
Developing High Performance Applications for HP-UX on IA-64

Carol Thompson
Hewlett-Packard Company

11000 Wolfe Road, M/S 42U5
Cupertino, CA 95014

carol_thompson@hp.com

Abstract

This paper presents an overview of the unique features
of IA-64 from the perspective of application development
tools, as well as the key considerations for developers of
performance-sensitive applications for IA-64. It describes
some of the features of the HP-UX development tools for
IA-64, which are designed to provide enhanced
performance as well as developer productivity. Other
considerations for application development are presented,
such as the data models supported on HP-UX/IA-64, new
optimizations and language features that have been added
to HP-UX compilers for IA-64, new application profiling
tools, and special support for debugging on IA-64.

1. Introduction

The IA-64 architecture is the first commercial EPIC
(Explicitly Parallel Instruction Computing) architecture. It
includes many architectural features not found on today's
RISC processors, such as PA-RISC. Developing high
performance applications for IA-64 is much like
developing for PA-RISC and other RISC processors, but
understanding the architectural, language and compiler
features that affect performance can help maximize the
delivered performance. The design of the IA-64
architecture, undertaken jointly by HP and Intel, focused
specifically on the requirements for maximizing
performance of compiled code, and compiler architects
from each company (including the author) participated in
the architecture definition.

2. Overview of IA-64 Features

Although the focus of this paper is not to present details
of the IA-64 architecture [1], it is important to begin with

a basic understanding of the architectural features in order
to describe their impact on application development.

The IA-64 architecture was designed to allow
compilers explicit control over the execution resources of
the processor, in order to maximize instruction level
parallelism (ILP). Instruction level parallelism is the
concurrent execution of multiple instructions.
Maximizing ILP reduces execution time.

The three architectural features that are most relevant to
application development are speculation, predication, and
explicit parallelism. These features are designed to
maximize the ability of the compiler to expose, enhance
and exploit instruction level parallelism.

2.1 Speculation

Speculation is the execution of an instruction, or a
dependent instruction stream, before it would normally be
executed in the program order specified by the application
developer. There are two main forms of speculation

2.1.1 Control Speculation
The first form of speculation is control speculation.

This is the execution of an instruction before all of the
conditions controlling its execution have been evaluated.
Consider the following example (shown in C):

int a,b;
extern int *p;
extern int global;
if(condition) {

a = global;
b = *p + 2;

}
Figure 1a: Control Speculation Example

The two assignment statements in the then clause are
guarded by the evaluation of the condition. If we begin
evaluation of these statements before the condition has

been evaluated, this would be considered control
speculation. The benefit of control speculation is that the
conditionally executed code can be executed concurrently
with the evaluation of the guarding condition. If the
condition and/or the guarded statements are costly to
execute or have long latency, executing them concurrently
can significantly reduce the overall latency of the code.

In the example of figure 1, the first assignment
statement in the then clause involves a load through a
global variable. Because the address of the global variable
is known to be valid, this load can be safely executed
before the guarding condition has been evaluated. This is
called safe speculation.

The second assignment statement requires a load
through a pointer. In general, the compiler cannot
guarantee that it contains a valid address. Execution of
this load before the condition has been evaluated may
cause an unexpected exception if the condition is false.
This is therefore considered unsafe speculation. However,
it is often specifically this type of unsafe speculation that
is most desirable to exploit. The speculation support in the
IA-64 architecture allows the compiler to exploit this type
of speculation safely, by separating the load mechanism
from the exception reporting mechanism. First, a
speculative load is provided which either loads the data, if
the address is valid, or sets the speculation token (NaT) for
the target register if the address is not valid. Second, the
speculation token is propagated through most
computational instructions, so that the compiler can
execute not just the load, but a stream of dependent
operations, before the condition has been evaluated.
Figure 1b shows the code generated for the example in
Figure 1a, when control speculation has been applied.

ld a = [global]
ld.s t1 = [p] ;;

 add b = t1,2
cmp.ne.unc p1,p0 =

condition,0 ;;
(p1) chk.s b, L1

...
L1: {recovery code}
Figure 1b: Control Speculation Example

Once the condition has been evaluated, we can execute
a check instruction (chk.s) which will branch to recovery
code if there may be load faults which need to be resolved.

2.1.2 Data Speculation
The second form of speculation is data speculation.

This involves early execution of a load from memory,
prior to one or more stores which:

§ preceded the load in original program order, and
§ may possibly write to the same memory location as

is read by the load.
The IA-64 architecture provides a facility to

dynamically identify address conflicts, and to allow the
compiler to trigger the execution of a recovery code
sequence.

2.2 Predication

The next key feature for maximizing instruction level
parallelism is predication. Predication is the conditional
execution of an instruction based on the setting of a
boolean (true or false) value contained in a predicate
register. The IA-64 architecture provides 64 predicate
registers which can be used to control the execution of
nearly all instructions. Consider the code segment in
figure 2a. When code is generated in a straightforward
manner using branches, there are two branches and at least
three cycles. Using predication, both assignments to x can
execute in the same cycle (since both predicates will never
be simultaneously true), saving two instructions and at
least one execution cycle, and avoiding any risk of branch
misprediction.

if (a == 0) {
x = 5;

} else {
x = *p;

}
Figure 2a: Predication Example

cmp.ne.unc p1,p0 = a,0
(p1) br L1 ;;

mov x = 5
br L2 ;;

L1: ld x = [p]
L2:
Figure 2b: Generated code with branches

cmp.ne.unc p1,p2 = a,0 ;;
(p1) mov x = 5
(p2) ld x = [p]

Figure 2c: Generated code with predication

The value of predication is two-fold. First, predication
enables the removal of branches. In a pipelined processor,
a branch presents a potential disruption in the pipeline
flow. The processor must predict whether the branch will
be taken (if it is conditional), and where it will go (if it is
indirect). If it guesses incorrectly, the pipeline must be
flushed and restarted. With a deep pipeline and wide issue

bandwidth, this represents a significant loss of
performance. For example, on Itanium™ , a branch
misprediction penalty is 9 cycles [2], representing 54 lost
instruction issue opportunities. Even with sophisticated
branch prediction techniques, a small percentage of
mispredicted branches can translate into a significant
performance cost.

2.3 Support for Software Pipelining

Software pipelining is a technique which allows the
compiler to overlap the execution of multiple iterations of
a loop, much as instruction pipelining in modern
processors allows the overlapping of the execution of
sequential instructions. On RISC processors, software
pipelining generally requires significant code expansion,
including setup code, unrolled loop iterations to handle
register allocation, and finalization code at the end.
Compilers for RISC processors generally pipeline only the
simplest of loops (no control flow, single exit, counted
loops) in order to keep the complexity manageable.
Further, the benefits are greatly diminished for small loop
counts, due to the large overhead.

The IA-64 architecture provides special branches,
along with rotating registers (including predicates), which
allow the compiler to generate software pipelined loops
with little or no code expansion, even in the presence of
control flow and non-counted loops.

2.4 Explicit Parallelism

Most modern processors utilize instruction level
parallelism to maximize performance. PA-RISC
processors, along with other RISC processors currently on
the market, have been issuing multiple instructions per
cycle for many years. In RISC processors, concurrent
execution is achieved dynamically, through dependence
analysis and instruction reordering. This approach has
two significant disadvantages. First, the dependence
analysis largely rediscovers information already known to
the compiler at the time it generated the code, and utilizes
precious processor resources to accomplish this. Second,
the dependence analysis and reordering are limited in
scope to a fairly small window of code.

The IA-64 architecture allows the compiler to
communicate dependence information to the hardware,
through explicit S bits (stops) between instruction groups.
Where the compiler is unable to resolve dependence
information that can only be known at execution time
(such as whether two pointers actually point to the same
memory location), it can utilize the control and data
speculation features of the architecture to increase ILP.

2.5 Explicit Control of the Memory Hierarchy

As memory latencies continue to increase relative to
the processor clock speed, memory optimizations play an
increasingly critical role in maximizing application
performance. Many RISC processors today offer
instructions that allow applications more control of the
memory hierarchy. For example, the PA-RISC 2.0
architecture provides data prefetch instructions to reduce
memory latency effects. The IA-64 architecture expands
upon this, providing prefetch, load and store instructions
with the ability to specify hints about the expected locality
and/or where in the memory hierarchy (i.e. what level of
the cache) the data should reside.

In a multi-level cache hierarchy such as that in the IA-
64 Itanium processor, it may be desirable to specify that
certain data items (such as a very large array with little
locality) remain at a cache level further from the
processor. Facilities are provided to prefetch such data, so
that the memory latency can be overlapped with previous
computation, while not displacing the entire L1 and/or L2
cache.

3. Optimizations for IA-64

Compilers for IA-64 build on the optimization
technology that has been developed for RISC architectures
such as PA-RISC. One optimizing transformation which
is most critical to RISC performance is instruction
scheduling. This allows RISC compilers to exploit
instruction level parallelism on RISC processors.

On IA-64, this key optimization become even more
significant, serving as the foundation for taking advantage
of key architecture features such as predication,
speculation, and rotating registers.

In the HP-UX compilers for IA-64, the code being
compiled is divided into regions, which form the unit of
operation for instruction scheduling. Speculation and
predication are applied within these regions. Code for an
entire region is scheduled as a unit, enabling code to be
scheduled as efficiently as possible, increasing instruction
level parallelism and reducing computational latency.
Where possible, given reasonable constraints on the time
consumed by the compiler, loop bodies are fully
encompassed in a single region, allowing software
pipelining of the loop. Judicious region selection is
extremely important for generating optimal code.

Data prefetching is performed on loops. Where the
compiler is able to discern an array reference pattern, it
will emit appropriate data prefetch instructions, so that the
data will be available for computation in the appropriate
iteration.

4. What’s different about developing for
IA-64

From a high level, developing for IA-64 is no different
than developing for any other architecture. However, the
evolution of computer architectures from CISC to RISC
has already influenced application development in the
following ways:

• Optimization has become increasingly critical for
application performance. Profile-based
optimization [4], introduced for RISC, has an even
larger performance impact on IA-64.

• Assembly code is diminishing in prevalence, due
to increasing sophistication of RISC compilers,
and increasing complexity of RISC processors.

IA-64 pushes these trends even further. Because the
instruction level parallelism on IA-64 is explicit, the role
of the compiler is critically important in delivering
application performance.

Furthermore, assembly programming, already rendered
complex by the introduction of RISC features such as
delayed branching and exposed latencies, becomes even
more challenging with the introduction of architectural
features such as predication, speculation, and explicit
parallelism.

In short, from an application development perspective,
IA-64 merely continues the trends already in place for
RISC processors.

5. Performance Tuning

Tuning an application for IA-64 is very much like
tuning it for any other processor. The most important
factor in application performance is the design and
implementation of the core algorithms and data structures.
Nearly any tuning exercise which improves the efficiency
of these fundamental application components will provide
benefits on IA-64 as well as RISC platforms.

Just as each implementation of a RISC architecture has
unique performance characteristics, there are specific
charateristics of the IA-64 Itanium processor which may
or may not apply to future processors. For Itanium, data
structure efficiency is a key consideration.

6. Application Profiling

The first step in performance tuning is measurement.
HP provides the following tools to assist in the
performance analysis phase of application development:

• HP Caliper is a suite of performance tools, newly
developed for IA-64, which implement a number
of different application profiling techniques.

• CXperf is a tool currently available on PA-RISC,
and which will provide performance analysis on
IA-64 as well.

With these tools, the application developer can
characterize performance, and identify opportunities for
tuning. For example, if the HP Caliper data indicates that
data cache misses account for a significant percentage of
application execution time, it may be profitable to spend
some time tuning the application’s data structures.

6.1 HP Caliper

The HP Caliper suite of performance analysis tools
provide access to several types of performance data:
§ HP Caliper/PMU provides access to information

collected by the Performance Monitoring Unit
(PMU) on IA-64 [ref]. This includes cache and
TLB misses, branch misprediction rates, and
pipeline stalls.

§ HP Caliper/PBO provides profiling information
indicating the execution frequencies for control
transfers (branches and calls) in the application.

§ HP Caliper/Gprof provides profiling information in
the style of gprof, the standard Unix® profiling
tool. This provides information about which
functions in an application account for the most
execution time. Unlike gprof, however, it supports
multiple shared libraries and forks.

The HP Caliper tool suite provides for ease of use and
low overhead, through the use of dynamic translation and
sampling technologies. They operate on regular
executable files, and do not require the use of special
compiler options.

At first release, these tools will be invoked through a
command line interface, and will provide a graphical
viewing tool for a visual presentation of the profile data.

In a future release, an interactive graphical user
interface will be added, along with additional features for
detecting program correctness flaws as well as
performance opportunities.

6.2 CXperf

CXperf is an interactive runtime performance analyzer,
which supports both scalar and parallel application
development. Metrics are collected on a per-thread basis
for execution time, cache, TLB and paging data, process
migration, call counts and call graphs. CXperf is able to
report performance information relative to specific loops

in the program, and is especially well suited to loop-
intensive applications. On IA-64, CXperf does not require
that the application be built with special compiler options.

6.3 Profiling for the Compiler

As described in section 3, application profile data is
extremely valuable to optimizing compilers. On PA-
RISC, the HP-UX compilers provide the capability to
generate an instrumented executable which, when run, will
produce an execution profile. The application developer
uses this instrumented executable to run the application
using a set of representative input data. This profile
information is subsequently used by the compiler to
determine where and how to apply optimizing
transformations.

On PA-RISC, profile-based optimization delivers
performance improvements in excess of 20% for real-
world applications. However, achieving this performance
requires a two-step build process, encompassing a special
instrumented build, producing a special executable used
only for profiling, followed by an optimizing build which
utilizes the profile data.

On IA-64, profile data is even more important to the
compiler. Many compiler decisions are enhanced by
knowledge of the execution behavior of the application:

• Many optimizing transformations are performed on
code regions. For best performance, it is important
that these regions be selected to minimize region
crossings within high frequency execution paths.

• Determining which instructions within a region to
speculate or predicate is more effective when
relative execution frequencies are know.

• The effectiveness of loop optimizations, such as
unrolling and prefetching, can be enhanced by
knowledge of average loop behavior.

In order to make the benefits of profiling accessible to
more applications, HP has introduced significant usability
improvements in the profile-based optimization support
for IA-64. It is not necessary on IA-64 to do a separate
instrumented (+I) build of the application in order to do
profiling for feedback into the compiler. HP Caliper/PBO
operates on an existing debuggable executable file, and
produces a profile data file that can be utilized by the
compiler in a subsequent profile-based compilation (using
the +P option). That same profile data file can be viewed
using the graphical presentation facilities of HP
Caliper/PBO, providing useful feedback to the developer
on application behavior.

6.3.1 Profile Options and Pragmas
Obtaining a fully representative profile data file is not

always possible, for the following reasons:
§ Representative input data sets may not be readily

available
§ Application or system configurations

representative of all customer usage profiles may
not be practical to duplicate

In these cases, the application developer may yet have
specific knowledge of the branching behavior for the most
critical execution paths. This information can be
communicated to the compiler through special profiling
options and pragmas:

+Ofrequently_called=name[,name]*
+Ofrequently_called:filename
+Orarely_called=name[,name]*
+Orarely_called:filename

These options indicate functions that are frequently or
rarely called. They take as arguments either a list of
function names, or the name of a file containing a list of
function names. This information is useful to the compiler
in making inlining decisions, and in reasoning about the
execution frequency of code regions containing calls to
these functions.

#pragma frequently_called name[,name]*
#pragma rarely_called name[,name]*

These pragmas are analogous to the options of the same
name.

#pragma estimated_frequency f
This block-scoped pragma indicates the estimated

relative execution frequency of the current block as
compared with the immediately surrounding block. This
may be used to indicate the average trip count in the body
of a for loop, or to indicate the fraction of time a then
clause is executed. The frequency, f, may be expressed as
a floating point constant. The code in figure 4 illustrates
the use of the estimated_frequency pragma:

if (condition) {
 #pragma estimated_frequency 0.8

...
for (...) {
 #pragma estimated_frequency 4.0
 ...
}

} else {
...

}
Figure 4: Estimated_frequency pragma

In this example, the code in the then-clause of the if
statement is expected to execute 80% of the time
(implying that the else clause is executed only 20% of the
time). The loop is expected to execute, on average 4
iterations. The compiler can utilize the information to
guide its optimizations, such as giving precedence to
speculating code from the then clause above the evaluation
of the guarding condition. Knowledge of the average loop
iteration count might cause the compiler, in this case, to
determine that data prefetching would not be effective.

7. Platform-Specific Tuning

Itanium is the first of many IA-64 processors. Each
will have unique characteristics for which code can be
optimized. On PA-RISC, the HP-UX compilers offer two
options to specify the target processor. One option, +DA,
indicates the architecture version (1.0, 1.1 or 2.0) to be
used. This option controls the processors on which the
code will run correctly. The second option, +DS, specifies
the processors for which the code should be optimized.
This option affects only performance.

On IA-64, there is a single architecture version, and
currently a single available processor model. However,
HP's IA-64 compilers are already designed to generate
code designed to run well on multiple target processors.
This is the default code generation strategy. The
+DSitanium option generates code specifically optimized
for the Itanium processor, and future options will be
provided as new processors are released.

8. Application-Specific Tuning

Certain application characteristics have a significant
impact on performance. Some of these are covered in this
section.

8.1 Memory Ordering Considerations

The C and C++ programming languages offer a fairly
simplistic view of memory ordering constraints. Memory
references are generally subject to optimizations such as
dead or redundant code elimination, loop invariant code
motion, coalescing of multiple loads or stores, etc. Some
applications, however, have specific constraints for certain
memory references:
§ Multi-threaded applications must exercise care

with regard to shared memory.
§ Applications, such as device drivers writing to

memory-mapped I/O, may require that those

memory references remain untouched by
optimization

§ Some applications may rely on the value of certain
memory locations in signal handlers, or after a
return from a longjmp().

Generally, in these cases, the application developer
must declare such variables using the volatile type
specifier. This indicates to the compiler that references to
these variables must not be subject to optimization.
However, the semantics of this specifier are by necessity
overloaded to handle all of the above situations. As a
result, the compiler must inhibit all optimizations to
volatile memory locations, even if the application doesn't
require all of the constraints.

In order to minimize the performance impact of volatile
variables, the HP-UX C compiler has introduced new type
qualifier extensions to enable more efficient compiler
support for volatile data types. They are:

__unordered
__synchronous
__non_sequential
__side_effect_free
One or more of these type qualifiers may be used with

a volatile keyword in a type declaration. Their semantics
are as follows:
__unordered References to this variable need not be

explicitly ordered relative to other
memory references, either within the
same or different threads.

__synchronous All references to this variable are
synchronous with respect to the
current thread of execution (i.e. the
location will not be read or written by
signal handlers or other threads).

__non_sequential Memory references to this variable
may be re-ordered relative to other
non-sequential memory references.

__side_effect_free Loads of this variable do not have side
effects (such as memory mapped I/O).
The compiler may issue prefetches or
speculative loads of these variables.

These type specifiers were designed with the needs of
the HP-UX operating system in mind, and they can be
useful for optimizing the performance of any similar code
with memory ordering constraints.

8.2 C99 Language Extensions

The HP-UX C compiler supports several features that
are part of the new C99 language definition [3]:
§ Complex and imaginary data types, in

<complex.h>

§ Support for C99 floating point hexadecimal
constants, including printf/scanf support using %A
and %a.

§ C99 math function specialization.
§ Floating Point Pragmas:
§ STDC FP_CONTRACT: enables or disables

contraction of floating point expressions.
Contraction can reduce rounding error, and
can improve efficiency, as when the combined
multiply and add instruction (fma) is used.
Contraction is enabled by default.

§ STDC FENV_ACCESS: Informs the compiler
whether or not the application will not access
the floating point status flags, or modify the
default floating point evaluation modes. It is
off by default.

§ STDC CX_LIMITED_RANGE: When
enabled, allows the compiler to use the usual
algorithms for complex multiply, divide and
absolute value, which may compromise
treatment of infinities, overflow and
underflow.

§ A limited implementation of the restrict
keyword.

8.2.1 Restrict keyword
The restrict keyword can be used to indicate

pointers which do not alias with other pointers. The HP-
UX C compiler on IA-64 provides support for the use of
this keyword on parameter declarations. Figure 5 shows
an example of the use of the restrict keyword,
indicating that the s1 and s2 pointers do not alias with
each other, or with other pointers, but that no assertion is
made about other_pointer.

foo (restrict char *s1,
 restrict char *s2,

 char *other_pointer)
{
 ...
}

Figure 5: C99 restrict keyword

The restrict keyword is similar in use to the
+Onoparmsoverlap option, but is more powerful, in that
use of the latter requires that all pointer parameters be
distinct.

8.3 Floating Point Applications

The HP-UX compilers for IA-64 have a number of
features designed for fine-tuning the performance of
floating point applications.

8.3.1 Floating Point Evaluation Mode
The HP-UX compilers provide an option to specify the

width of evaluation for floating point computation:

-fpeval=[float|double|float80]

This option indicates the minimum precision under
which floating point expression evaluation will occur.
This option also affects the evaluation width for C99
complex and imaginary types. The default for C++ and
for C with -Aa or -Ae is -fpeval=float. The default for C
with -Ac is -fpeval=double.

8.3.2 Accuracy, Precision and Exception Behavior
The HP-UX C and C++ compilers support options

which give the user control over the accuracy, precision
and exception behavior of floating point computations.
+O[no]cxlimitedrange This option provides equivalent

functionality to the STDC
CX_LIMITED_RANGE pragma
(C99), but applies to the compilation
unit. Default is +Onocxlimitedrange.

+Ofltacc=strict Disallows any floating point
optimization that may change result
values.

+Ofltacc=default Allows contractions (e.g. fused
multiply and add), as with the C99
pragma FP_CONTRACT ON, but
disallows any other floating point
optimization that may change results.
As implied, this is the default.

+Ofltacc=limited Like default, but also allows floating
point optimizations (such as
substitution of 0.0 for x*0.0) which
may affect the generation and
propagation of infinities, NaNs, and
the sign of zero. Also implies
+Ocxlimitedrange.

+Ofltacc=relaxed In addition to “limited” behavior, also
allows floating point optimizations
(such as reordering of expressions,
even if parenthesized) that may change
rounding error. Also implies
+Ocxlimitedrange.

+O[no]fenvaccess +Ofenvaccess disallows any
optimizations which might affect
behavior under non default floating
point modes (e.g. alternate rounding
directions or trap enables) or where
floating point exception flags are
queried. It is equivalent to placing a
C99 FENV_ACCESS ON pragma at
the beginning of the file. Default is
+Onofenvaccess

8.4 Parallel Programming

HP-UX Fortran compilers provide multiple means for
specifying parallel constructs.

8.4.1 Fortran 95
The HP-UX Fortran compiler for IA-64 provides full

support for the Fortran 95 programming language
standard.

8.4.2 OpenMP
HP’s Fortran compiler provides full support for the

OpenMP programming model.

8.4.3 HP Parallel Directives
The HP parallel directives continue to be supported on

IA-64, as they were on PA-RISC.

8.5 Inline Assembly

The IA-64 architecture has been explicitly designed to
support high-level language compilers. However, there
are a number of instructions, such as memory hierarchy
management, synchronization, and specialized instructions
such as popcnt, which cannot easily be specified through
standard high-level language constructs.

Many compilers support an inline assembly directive to
provide access to target instructions. This is often
implemented using call syntax to an asm function that
accepts a string argument. This string is parsed as
assembly language. The limitations of this approach are
that the programmer must have knowledge of the available
registers, and optimization must be quite conservative.

The HP-UX C compiler provides inline assembly
support that is fully integrated into the optimizing
compiler. Many IA-64 instructions are supported, and the
programmer can use regular C expressions for the
operands. For example, the following internally defined
function generates a popcnt instruction with the given 64-

bit unsigned integer argument, and returns the result in a
64-bit unsigned integer:

uint64_t _Asm_popcnt (uint64_t r3);

9. Data models on HP-UX/IA-64

Like PA-RISC, the IA-64 architecture provides full
support for both 32-bit and 64-bit addressing and
arithmetic. In addition, the HP-UX operating system
provides support for both data models. Therefore, as on
PA-RISC, the application developer has a choice of data
model. The default data model is 32-bit. The data model
may be specified using the +DD32 or +DD64 option, to
select the 32 or 64 bit addressing model, respectively.

In addition to selecting the size of data addresses, the
data model also affects the size of other fundamental data
types. Table 1 shows the data sizes for the two available
data models in HP C and C++. These data sizes were
selected for ease of portability from the 32-bit to the 64-bit
data model, and for compatibility among vendors.

+DD32 +DD64
char 8 8
short 16 16
int 32 32
long 32 64
long long 64 64
pointer 32 64

Table 1: Size in bits of fundamental data
types in the two available data models

The considerations in selecting which data model to use
include:

• Data size requirements of the application. Does
the application need access to more data than can
be addressed with a 32-bit pointer?

• Performance considerations. The use of 64-bit
pointers can significantly increase the data
working set of the application, resulting in an
increase in data cache misses, and reduced overall
performance.

• External dependencies. If the application depends
on libraries or other in-process components
developed elsewhere, they must share a common
data model.

In general, if the application’s data requirements and
external dependencies do not compel it to move to the 64-
bit addressing model, it is most beneficial to continue to
use 32-bit addressing.

10. Application Structure and Procedure
Linkage

The structure of an application has a major impact on
its performance. Structural boundaries, such as between
procedures, compilation units, and shared libraries, impose
limits on the scope, type and quality of optimizations that
can be performed. Furthermore, procedure linkage costs
themselves can impact performance.

10.1 Performance Implications of Program
Structure

Within a process, a procedure call may or may not
cross load module boundaries (a load module being either
an executable file or shared library). If the call crosses a
load module boundary, it must go indirect through a
linkage table. In addition, the global data pointer (gp)
must be saved and restored around the call, as it is unique
for each shared library. However, even within the same
load module, the linkage may be indirect, if the reference
cannot be resolved at link time. For a call-intensive
application, this overhead may be significant.

Similarly, when a global data item is referenced, if it is
not defined in the same compilation unit as the reference,
it may be accessed indirectly through the linkage table.

The HP-UX development environment is designed to
provide full support for shared libraries. When a source
file is compiled, the compiler will assume that the
resulting object file may be included in a shared library,
unless told otherwise. Furthermore, any references to
symbols not defined in the same compilation unit, will be
assumed to potentially reside in another load module.
This results in code generation that is less than optimal for
the case in which the symbols both reside in the same load
module.

There are four binding modes for data and code
symbols:

• By default, a symbol is presumed to be probably,
but not definitely, defined in the same load
module. These references incur an additional cost
over direct local references.

• A protected symbol is one which will be defined in
the current load module, and will not be preempted
by another symbol of the same name in a different
load module. References to protected symbols are
more efficient than to default or external symbols.

• A hidden symbol is one which will be defined in
the current load module, and which will not be
visible to other load modules. References to

hidden symbols are more efficient than to default
or external symbols.

• An external symbol is one that is presumed to be
defined in a different load module. The linkage
table reference is generated directly by the
compiler, incurring further overhead over the
default case if the symbol is not actually external
to the load module, but reducing the overhead over
the default case if it is indeed external.

The HP-UX compilers provide options to allow the
developer to specify information about the symbol binding
behavior of the application. Each option takes an
argument which is either a list of symbols, or a file
containing a symbol list. When specified with no
argument, they apply to all symbols:

-Bprotected[=symbol[,symbol]*]
-Bprotected:filename
-Bprotected_def

-Bprotected_def implies that only the symbols
defined within the current translation unit should
have protected binding mode.

-Bhidden[=symbol[,symbol]*]
-Bhidden:filename
-Bdefault=symbol[,symbol]*
-Bdefault:filename

The -Bdefault options are useful to specify
exceptions to blanket -B options, such as
-Bhidden with no symbols specified.

-Bextern[=symbol[,symbol]*]
-Bextern:filename

These options can be useful for optimizing function call
and data reference overhead.

10.2 Optimization and Program Structure

Ideally, high frequency execution paths should be
contained within a single procedure. This makes it
possible for the compiler to optimize the entire execution
path at the default level of optimization (-O; equivalent to
+O2).

At optimization levels of +O3 and higher, the compiler
optimizes across procedure boundaries, within the scope
of a compilation unit (source file). At this level, the
compiler can optimize entire execution paths that are fully
contained within a source file. Inlining across procedure
boundaries can eliminate procedure linkage cost, and more
importantly expose larger code sequences for
optimization, resulting in additional optimization
opportunities and higher instruction level parallelism.

With the +O4 option, the compiler can optimize across
an entire load module. This maximizes the scope

available for optimization, resulting in the highest level of
performance.

11. Global Data

Global data is referenced from a global pointer (gp).
Global data items of size 8 bytes and smaller are allocated
next to gp, with larger data objects allocated next. The
compiler assumes that there will be no more than 4
megabytes of small data items, and will use a shorter code
sequence to reference them. Larger objects are referenced
using a slightly more costly code sequence. The
+Oshortdata=n option can be used to indicate that data
items of size n bytes and smaller (n greater than 8) should
be placed in the short data area, and referenced with the
more efficient code sequence. If no value of n is given
(+Oshortdata), all data items are allocated in the short data
area.

12. Debugging

The IA-64 architecture is highly dependent on the
compiler for runtime performance. For that reason, the
HP-UX IA-64 compilers perform limited code
optimizations even in the absence of optimization options.
This level of optimization is fully compatible with the -g
(debugging) option, with some minimal limitations on
modifiability of user variables. Variables can generally be
modified at procedure boundaries, and immediately after
they have been set. The debugger will issue a warning if
the user attempts to modify a variable at a code location
where it is not supported. Aside from variable
modification, there is no other impact on debugging, as all
user-visible state is updated in original program order.

When optimization is enabled (-O), the compiler
provides source location information to enable the
developer to do rough navigation at the source level.
Future releases will include additional support for
debugging of optimized code.

13. Conclusion

While the IA-64 architecture provides many new
features for enhancing application performance,
developing and porting applications to IA-64 is not a great
deal different from developing for today's RISC
processors. However, the importance of tuning for
performance, and taking full advantage of the optimization
features available, is increasing. Performance can be
maximized through the use of performance analysis tools,
as well as language features and options that address the

specific requirements and characteristics of the
application.

References

[1] Intel Corp., "IA-64 Application
Developer's Architecture Guide,"
http://developer.intel.com/design/ia64/do
wnloads/adag.htm, 1999.

[2] Intel Corp., "Itanium Processor
Microarchitecture Reference for
Software Optimization", Order number
245473-001,
http://developer.intel.com/design/ia-
64/downloads/245473.htm, March 2000.

[3] Programming Language C, ISO/IEC
9899:1999.

[4] Pettis, K. and Hansen, R.C., "Profile
Guided Code Positioning," Proceedings
of the SIGPLAN '90 Conference on
Programming Language Design and
Implementation, SIGPLAN Notices, Vol
25, No. 6, June 1990.

[5] HP Developer's Resource website:
http://devresource.hp.com.

