

|A-64 Architecture and Its Performance

Hsin-Ying Lin hsin-ying_lin@hp.com
Kevin Wadleigh kevin_wadleigh@hp.com

@

July 6, 2000 Page

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

Next-Gieneration
MierOprocessors

Most Significant

Architecture Since 80386

* 64-Bit Architecture (Post RISC, 32-Bit)

« EXxplicitly Parallel Instruction
Computing (EPIC)

« Comprehensive Predication

 Enhanced Speculation

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

!!!!!!

July 6, 2000 Page 3

' The |IA-64 Advantages

Performance Optimized

» Breakthrough Performance for Workstation
and Server Applications

o Multi-Platform Support

* Delivering Next-Generation Computing
Today

High-End Application Support
« E-services

* Technical Computing

» Business Intelligence

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

nnnnnn

July 6, 2000

Page 4

i Today’s Architecture Challenges:

 Too Few Registers

* Hardware-Based
Instruction Scheduling

Perfofmance
Barriers

« Memory Latency

 Branch Misdirects + Memory Addressing

ty Efficiency
Lint n< < Hardware, I/O Capacity

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

llllll

July 6, 2000 Page 5

 Memory Addressing
Efficiency

* Breakthrough OLTP
| Performance

* Floating-Point
Mathematics

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

nnnnnn

July 6, 2000 Page

HP-UX:

)

—

ny l'i;
il

-
—

|

AT
.........
..................

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

July 6, 2000

||||||

% HP’s Binary Compatibility Advantage:

ltanium & HP-UX, Windows NT, and Linux

Pervasive
Technology
PA-RISC

Binary Compatibility

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

nnnnnn

July 6, 2000

|A-64

Architecture resources
Predication

Register rotation
Speculation

Processors

Performance Tuning for ISV

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

||||||

July 6, 2000 Page 9

Machine Resources

General NAT Floating point Preds Branch
ar0 =0 =
| | ‘
Non-Rotating I | I @true |
Registers 3'1 . 3-1 1 |
32 32 ;L|6- /
Rotating 1 | I 4—6 4 —>
Registers I | | |
| | | I
| | | I
| I |
| | |
| I |
| I .
127 12/
“64— g9 —»
Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000 Page 10

IA

TG

Instruction Bundling

128-bit aligned instruction bundles contain
= three 41-bit instructions
= 5-bit template consisting of 4-bit dispersal template + 1 stop bit
Branches are to bundle boundaries
Implementations are allowed to have any number of functional units

Template controls dispersal to functional units: Memory, Integer,
Floating-point, Branch, Long immediate

template

slot 2

slot 1 slot O

disp

S

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

July 6, 2000

nnnnnn

IA_

Templates and Dispersal

Templates:

01 2

M L X

M I

M 1/

MM I

M/M |

MM F M F | M F B

MM B

M F I

M F B

M1 B

M B B M M F F | B

BB B

/ = stop bit Dispersal maps the instructions to functional units. This
Each template is available €Xample shows a CPU that can perform at least two M units,
with stop bit at end two F units, an | unit and a B unit in one cycle. (Itanium can

perform 2M, 21, 2F, 3B)

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

nnnnnn

July 6, 2000 Page 12

1A

PCTI

Parallelism — Code exampley =x +vy

 |nstruction stream
|dfd f10 = [r21] I/ load x
|dfd f11 = [r24] //'load y
" I/ break in parallelism
fadd.d f10 =f10,f11 /ly=x+y
" I/ break in parallelism

stfd [r24] = f10 /] store 'y
 Maps to
M M nop.l ;; /I MMI
nop.m F nop.l ;; // MFI
M nop.l nop.l //MI
Hsin-Ying Lin and Kevin Wadleigh MSW, TCD Eﬂ]

July 6, 2000 Page 13

1A

Predication — removes branches

« Converts a control dependence to a data dependence
= Compare instructions set predicate bit

» Predicated instructions are either normally executed or they do
not affect the architectural state — example code below

if (ix .eq. iy) then

a=0
else
c=0
endif
 Becomes
cmp.eq p6,p7 =rl6,rl7 ;;
(p6) fadd.d f4 =f0,fO
(p7) fadd.d 5 = f0,f0
* Mapsto
nop.M I nop.l ;;
nop.M F nop.l
nop.M F nop.|

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000 Page 14

1A

PCTI

Software Pipelining

» Traditional architectures use loop unrolling to hide
latencies

* High overhead: extra code for loop body, prologue,
and epilogue

» Synergistic use of IA-64 features allows efficient
pipelining
= Special branches cause registers to rotate
= Register rotation removes need for explicit unrolling
» Predicate rotation removes prologue & epilogue

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000 Page 15

1A

PCTI

Register Rotation

Key to good loop performance
» software pipelining uses register rotation
= acts like short vectors

= with each iteration of a loop, data in rotation registers
moves to the next register in the set

Code example load X —e—) iter 1
doi=1,n iter 2
y(i) = x(i) |
enddo store y —— fr34 | fr33 iter 3
Becomes iter 4 fr34 | fr33
loop: o5 | fra4
|dfd fr32 = [r26],8 // load x and incr address
stfd [r22] = fr34,8 /I store y (2 iter after load of x)
br.ctop.sptk iloop ;; /[loop instruction - reg. rotate

This example omits predication necessary for prologue and

epllogue Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000 Page 16

1A

PCTI

Software Pipelining using Rotation
and Predication

 DAXPY inner loop
for(1=0;1<3;i++)
dy[i] = dy[i] + (da * dx[i]);
(2 loads, 1 fma, 1 store per iteration)
» Consider a hypothetical processor than can perform
» 2 loads, 1 fma, 1 store per iteration
» |load latency of 2 cycles
» fma latency of 1 cycle
* (Itanium can perform: 2M, 21, 2F, 3B per cycle)

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000 Page 17

Example: Pipeline
Each column represents 1 source iteration

load dx,dy

tmp =dy + da * dx
store dy

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

||||||

July 6, 2000

1A

=
Example Code
.rotf dx[3], dy[3], tnp[?2] /'l short vectors
nov ar.lc = 2 /1 1c = 1oop count
/] = #iterations-1
nov ar.ec = 4 /'l epil ogue count

/| #stages (or # pred)
nov pr.rot = 0x10000 [l pl6=1, pl7=pl8=..=
| oopt op:
(pl6) Idfd dx[0] = [dxsp], 8
(pl6) Idfd dy[O] = [dysp], 8
(pl8) fma.d tnp[0] = da, dx[2], dy][?Z2]
(pl19) stfd [dydp] = tnp[1l],8
br.ctop | ooptop

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000 Page 19

1A

Loop Execution

EXxecution Seguence

‘ (p16) Id, (p16)Id,

Loop 1 LC=2 EC=4
| @

July 6, 2000 Page 20

IA

=
PCTI

Loop Execution

Execution Seguence
(p16) Id, (p16)Id,
(p16) Id, (p16)Id,

Loop 2 LC=1 EC=4
* @

July 6, 2000 Page 21

IA

=
PCTI

Loop Execution

Execution Seguence
(p16)Id, (p16)Id,
(p16) Id, (p16)1d,
(p16) Id, (p16)Id, (p18)fma

Loop 3 LC=0 EC=4
2

July 6, 2000 Page 22

Loop Execution

Execution Seguence
(p16) Id, (p16)Id,
(p16) Id, (p16)Id,
(p16) Id, (p16)Id, (p18)fma

‘ (p18) fma (pl9) st

Epilogue 1 LC=0 EC=3
3

July 6, 2000 Page 23

Loop Execution

EXxecution Seguence
(p16)Id, (p16)Id,

(p16) Id, (p16)Id,
(p16) Id, (p16)Id, (p18)fma
(p18) fma (pl9) st

‘ (p18) fma (p19) st

17
=
@
o
=
A
@
('/ b)

)

rY

4
— 4
'l /4
—_— 4
—_—

).
0.
9;

l_‘

Epilogue 2 LC=0 EC=2

nnnnnn

July 6, 2000 Page 24

Loop Execution

Execution Seguence

(p16)1d, (p16)Id,
(p16)1d, (p16)Id,
(p16)1d, (p16)Id,

=
=
®

O
=
Q)
gh
('/ p)

= = =
~ P

O Q02

=)

l_‘

Epilogue 3

(p18) fma

(p18) fma (pl9) st

(p18) fma (pl9) st
(p19) st

LC=0 EC=1

nnnnnn

July 6, 2000 Page 25

Loop Execution

EXxecution Sequence
(p16) Id, (p16)Id,
(p16) Id, (p16)Id,
(p16) Id, (p16)Id, (p18)fma
(p18) fma (pl9) st
(p18) fma (pl9) st

17
=
@
o
=
A
@
('/ b)

)

| Y
a

—_— a

’l _/J

—_— a

’l

—_—

5 (p19) st
. ‘ fall through
19:
Done LC=0 EC=0
(D

nnnnnn

July 6, 2000 Page 26

Pipeline and Latency

load dX,dy ===

* Suppose we change to latencies to
» |oad latency of 6 cycles
* fma latency of 4 cycles
e Each column represents 1 source iteration

tmp =dy + da * dX ===

storedy — =—>

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

nnnnnn

July 6, 2000

IA

TG

Updated Loop

.rotf dx[7], dy[7], tnp[5]

nov ar.lc
nov ar. ec 11 /| #stages
nov pr.rot = 0x10000

| oopt op:
(pl6) Idfd dx[0] = [dxsp], 8
(pl6) Idfd dy[O] = [dysp], 8
(p22) fma.d tnp[0] = da, dx[6], dy][6]
(p26) stfd [dydp] = tnp[4],8
br.ctop | ooptop

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

2 /] #iterations-1

July 6, 2000

nnnnnn

1A

Rotation: Summary

* Loop pipelining maximizes performance; minimizes
overhead

= Avoids code expansion of unrolling and code
explosion of prologue and epilogue

= Smaller code means fewer cache misses

= Greater performance improvements in higher
latency conditions

* Reduced overhead allows S/W pipelining of small loops
with unknown trip counts

= Typical of integer scalar codes

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000 Page 29

IA

TG

Speculation

 Memory is very far away, so we would like to load data
well before its use

» Prefetch instructions will not prefetch pages that have
not been mapped by the TLB

» Prefetch instruction will not prefetch data from invalid
addresses

» Speculative loads allow users to try to load data from
addresses regardless of whether or not the data will be
used, the address will be written to in the meantime, or
the address is known to be valid. What could go
wrong?

« Control speculation versus data speculation
= Control - moves loads around branches
= Data - moves loads around stores

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

nnnnnn

July 6, 2000 Page 30

IA

|4|

Control Speculation
Move Loads before Branches

Traditional Architectures IA-64

!nstr 1 :
Barrier

o

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

||||||

July 6, 2000 Page 31

1A

Control Speculation

* Regular loads are replaced with speculative load,
followed by speculative chk instruction

= |d Is replaced by Id.s, chk.s
= |df Is replaced by Idf.s, chk.s
» For safety, special values are used for illegal returns

* Integer loads set the Not a Thing (NaT) bit
associated with the target general register

» Floating-point loads set the target floating-point
register to a special value: NaTVal =
0,0x1FFFE,0...0

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000 Page 32

Propagate
Exception

Recovery code

 NaT (or NaTVal) indicates:
= whether or not an exception has occurred

« If NaT (or NaTVal) set during Id.s (Idf.s), it is checked by the
instruction chk.s (usage: chk.s reg,target), then branch to
target

= code at target can redo the load and take the normal
exception Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

llllll

July 6, 2000 Page 33

Data Speculation
VT Move Loads before Stores

Traditional Architectures IA-64

instr 1

InNstr 1
INstr 2
Barrier Store

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

nnnnnn

July 6, 2000

IA_

Data Speculation

* Moves loads around possibly conflicting stores

» Regular loads are replaced with advanced loads,
followed by either a check load or advanced chk
Instruction

* |f the only instruction that was ambiguous is the load,
then a check load can be performed after the load

= |d IS replaced by Id.a, Id.c.clr
= |df IS replaced by |df.a, Idf.c.clr

 If there are several instructions that depend on the
advanced load, then a chk.a can be used to branch to

fix up code
= |d Is replaced by |d.a, chk.a
= |df Is replaced by |df.a, chk.a

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

nnnnnn

July 6, 2000 Page 35

IA

TG

Data Speculation - example

* |f the only instruction that was ambiguous is the load,
then a check load can be performed after the load

st [r4] =rl2
Id r3 =[r5] ;;
 Becomes
Id.a r3 = [r5] ;; // advanced load - note a suffix
st [r4] =rl2
ld.c.clr r3=[r5] // if the addr has been modified,
// redo it

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

nnnnnn

July 6, 2000

1A

3

Performance

A

Processor Evolution

Next generatio [ﬁa HEWLETT
PACKARD
EPIC, IA-64 |

6 instructions/cycle

Superscalar RISC
<4 instructions / cycle

<l instruction / cycl

icron 7
Lcron 7 28T
c
35

20-30% increase per year due
to advances in underlying
semiconductor technology

.3ins/cycle

P> Time
Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000 Page 37

IA_

HP Microprocessor Roadmap

Madison
A Performance

Deerfield
Price/Perf

McKinley PA-8800

PA-8700
Itanium
PA-8600 550MHz
PA-8500 360-440MHz
PA-8200 240MHz
PA-8000 180MHz

‘96 ‘08 ‘00 ‘02 Future |
Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

nnnnnn

July 6, 2000 Page 38

Performance Tuning for ISV

ml
Inmveni

July 6, 2000 Page 39

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

Characteristics of ISV Application

One of our commercial ISV application
Involves a lot of floating computation. On
their benchmark suite, over 50% of the
computation time was concentrated in about
25% of the routines. Furthermore, about 40%
of computation time actually spend in two
kernels, WAXPY and DOTPRODUCT.

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000 Page 40

WVAXPY ‘s C Code

wvaxpy(w, X, Yy, n, alpha)
double *w, *x, *y, alpha;
Int n;
{
while(n-- > 0) *(w++) = *(x++) +alpha*
*(y++);
}

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

nnnnnn

PPPPPP

|A-64 Compiler Generate Code for

WAXPY -- Ideally

Instructions Template Clocks on
Merced
L1
L L x+ S L x+ MMF MMF 2
L S - L L x+ MMI MMF 2
S L x+ L S - MMF MMI 2
L L x+ S L x+ MMF MMF 2
L S - L L x+ MMI MMF 2
S L x+ LF S - MMF MMI 2
L LF - LF - B MMI MIB 2
Total clocks for 8 iterations 14
Clocks per iteration 1.75

Note: LF indicates for prefetch instruction

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

July 6, 2000

Page 42

Instructions Template Clocks on
[tanium
L1

L L - L L - MMI MMI 2
L L - L L - MMI MMI 2
LF - x+ - - X+ MMF MMF 2
LF - x+ - - X+ MMF MMF 2
LF LF - S S - MMI MMI 2
LF LF - MMI 1
LF LF - S S B MMI MMB 2
Total clocks for 4 iterations 13
Clocks per iteration 3.25

Note: LF indicates prefetch instruction

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

July 6, 2000

| 1A-64 Compiler Generate Code for WAXPY

Page 43

.L11:

(p16)
(p16)

(p16)
(p16)

(p16)
(p16)

(p16)
(p16)

(p16)

(p17)

(p17)

ldfd

ldfd
nop.i
ldfd

ldfd
nop.i
ldfd

ldfd
nop.i
ldfd

ldfd
nop.i
Ifetch.ntl
nop.m
fma.d.sO
nop.m
nop.m
fma.d.sO

f44 = [r11], 64
f47 = [r10], 32
0
f34 = [r9], 32
f32 = [rg], 32
0
f40 = [r17], 64
f42 = [r16], 32
0
f38 = [r15], 32
36 = [r14], 32
0

[r11], 8

0

f50 = 18, 45, f41

0
0

Il M
Il M
11
/I M
/I M
Al
Il M
Il M
11
Il M
Il M
a
/I M
/I M
II'F
/I M
/I M

f51 =18, 148,143 ;; /I F

(p16)
(p17)
(p17)
(p16)
(p16)

(p18)
(p18)

(p16)
(p16)

(p16)
(p16)

(p17)
(p17)

Ifetch.ntl
nop.m
fma.d.sO
nop.m
nop.m
fma.d.sO
Ifetch.ntl
Ifetch.ntl
nop.i
stfd
stfd
nop.i
Ifetch.ntl
Ifetch.ntl
nop.i
[fetch.ntl
Ifetch.ntl
nop.i
stfd
stfd

Assembly Code Generated by
Compiler for WAXPY

br.ctop.dptk.few ..L11

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

[r17], 8 II'M
0 II'M
f45 =18, 35,139 /I F
0 II'M
0 II'M
fA8 =18, 133, 37 ;;/l F
[r11], 8 II'M
[r17], 8 II'M
0 /N1
[r19] = f46, 16 II'M
[r18] =49, 16 II'M
0 /A
[r11], 8 II'M
[r17], 8 II'M
0 A
[r11], -56 1M
[r17], -56 1M
0 1
[r19] =50, 16 II'M
[r18] = f51, 16 1M
;1B

July 6, 2000

O |

Imvemid

Page 44

Hand Tuned IA-64 WAXPY Assembly Code

Instructions Template Clocks on
ltanium
L1

LP S X+ LP S Xx+ MMF MMF 2
LP S X+ LP S Xx+ MMF MMF 2
LP S x+ LP S x+ MMF MMF 2
LP S X+ LP S Xx+ MMF MMF 2
LF LF - LF - B MMI MIB 2
Total clocks for 8 iterations 10
Clocks per iteration 1.25
Speedup ratio of HLL/Assembly 1.4
Speedup ratio of Compiler/Assembly 2.6

Note: LF indicates prefetch instruction; LP means quad word load

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

July 6, 2000 Page 45

WVAXPY Assembly vs C Code's Performance
on IA-64 Itanium 499 MHz

-S—tccp

= =assem

o /S
/ \

Mflops

400 /
300

[N

100 ﬂ/ B \\ ~

tccp -- +O2 +OnolJoarmsoverIa +CC3dataprefetch m

Hsin-Ying Lin and Kevin Wadleigh MS

||||||

July 6, 2000

WVAXPY Assembly vs C Codes' Speedup
on Itanium 499 MHz CPU

-8B assem/tccp

\ A
\ .
/>

\

Speedup Ratio
N

0.5

10 20 100 200 1000 2000 10000 20000 100000 200000 1000000

N
tccp -- +O2 +Onoparmsoverlap +Odataprefetch

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000 Page 47

DOTPRODUCT ‘s C Code

double dotproduct(a, b, n)
double *a, *b;
Int n;
{
double dot;
dot =0.;
while(n-- > O) dot += *(a.|..|_) * *(b++);
return(dot);

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

PPPPPP

|A-64 Compiler Generate Code for
DOTPRODUCT

Instructions Template Clocks on Itanium
L L x+ LFLFI MMl MMI 2
MM B MMB 1
Total clocks for 1 iterations 4
Clocks per iteration 4

Note: The floating point latency determines the rate.

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

..L5;

(p16)
(p16)
(p18)
(p16)
(p16)

|A-64 DOTPRODUCT Assembly Code
Generated by Compiler

|dfd f32=[rg], 8 /I M [line/col 7/20]
|dfd f35=[r14], 8 /I M [line/cal 7/20]
fmad.sO f8=137,134,f8 //IF

Ifetch.ntl [r9], 8 I M

Ifetch.ntl [r10], 8 II'M

nop.| 0 e

nop.m 0 I M

nop.m 0 I M

br.ctop.dptk.few ..L5 ;» [B [line/col 7/11]

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000 Page 50

|A-64 Compiler Generated Code for
DOTPRODUCT -- Ideally

Instructions Template Clocks on Itanium

L L x+ L Lx+ MMF MMF 2
L L x+ L Lx+ MMF MMF 2
L L x+ L Lx+ MMF MMF 2
L L o x+ L Lx+ MMF MMF 2
FLF B MMB 1
Total clocks for 8 iterations 9
Clocks per iteration 1.13

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000

Hand Tuned IA-64 DOTPRODUCT

Assembly Code
Instructions Template Clocks on Itanium
L1

LP x+ | LP x+ 1 MFI MFI 1
LP x+ | LP x+ | MFI MFI 1
LP x+ | LP x+ 1 MFI MFI 1
LP x+ | LP x+ 1 MFI MFI 1
LF LF B MMB 1
Total clocks for 8 iterations 5
Clocks per iteration 0.6
Speedup ratio of HLL/Assembly 1.8
Speedup ratio of Compiler/Assembly 6.4

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD

ml
FAavyeni

July 6, 2000 Page 52

1400

1200

1000

Mflops

600

400

200

on Iltanium 499 MHz

DOTPRODUCT Assembly Codes vs C Codes

—4—assem
—=cc_d

—
/o

I

,7(’

10 20

100

200

1000 2000
N

10000

20000 100000 200000

cc_d: compiledswythy QR kQn opumsdv eckap +Odataprefetch

July 6, 2000

nnnnnn

on Itanium 499 MHz CPU

|A DOTPRODUCT's Assembly Code vs C Code

=—¢— Speedup

A

f /\

10 20 100 200 1000 2000 10000 20000 100000 200000

N
C code compiledswith+Q2sOnapamsaverlap +Odataprefetchifig)

nnnnnn

July 6, 2000 Page 54

|A-64 Assembly code Vs C code

on ltanium
Speedup In-Cache Out-of-Cache
WAXPY 2.8X 2.2X
DOTPRODUCT 8.0x 6.5x

Overall speedup on ISV application suite = 1.3x
(Estimation)

Note: C code is compiled with +O2 +Onoparmsoverlap +Odataprefetch

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

nnnnnn

July 6, 2000 Page 55

Performance Tuning Summary

* WWe estimate that we will improve this ISV
applications performance on |A-64 platforms by
30%

 We will work closely with the ISV R&D team to
ensure that the ISV’s customers will enjoy
performance improvements on HP platforms in
the near future

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000 Page 56

Backup Slides

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

FAavyeni

July 6, 2000 Page 58

1A

PCTI

Where we’re going - |1A64

« An EPIC story, years in the making

HP and Intel jointly designed instruction set

 Now it can be told

Intel 1A-64 home page -
Recommended articles:
‘Next Generation Instruction Set Architecture’ (Crawford, Huck) -

‘Itanium Processor Microarchitecture Overview’ (Sharangpani) -

The complete (>500 pages) 4 volume ‘The I1A-64 Architecture
Software Developer’'s Manual’ -

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000 Page 59

Chip production costs per year

How many proprietary RISC vendors can continue
to invest?

B Dollars

4.5
4
3.5
3
2.5
2
1.5
1
0.5
0)

93 94 95 96 97 98

(...or, alternatively, face higher chip costs for low volumes with a third
party fab?)

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

||||||

July 6, 2000 Page 60

IA_

Microprocessor Production Capacity

Especially when fabrication and design costs must be
recouped against relatively small unit volumes
compared with merchants...

100 1

Million

) 80 r
Units

60 [
40
20

P [[—

0

Intel Power PA-RISC SPARC MIPS Alpha
PC

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

nnnnnn

July 6, 2000 Page 61

1A

n Where we’'ve been

Processor CISC Vector RISC LIW
ili (Complex (Reduced (Long Instruction
families Instruction Set Instruction Set Word)
Computing) Computing) Example: EPIC -
Explicitly Parallel
Instruction
Computing
Architecture |A-32 C-Series PA-RISC, |A-64
(Instruction Set) MIPS
Alpha
Processors Pentium 111 C-4 PA-8500, [tanium,
Xeon R12000, McKinley
Alpha21264
Hsin-Ying Lin and Kevin Wadleigh MSW, TCD Eﬂ]

July 6, 2000 Page 62

1A

|A-64 Public Information

e Itanium e McKinley
= Multiple configurations for = Clock > 1GHz, inc_:rease_d
servers and w/s number of execution units,

on die L2 cache
» Increased bus bandwidth
» Target production: late '01
 Madison
= McKinley follow-on

= Performance optimized on
0.13m technology

» Deerfield
= McKinley follow-on

» Price/performance
optimized on 0.13m
technology

= Production in mid-2000
= 0.18m CMOS technology

= 4 DP Flops/cycle — 3
Gflop/s peak

= Three level cache hierarchy
(64-byte line size)

—LO: separate instruction and
data

—L1: unified cache on die
—L2: off die, 2 or 4 MB

Hsin-Ying Lin and Kevin Wadleigh MSW, TCD m

July 6, 2000 Page 63

