
TRANSACT/XL: Strategy for Migration to Native Mode

by Ga£$ Peck
Hewlett-Packard

19111 Pruneridge (Mail Stop 44MB)
Cupertino, CA 95014

• • • • •
ABSTRACT

Native Mode TRANSACT is a way to take full advantage of the capabilities ot
the Series 900. It compiles TRANSACT source or P-code into Native Mode
object code.

This presentation covers:

Steps in the TRANSACT/XL migration process

Ease of conversion trom MPE/V to MPE/XL and from CM to NM

Minor exception conditions that may require code modifications

Practical experience from actual application migrations

Expected performance

• • • • •
TRANSACT/XL COMPILER

In the past, a migration to a new computer has been a scary prospect. The
question boils down to this: Is it possible to take thousands of lines ot
source code that were running on your existing computer, recompile it with a
NEW compiler on a NEW computer, and have them run better than before with
high reliability and exceptional performance? This is clearly possible with
Hewlett-Packard's new TRANSACT/XL compiler. In addition, a carefully
executed migration plan practically guarantees the success of the migration.

On the Series 900 machines, TRANSACT programs can run in Compatibility Mode
(CM) or Native Mode (NM). Compatibility Mode is a program environment that
executes classic 3000 instructions on the Series 900 machine. Native Mode
uses the innate features of the new instruction set and the MPE/XL operating
system to take full advantage of Precision Architecture. In CM, TRANSACT
source files are processed by TRANCOMP into P-code files, which are then
executed by the TRANSACT processor just as on classic 3000 machines under
MPE/V. In NM, TRANSACT provides a compiler that reads either ASCII source
files or TRANSACT P-code files and generates Native Mode object modules.

2071 -1



MIGRATION PROCESS

A successful migration will result by following the stages in the migration
process: training, planning, preparation, installat10n, CM operation, and
NM operation. Briefly, the migration site receives training on MPE/XL the
migration process; the project goals, milestones, and tasks are planned;
the staff completes tasks in preparation for arrival of the Series 900
equipment and software; the hardware, MPE/XL and subsystems are installed;
the staff restores MPE/V applications and tests in CM; and the staff
compiles and tests applications in HM. The migration process is covered in
the tutorial presentation, "Steps to a Successful Migration" and in the XL
migration guides.

I will focus on aspects of migration peculiar to TRANSACT. In the planning
and preparation stages, migration tool utilities are usually used to flag
potential incompatibilities with the NM side and to predict resource
utilization. These utilities are not relevant to TRANSACT applications
since TRANSACT applications are NOT made up of program files. Instead
TRANSACT applications are groupings of P-code (IP) files (more like data)
which are interpreted by the TRANSACT run-time processor. The only program
files are TRANCOMP and TRANSACT themselves which have been converted and
tested in CM for you by Hewlett-Packard. The TRANSACT/XL compiler runs in
Native Mode.

There are few, if any, changes to be made when converting from a TRANSACT/V
source program to a TRANSACT/XL source program. Therefore, NO automatic
conversion utility has been provided. Changes are made manually with a text
editor of choice. Virtually all TRANSACT features are supported by
TRANSACT/XL. The few features not supported are:

Run-time resolution of data item definitions from a dictionary
Test modes
INITIALIZE built-in command
CALLs to TRANSACT/V, REPORT/V, or INFORM/V (TRANSACT/XL calls are supported)

TRANSACT language features that are specific to the MPE/V environment but
not applicable in the MPE/XL environment are ignored by the TRANSACT/XL
compiler (e.g., NOLOAD, SWAP). Some additional considerations for the PROC
verb will be covered in a moment.

New features designed to maximize effectiveness of XL applications can be
quickly incorporated. These are principally new compile options available
in the "INFO=" string of the TRANSACT/XL compile commands, TRANXL, TRANXLLK,
and TRANXLGO. These are the same kinds of compile commands used by other NM
languages. The compile options, including OPrIMIZE and SUBPROGRAM, will be
discussed later.

The existing TRANSACT language feature set, Dictionary/V, System Dictionary,
and Native Language Support are supported at compile time. TurbolMAGE,
MPE/V and MPE/XL file systems (KSAM and MPE files), VPlus, NLS, and both the
IEEE and HP standard floating point formats are supported at run-time.

2071- 2



STEPS TO MIGRATE TRANSACT/V to TRANSACT/XL

1) RESTORE your TRANSACT/V sour~~ files onto the MPE/XL system.

2) TEST in Compatibility mode (eM). Look for "setup" mistakes because
you are trying to duplicate your production environment on a new
machine. Look for differences, if any, between the XL environment
and the classic 3000.

NOW on to Native Mode ...

3) Examine each program for the following special conditions.

3a) Does it use the PROC verb to call system intrinsics?

Make sure each intrinsic is defined using the DEFINE(INTRINSIC)
statement or use the new compiler option PROCINTRINSIC. These
measures are not required for TurboIMAGE and VPlus intrinsics.

3b) Does it use the PROC verb to call option-variable system intrinsics
with 32-bit parameters? (i.e., FCHECK, FDELETE, FGETINFO, FOPEN,
MYCOMMAND, STACKDUMP, WHO)

Explicitly pass the 32-bit parameter. For example, in the
following code, pass the lIfilesizell parameter replacing the
two commas currently used to denote a null filesize with
the filesize parameter and a single comma.

system exam1;
define(item) file-name x(20):

foption i(4):
aoption i(4):
filenum i(4):
filesize i(9):
bitmap i(4);

define(intrinsic) fopen;
list file-name:

foption:
aoption:
filenum:
filesize,init:
bitmap;

move (file-name) = lIOLDFILElI;
let (foption) = 5;
let (aoption) = 0;
let (bitmap) = 1116;

proc

«32 bit integer»

«old ascii file»
«read access»
«1110000001000 passing 1st three»
« and filesize; this bitmap is »
« valid in CM, but is ignored in NM »

fopen(%(file-name) ,I (foption) ,I (aoption) ,
«""""", » «old place-holding commas »

"""'(filesize)",, «each comma denotes a parameter »
«note that there is one less comma»

&(filenum),I(bitmap»;

2071-3



3c) Dops it use the PROC verb to call sUbroutines written in other
l&...~guages?

The alternatives are to'write a STUB for the routine or rewrite it in a
Native Mode language. There may be differences between MPE/V based
compilers and MPE/XL based compilers. Please refer to the individual
language migration guides. For example, the MPE/XL based COBOL compiler
converts hyphens to underscores. The MPE/V based COBOL compiler leaves
hyphens as is.

3d) Does it use the CALL verb to call INFORM/V or REPORT/V?

Since this feature is not supported, you can choose from these
workarounds (examples follow):

Continue to run the program in compatibility mode
Rewrite the INFORM/V report in Transact and compile i t with Transact/XL
Use process handling to invoke Inform/V
Convert the report to BRW/XL and use the PROC verb to call the

BRW/XL intrinsics

The following is a TRANSACT program that executes a BRW report. Prior
to running the program, a BRW report was designed and compiled into a
BRW/XL execution file named BRWEXECR.

system brw1,vpls=myff(mainmenu(selection»;
define(item) brw-comarea x(106):

brw-status i(4)=brw-comarea:
brw-error i(4)=brw-comarea(3):
brw-com-length i(4)=brw-comarea(5):
brw-exec-file x(36)=brw-comarea(7):
brw-defaults i(4),init=0:
selection i+(l);

list brw-comarea:brw-defaults:selection;
let (brw-com-length) = 50;
get (form) mainmenu;
if (selection) = 1 then

do
proc brwinitrequest «brw-comarea»;
move (brw-exec-file) = "BRWEXECR ";
proc brwstartrequest «brw-comarea),(brw-defaults»;
display brw-status:brw-error;
proc brwstoprequest «brw-comarea»;
doend;

end;

2071- 4



3e) Does it use the CALL verb to call a TRANSACT/V program?

Compile the called TRANSACT/V program with the TRANSACT/XL compiler
using the SUBPROGRAM option. Place the called program in an RL or XL
to be resolved during linking or loading.

3f) Does it access files that contain real numbers?

The code generated by the TRANSACT/XL compiler supports both IEEE and BP
floating point formats. Under NM MPE/XL, internal storage of real
numbers is in the IEEE format. Translation between IEEE and HP formats
from and to files and databases is done after the read and before the
write on I/O. If no format is specified for a file or database, IEEE
numbers are assumed. The compiler option HP3000 16 is available for
defining a floating point format for all the files. If the floating
point format for individual files is different from that specified by
the compiler option, you can express the requirements in the FILE or
BASE specification of the SYSTEM statement. This is done by putting
HP3000 16/32 in the "file-option-list" or in the "basetype" (follows
"optlock"). Because internal representation of real numbers is
different between MPE/V and MPE/XL, individual values may change
slightly during conversion.

The following program illustrates converting real numbers from the MPE/V
format to the MPE/XL standard format. Note that the HP3000 16 option is
applied to the input file and the HP3000 32 option is applied to the
output file. This causes item-name "R4"-to be read as an MPE/V format
real number and to be written as an MPE/XL standard format real number.

system convrt,file=in(read(hp3000 16»
,file=out(write(hp3000 32»;

define(item) x2 x(2): -
i4 i(4):
i9 i(9):
r4 r(4);

list x2:i4:i9:r4;
find(serial) in,perform=lOO-convert;
exit;
lOO-convert:

put out;
return;

2071- 5



3g) Does it resolve variable definitions at run-t~e1
(e.g., DEFlNE(ITEM) itemname *;)

Define all variables at compile time.

3h) Does it rely upon the INITIALIZE command to execute the next program?

Change user procedures to exit the program and RUN a second program
at the MPE/XL command level.

4) Determine which compile options are needed. Supply these in the "INFO="
parameter on the TRANSACT/XL compile commands.

Like compatibility mode TRANCOMP, the TRANSACT/XL compiler allows you to
control certain compilation features by supplying compiler options via the
INFO= parameter. These opt ions can be included on any of the commands that
are used to invoke the TRANSACT/XL compiler: TRANXL, TRANXLLK, TRANXLGO,
and RUN THAN. PUB. SYS • The new compiler options are:

DYNAMIC CALLS generates dynamic calls for all CALL statements in the
program~ This allows a program to be executed even if some of the programs
that it calls are not available at load-time.

HP3000 16 causes the program to use the HP floating point format tor all
files and databases. If the NOHP3000 16 option is specified, then all tiles
are expected to use the IEEE floating-point format.

PROCALIGNED 16, PROCALIGNED 32, PROCALIGNED 64 cause the compiler to assume
that all 16732/64-bit aligned parameters are correctly aligned on
16/32/64-bit boundaries. Using this option improves run-time efficiency,
since the compiler only generates a run-time check to ensure that these
parameters are correctly aligned.

PROCINTRINSIC option is identical in effect to declaring intrinsics with a
DEFINE(INTRINSIC) statement, but is less efficient.

SUBPROGRAM is used when compiling a program to be called by another
TRANSACT/XL compiled program. No outer block is generated. The TRANSACT/XL
compiler creates a single RSOM file regardless ot how many SYSTEM statements
are in a source file. When a source rile contains more than one system, the
default is to compile the first SYSTEM encountered with option NOSUBPROGRAM
and the remaining with the option SUBPROGRAM as they are assumed to be
subprograms called by the first system. Using the SUBPROGRAM compiler
option causes all the systems in the file to be compiled with the SUBPROGRAM
option.

OPTIMIZE directs the compiler to generate level 1 opttmized code. Using
this option causes the compile to be slower, but produces object modules
that are more efficient at run-time.

2071- 6



5) Compile the programs under TRANSACT/XL.

6) Examine the compile listings for errors.

1) Test applications as extensively as possible. If discrepancies or
defects are identified, please verify these under the TRANSACT/V
processor. Please do as much as you C~I ·0 tSv_ate new defects in your
applications from those in TRANSACT/XL. ~eport defects
to the Response Centers.

Our initial migration sites have been converting thousands of lines of code
with few unexpected errors in the applications~d almost no defects in
TRANSACT/XL. Most snags that I have observed t~nd to fall into three
categories: setup (wrong capabilities; UDC not set); XL learning curve
(LINKEDIT; XL user libraries); and test suites not fully debugged on the
classic 3000.

Because of the additional testing prescribed by the migration process, a new
error is just as likely to be an undiscovered defect in the app~ication as
it is a defect in TRANSACT/XL. I emphasize the importance of using a fully
tested test suite so that you are fairly certain of testing the application
and not the test data. Some defects may be caused in the MPE realm and come
to the surface in a TRANSACT program. Be aware of differences in subsystems
as well. VPlus, TurboIMAGE , and network products all have their own
migration guidelines. For example, in VPlus, performing character mode I/O
while VPlus "owns" the terminal will cause VPlus or the driver to hang
(Vturnoff and Vturnon intrinsics alleviate this).

Preliminary performance data shows that a TRANSACT program compiled in NM is
performing within the same tolerances as other NM languages. A TRANSACT/XL
performance test was just completed by a major HP customer. The application
was an interactive materials inventory and maintenance system comprising
500,000 lines of TRANSACT code, 260 VPlus screens, and 6 TurboIMAGE
databases. A menu was used to select functions performed by individual
TRANSACT programs. The menu was compiled into a Native Mode main program
and the TRANSACT subprograms were compiled into a XL library. The Series
950's maximum throughput at the saturation point was as much as 2.8 times
the Series 10 running FASTRAN compiled TRANSACT code. The customer also
found that the maximum number of recommended users supported by the 8/950
was 2 to 3 times the practical limit of users on their S/10.

TRANSACT migration to the Series 900 should be smooth and straightforward.
Customer enthusiasm is running high because of the exciting performance,
product reliability, ease of migration, and expert support channels.

BIBLIOGRAPHY

TRANSACT/XL Migration Guide
TRANSACT/3000 Reference Manual, Rev. 10/81, Appendix H (future update)

2071-7




	TRANSACT/XL: Strategy for Migration to Native Mode

