgein2.!grp;start=3

COMMENT « purge the selected spool files »
run spook.pub.sys;stdin=purgein2.!grp

COMMENT « clean up »
purge spin.! grp
purge spin2.!grp,temp
purge spout.!grp
purge purgein.!grp
purge purgein2.!grp,temp
reset spin2.!grp

MPE XL User Interface.

2070-15

reset purgein2.!grp
else

COMMENT « this entry point creates the file 'spin' »
if "!entry point" = "getspin" then

echo !command
echo exit

else

COMMENT « this entry point converts a spook-generated list of »
COMMENT « spool files to a list of just xdd numbers preceded »
COMMENT « by a 'p' to tell spook to purge the file »
if "!entry point" = "getxddno" then

setvar hpmsgfence 2
setvar eof false
setjcw cierror"O

while not eof
continue
input line

if cierror <> 900 then
if LFT (line, 2) = "#0" then

if POS ('READY', line) > 0 then
echo p ![STR (line, 3, 6)]

endif
endif

else
setvar eof true

endif
endwhile

echo exit
deletevar eof
deletevar line
setvar hpmsgfence 0

endif
endif

endif
COMMENT end of purgesp

#JOB
#J758
#J759
#J760
#J761
#J762
#J763

Usage:
: spookS
SPOOKHPE
>s
#FILE
#01777
#01778
#01779
#01780
#01781
#01782
>e

A.02.50 (C) HEWLETT-PACKARD CO., 1985

FNAME STATE OWNER
$STDLIST READY TOM.UI
$STDLIST READY TOM.UI
$STDLIST READY TOM.UI
$STDLIST READY TOM.UI
$STDLIST READY TOM.UI
$STDLIST READY TOM.UI

MPE XL User Interfnce~

2070-16

END OF PROGRAM
:purgesp tom

END OF PROGRAM

END OF PROGRAM

END OF PROGRAM

SPOOK A.10.10
> #FILE #J08
#01777 #758
> #FILE #J08
#01778 #759
> #FILE #J08
#01779 #760
> #FILE #J08
#01780 #761
> #FILE #J08
#01781 #762
> #FILE #J08
#01782 #763
>
END OF PROGRAM

(C) HEWLETT-PACKARD CO., 1983
DEV/CL SECTORS OWNER

LP 36 TOM.UI
DEV/CL SECTORS OWNER

LP 36 TOM.UI
DEV/CL SECTORS OWNER

LP 36 TOM.UI
DEV/CL SECTORS OWNER

LP 36 TOM.UI
DEV/CL SECTORS OWNER

LP 36 TOM.UI
DEV/CL SECTORS OWNER

LP 36 TOM.UI

7. "CALCITu
- this command file will allow a user to interactively lise the expression evaluator.

Note the high lIsage of screen control escape characters.

PARM enh ch=D
COMMENT -
COMMENT +--+
COMMENT I CALCIT I
COMMENT I Interactive calculator using :calc and :input. I
COMMENT +--+
COMMENT
echo ![chr(27)+'h'+chr(27)+'J']
center 'MPE XL Interactive Calculator'
center ': executes any MPE command!!!'
center 'Type EXIT or [RETURN] to exit'
echo
setvar calcit esc chr(21)+'C'
setvar calcit-expr 1
while calcit expr < 7

setvar calcit esc calcit esc+calcit esc
setvar calcit-expr calcit expr + 1 -

endwhile - -
setvar calcit esc chr(27)+'A'+calcit esc
setvar calcit=prompt lft(ups("!-1"),pos(' , ,"!-1 11 +' ')-1)+' ==> '

MPE XL User Interface~

2070-17

setvar calcit expr 'Hello'
while (not ups(calcit expr) = 'EXIT') and (not calcit_expr ")

setvar calcit expr "
input calcit expr,"fcalcit prompt"
setvar calcit len len(calcTt expr)
while (len{calcit expr)) O)-AND (lft(calcit expr,1) = chr(32»

setvar calcit expr rht{calcit expr,len{calcit expr) - 1)
endwhile - - -
if (not ups(calcit expr) = 'EXIT') and (not calcit_expr = ") then
if lft{calcit expr:1) = ':' then

continue -
![rht(calcit expr,len(calcit expr)-1)]

else - -
setvar hpmsgfence 2
setvar cierror 0
continue
setvar hpresult !calcit expr
if not cierror = 0 then-

setvar hpmsgfence 0
continue

calc !calcit expr
else -

echo ![lft(calcit esc,2+(len(calcit prompt)+calcit len)*2)+&
, = '+chr(27)+'&dfenh_ch']!hpresult -

endif
setvar hpmsgfence 0
endif
endif

endwhile
deletevar calcit @
comment end of calcit

Usage:
:calcit

MPE XL Interactive Calculator
: executes any MPE Command!!!
Type EXIT or [RETURN] to exit

CALCIT ==> :listf a

FILENAME

A

CALCIT ==> 5+7
CALCIT ==> 5+7 12
CALCIT ==> exit

MPE XL User Interfnce.

2070-18

	New Features of the MPE XL User Interface

