
Application Integration (EAI) Basics

Summary
This CeTN looks at the basics of EAI - Enterprise Application Integration.

We look at the areas of Application Integration and Data Integration, and discuss what’s
involved to get the application systems communicating.

We then look at how to add the process management layer to this.

At the end of this CeTN you will understand how we can build solutions with
Changengine and Middleware.

C TNe
Changengine
Technical
Note
September 11 2000 Page 1

Application Integration (EAI) Basics

,

pe

sion
4.
Notices

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this
material.

Unix is used here as a generic term covering all versions of the UNIX operating system.
UNIX® is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. Microsoft®, Windows®, Windows NT™
Exchange™, Outlook™, and Internet Explorer© are either registered trademarks or
trademarks of Microsoft Corporation in the United States and other countries. Netsca
Navigator™ is a trademark of Netscape Communications Corporation.

Printing History

First Published September 2000 (for Changengine A.04 and later)

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivi
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause 52.227-FAR1

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304, USA

© Copyright 2000 Hewlett-Packard Company
September 11 2000 Page 2

Application Integration (EAI) Basics
Contents
Introduction.. 4

A Human Analogy ... 5

EAI .. 8
Application Integration .. 8
Data Integration.. 14
Summary .. 17

Adding Process ... 18
Architecture .. 18
Defining the Process... 20
Application Data within the Process .. 21
Functional Decomposition of the Process - Reusability .. 21
Additional Benefits .. 26

Summary... 28
September 11 2000 Page 3

Application Integration (EAI) Basics

s to

e
e

ach

rrently
f their

ir
grated

re
Introduction

Most sites invest heavily in software packages. They may have Customer Care systems, Order
Management systems, Billing systems, etc. and these may be already in place and working. All
of these will have been purchased (or written) to address a particular business need or function,
and they are probably all very good at what they do. However, they will each have their own
view of how the business works.

We need to view the business right across all of these applications:

However, these systems tend to operate completely independently of each other. Each system
typically has their own view of their data - held within their own databases and with their own
data formats, syntax and semantics - and they will probably have little or no idea about
interfacing to anyone else’s software. It’s easy to understand how this can happen - each
package was probably written by a completely different software house. Indeed, even if the
packages are written by the same software house there can still be issues when it come
integrating them :-(

In the diagram above I show that the Order Management system maintains data about th
actual orders placed by our customers, and it also maintains its own customer details. Th
Billings system holds all our billings details as well as its own customer details. And, of-
course, our Customer Care system holds a bunch of details about our customer base. E
system will hold slightly different information about the customer - specific to the
requirements of that package. So in this example we have 3 different definitions for “the
customer”, held across 3 different data sources. I actually heard one site say that they cu
had 8 different definitions for the customer. You can imagine the heartache should one o
customers ever decide to change their phone number!

I think you can start to appreciate how getting these application packages to synchronize the
data and communicate with each other would be a huge step forward! ...and with an inte
set of applications you can construct powerful, effective business processes!

Let’s first consider the whole issue of how we go about integrating our application softwa
packages and getting them to communicate with each other...

The business operates across all of these...

Customers Orders

Customer Care

Customers

Order Management Billings

Customers Billings
September 11 2000 Page 4

Application Integration (EAI) Basics

ne
etween

eed to
 need

 speak
A Human Analogy

Imagine that you have two people who need to talk to each other. One only speaks Japanese.
The other only speaks French.

To allow them to communicate you need to find an “Interpretor” (or “Translator”) - someo
who can understand and speak both Japanese and French. You then put this translator b
the two people and they can now carry on a conversation.

It might look something like this:

Now suppose that another person joins the group and he can only speak German. You n
allow this person to talk with both the Japanese person and the French person. Well, you
to find a German<->Japanese translator and a German<->French translator.

It now looks something like this:

Suppose a fourth person comes along, and they only speak Spanish! To allow them all to
with each other requires a few more translators. We require 3 more: French<->Spanish,
Japanese<->Spanish and German<->Spanish.

Japanese FrenchTranslator

Japanese/French

Japanese French

German

Translator

Japanese/French

Translator

Japanese/German

Translator

German/French
September 11 2000 Page 5

Application Integration (EAI) Basics

 than
ire a

rent

else
ge for

is time
It would look like this:

I think you’re starting to see that this system of providing a translator for each individual
conversation is OK when you have only 2, or maybe 3, people, but it clearly becomes
cumbersome when you add a 4th person - you end up with more translators in the room
you have people! Indeed, if you were to add a 5th person to this network you would requ
total of 10 translators.

For what it’s worth, the actual number of translators required for N people speaking diffe
languages is: N(N-1)/2

There is an alternate method...

If instead of allowing every single person to have a “direct” conversation with everybody
in the room, what if you chose an independent language and declared that as our langua
communication. We would then hire translators to/from that independent language?!

Let’s suppose we take that room of 4 people (Japanese/French/German/Spanish) and th
decided that for our communication, English would be our independent (“Common”)
language.

We could now redraw the room as follows:

Japanese French

German Spanish

French/German

Translator

Japanese/Spanish

Translator

Japanese/German

Translator

German/Spanish

Translator

French/Spanish

Translator

Translator

Japanese/French
September 11 2000 Page 6

Application Integration (EAI) Basics

 by a

g
se to

..

me
With English as the “Common” language we now only need one translator per person.

So, whether we have 20 people of different languages, or 5, it’s still 1 translator per person.

Also, if the Japanese speaking person should happen to leave the room and be replaced
Dutch speaking person, we would only need to replace one translator!

So you (hopefully) see that if we can get everybody “talking the same language” things
become a whole lot simpler.

Now, ok, I can hear you all saying things like: “But this means that we translate everythin
twice?!”, and “Surely there are some things that just don’t translate properly from Japane
French or whatever!”, and “Doesn’t it get worse if we then have to translate this again?”.

And these are all valid comments...but it is just an analogy, and it is one that helped me
understand the basics of EAI...and that’s where I want to move on to.

So, at this point, all I am trying to show you is that if we can get everybody “talking the sa
language” then things can become a whole lot simpler!

And this is a key part of what EAI technology is all about!

Japanese French German Spanish

Translator

Japanese/English

Translator

French/English

Translator

German/English

Translator

Spanish/English

English
September 11 2000 Page 7

Application Integration (EAI) Basics

omer
ter

er
 system

the

ed

 the
he
e

ybe it
atch
the

d
EAI

Application Integration
As we said in the introduction to this CeTN, your business runs a number of software
packages. These packages each carry out certain aspects of your overall business. Some might
be old systems that you may one-day replace. Some might be fairly new. Some are excellent,
and some are not so good. But for the moment, you have these systems and together they help
you run your business. However, there is little or no communication between them. They each
work as individual packages - doing what they do and that’s that. And, as we said, your
business works across the lot of them.

Using our earlier example:

Let’s just consider this example and think through how you could enable some of these
packages to communicate and be more integrated with each other:

• To enable the Customer Care system to see if orders have been placed by any new
customers:

You could write a batch job that runs (say) every night and have it interrogate the cust
database of the Order Management system. When it finds a new customer it could en
these details into the customer database within the Customer Care system.

To do this requires knowledge of both the customer database structure within the Ord
Management system and the customer database structure within the Customer Care

• To enable the Order Management system to automatically kick off a new billing once
order has been fulfilled:

You could write a batch job that scans the orders database tables to see any complet
orders for that day. It could then look up the customer information from the orders
customer database and with all the necessary information it could make an entry into
appropriate database tables within the Billings system. This of-course assumes that t
billing system is capable of detecting these new entries and therefore kicking-off thes
billings.

Or maybe the Billings system provides a “file import” system whereby, instead of
populating its database tables, you produce a file in a special format for it to read. Ma
then has a batch import function that can be automatically run. Maybe, instead, this b
import has to be run manually by some operator the next day. It all depends on what
Billings system supports.

To do any of these options requires knowledge of how these two systems (Orders an
Billings) work internally.

The business operates across all of these...

Customers Orders

Customer Care

Customers

Order Management Billings

Customers Billings
September 11 2000 Page 8

Application Integration (EAI) Basics

er

tem

 of

we

bility
ment

ement

ave

g in
e
We can represent this diagramatically as follows:

Interestingly enough, we have effectively written two “translators”:

• One to translate “New Customers” from the Order Management system to the Custom
Care system ...and...

• One to translate “New Billings” from the Order Management system to the Billings sys

And just like language translators, each of these translators requires intimate knowledge
each system - such as database structures, table names, data item names/types, etc.

Clearly, these two translators we have written are just the beginning. Over time we would
determine new features of integration that we would like to offer between each of these
systems and add these to our translators. For example, to the CCare/OMgmt translator,
would probably add the ability to detect not just new customers but updated customer
information, and have this information sent across. Indeed, we would probably add the a
for changes to the Customer Care database to be sent over to update the Order Manage
customer database, and hence make it a 2-way translator. And we’d no-doubt add more
abilities to the OMgmt/Billings translator and eventually make that a 2-way translator.

But you can probably see what’s coming can’t you?

If we were now to go about integrating the Customer Care system with the Billings system, we
would need to write a third translator. What then happens if/when your company buy-in a
fourth application package? You have to write three new translators!!! One to/from the
Customer Care system, one to/from the Order Management system, and one to/from the
Billings system. That’s a lot of work!

And what happens if (say) a year later your company decide to upgrade the Order Manag
system from Version 1.0 to Version 2.0? and this new version uses different database
structures? All you translators (the CCare/OMgmt, the OMgmt/Billings, and any others) h
to be re-written to understand these new layouts! That’s a massive task!

What if we agreed on a “common” language?

Instead of writing all these individual translators between each and every system - codin
the specifics of each system into every bit of code we write - what if we agreed to provid
translators to a “common” (or “generic”) language?

It would look like this:

Customers Orders

Customer Care

Customers

Order Management Billings

Customers Billings

New Customers

CCare/OMgmt OMgmt/Billings

New Billings
September 11 2000 Page 9

Application Integration (EAI) Basics

een

in

er

ment
the
cific
bject

rsion
ade

o slot
s.

 quite
ly need
his
Let’s consider how we might “integrate” things with this new setup.

Earlier, we discussed a way to enable the Customer Care system to see if orders have b
placed by any new customers. Let’s see how this might be implemented under this new
“Generic Language” scheme:

• In the “OMgmt Translator” we would write a routine that did all the digging around with
the Order Management data tables to retrieve any new customers - we might call this
routine: OMgmt::GetNewCust()

• In the “CCare Translator” we would write code that makes a call to this
OMgmt::GetNewCust() routine and then takes the output and writes it into the Custom
Care database.

With this system we see that all the intelligence and knowledge about the Order Manage
system is now totally within the OMgmt Translator, and all the specific knowledge about
Customer Care system is coded totally within the CCare Translator. Thus all product spe
knowledge and access is coded within that product’s translator. (This is straightforward o
oriented design principles!)

This also means that if we were ever to upgrade the Order Management system from Ve
1.0 to Version 2.0, we would only need to rewrite the OMgmt Translator! So long as we m
the same routines available - such as the OMgmt::GetNewCust() routine - we’d be able t
in Version 2.0 of the Order Management system without affecting any of the other system

But how does the CCare Translator “make a call” to this OMgmt::GetNewCust() routine?

As the above diagram shows, the CCare translator and the OMgmt translator are indeed
separate pieces of code. For one translator to be able to call routines in another we clear
some sort of “middle man” to pass these messages around. And indeed, when you use t
method for integrating your applications you buy in this “middle man” - it’s called
Middleware.

Customers Orders

Customer Care

Customers

Order Management Billings

Customers Billings

CCare
Translator

OMgmt
Translator

Billings
Translator

Generic Language
September 11 2000 Page 10

Application Integration (EAI) Basics

e

rs
 can

”
lators
lked

and

 API,

at it
ctly and
ta
ith
ou
r not,

 the

 API.
The Middleware you buy will have its own “Generic Language” and it will provide a
developer’s kit and API to allow you to write translators that can plug-in to the Middlewar
bus and make calls to other translators on the Bus.

The company who wrote the Middleware will also be able to sell you pre-written translato
for many existing applications (such as SAP, Clarify, Portal, etc.). So it might be that you
buy-in the necessary translators for your applications and not have to write any real code
yourself!

To reprint the earlier diagram but show that it is a Middleware bus:

So we see that by using a Middleware bus (it’s often called a “Middleware Message Bus
because it allows messages to be passed between translators), the idea is to write trans
that provide a set of routines that you can call from other translators. For example, we ta
earlier about how the Order Management translator could provide a routine called
OMgmt::GetNewCust(). All the nitty-gritty of exactly how this translates to accessing files
data tables within the Order Management system is hidden from the outside world. The
translator makes it look as though the Order Management system has a generic, callable
in the language of the Middleware bus.

When we talked about how we might write the routine OMgmt::GetNewCust(), we said th
would probably access the orders database directly and then the customer database dire
then return the results. In other words, we talked about it simply attacking the internal da
structures of the Order Management system directly. Some application systems come w
their own API. It may be that our Order Management system does provide routines that y
can call to locate new customers. Whether our application system provides its own API o
we still need to write a translator that will make use of the application system’s API if it is
there, and then map (translate) these to a generic set of routines that are callable across
Middleware message bus.

In other words, the translator maps from any proprietary API (if there is one) to a generic

We can represent it as follows:

Customers Orders

Customer Care

Customers

Order Management Billings

Customers Billings

CCare
Translator

OMgmt
Translator

Billings
Translator

Middleware bus
September 11 2000 Page 11

Application Integration (EAI) Basics

lly.
 you

 and

to
 have
ed

om
I mentioned earlier that you could buy translators from the Middleware suppliers.

They obviously want everyone to buy their particular flavour of Middleware, and so they will
have pre-written a bunch of translators for many of the standard software packages. Typically
there are translators available for applications such as: PeopleSoft, Clarify, various SAP
versions, Portal, etc...

When they write these translators they do not simply hard-code in a set of functions that they
make available. You don’t just buy the (say) SAP R/3 translator and have it come pre-
configured with “GetNewCust()” and “UpdateCust()” calls. No no no... It’s quite clever rea
When you buy a pre-written translator it usually comes with a configuration tool whereby
can program it with the functions you want and tell it which data sources within your
application system it should access.

In other words, pre-written translators are configurable - in the EAI world the term they
typically use for this is to say that the translator is Dynamic.

With a dynamic translator you can configure the functions that you wish to make available
exactly how each of these retrieves its data from your application system.

So, EAI means that you end up exposing a set of function calls (generic API) for each
application system.

The application system might have had its own API, in which case it is reasonably easy
build a generic API callable from the Middleware bus. Of-course, some systems may not
had much (if any) of an API. It may be that the system was originally written to be access
from PC screens and users running GUIs and not meant to be accessed electronically fr

Customers Orders

Order Management

OMgmt
Translator

Middleware bus

Generic API

Proprietary API
- Direct access to data tables
- Calls to Application Specific API

routines

- Routines callable from
other translators
September 11 2000 Page 12

Application Integration (EAI) Basics

e
ining
s

 never
or

able

t

 date
ive it

be
k the

, the
other applications at all. But that’s the whole point of EAI - for an application system to b
callable from another, someone has to spend the time analyzing the software and determ
exactly how to create an API for it. Like my little OMgmt::GetNewCust() example, that wa
done by accessing the databases directly - something the standard application interface
allowed. So these translators are very specific to the application software (and version) f
which they are written, but their job is to provide this generic API - callable from the
Middleware bus.

Whether the application system had its own API or not, you have now constructed a call
set of routines that mean the application system can now be called via software.

So if we show our example, listing some of the calls that might be available, we might ge
something that looked like this:

In this case we see that the OMgmt Translator has three calls available. You can ask it to
GetNewCust() - and it will retrieve any new customers that have placed orders since the
you supply in the call. You can also ask it to UpdateCust() where it takes the details you g
and it updates its customer records. And you can ask it to GetOrderDetails() where it will
retrieve the details of all the orders for the given customer.

So too, the Billings system can be asked to start a new billing (NewBilling()) - this would
called from the Order Management system when it has fulfilled an order. You can also as
Billing system to GetBillingHistory() and retrieve all the billing records for the given
customer.

And so it goes...

With EAI technology I can now connect up my applications and they can “talk”!! For each
application I can “expose” certain functionality to the rest of the applications. For example
Billings system now exposes the fact that it can be told about a fulfilled order and it can go
ahead and bill that customer. It has done this by having the NewBilling() call available on the
Middleware bus.

My application systems are now “talking the same language”!

Middleware bus

CCare
Translator

OMgmt
Translator

Billings
Translator

GetNewCust()
UpdateCust()

GetOrderDetails()

GetCustDetails()
UpdateCust()

NewBilling()
GetBillingHistory()

Customer Care

Customers Customers Orders

Order
Management

Billings

Customers Billings
September 11 2000 Page 13

Application Integration (EAI) Basics

ing

wed
”

tomer
e.

ber -
s

nique
 plus
ble

t
ing

ontain

this
Data Integration
This is a point that is often overlooked when discussing how to integrate your applications.

Hopefully by now you understand the basic idea of EAI and you can visualize setting up your
applications to call each other and pass around information. But this information that’s be
passed around...is it all in the same format?

Earlier, when I showed an example of what functions the translators might support, I sho
that the Order Management translator might support a function called “GetOrderDetails()
where you passed it the Customer ID of the customer you were interested in and it would
return certain details about the orders they had placed. It looks something like this:

What’s to say that the Customer ID in the Customer Care system is the same as the Cus
ID in the Order Management system? Indeed, I’d be most surprised if they were the sam

It’s quite possible that within the Customer Care system, the Customer ID is a simple num
they started with Customer ID 1000 and each new customer has been assigned number
incremented from there...1000, 1001, 1002, etc...

But in the Order Management system the Customer ID might be a string made up of a u
number, plus a code to identify the location of their offices (for internal support reasons),
the date their entry was first created - something like: 573-BE-19990507. (Ok, it’s a horri
looking number, but I’ve worked on sites that have had much worse :-)

Because this Customer ID field is being passed around between systems we need to se
up some way for cross-referencing between these systems. We need some sort of mapp
that says that Customer ID 1004 in the Customer Care system maps to Customer ID
971-BU-20000102 in the Order Management system.

One way to handle this is to build ourselves a separate database that will contain all the
Customer IDs from either system listing them in pairs. But what about the Billings system? We
need to check its definition for Customer ID and include that. So our database needs to c
entries showing the three possible Customer IDs for each actual customer.

Because we are going to be asking for information keyed on Customer ID we must map
between all three systems.

It might look like this:

CCare
Translator

OMgmt
Translator

GetOrderDetails(CustID)

Customer Care

Customers Customers Orders

Order
Management

Results...
September 11 2000 Page 14

Application Integration (EAI) Basics

.

er ID

rs do
tabase

ing

er

Where:

• We have gone through the three systems and matched-up the three versions of the
Customer ID and written these to an external database.

• We then need to provide a translator so that this data is visible on the Middleware bus

This translator will be configured to accept three calls, where you pass in the Custom
that you have and what type it is (CC, OM, or BS). It then returns the equivalent ID.

This is quite a common task when integrating applications, and most Middleware supplie
provide database translators for the major databases available today. So, configuring a da
translator to offer these three calls is very simple.

The real issue is the time it takes for you to construct the data by going through the exist
application systems.

Now if we go back to our example where the Customer Care system was asking the Ord
Management system for “GetOrderDetails(CustID)”, we see now that the Customer Care
system has to make two calls to achieve this.

It looks like this:

OMgmt
Translator

Customers Orders

Order
Management

CCare
Translator

Customer Care

Customers

CustID
Translator

Billings
Translator

Billings

Customers Billings

1004 BS-1004-GB971-BU-20...
1005 BS-1005-AT972-HA-20...

...

GetCCID()
GetOMID()
GetBSID()

CCid BSidOMid
September 11 2000 Page 15

Application Integration (EAI) Basics

lent

tem to

 what
rt.

 what
C
ually
n the

e
n
ithout
me
rs on
 one
ges.

our
g key
rt of

odel

r the
Where:

• It first asks the CustID translator to translate the Customer ID from “1004” to its equiva
in the Order Management system.

• It then uses the returned value (971-BU-20000102) to ask the Order Management sys
supply the order details for this customer.

This issue of looking through the application systems that are to be integrated and seeing
data mappings and conversions are required is a major part of the overall integration effo

You need to look at all the data models of all the applications being integrated and decide
needs to happen and how you will resolve it. Issues like the fact that a data item is called AB
in one system and it’s called DEF in another isn’t a problem - simple name mapping is us
handled in the Middleware. So too, basic data-type conversions tend to be handled withi
Middleware.

And of-course, there’s the question of data synchronization. In our example we have thre
application systems (Order Management, Customer Care, Billings) each holding their ow
definition (and data) of the customer. So does it matter to us that one might be updated w
the others seeing that update? You might think the answer is an obvious “Yes”, but for so
companies it may not be. Having said that, it is very common to see people set up trigge
each application system such that when the customer record (or whatever) is updated in
system, this update is sent across to the other systems so they can incorporate the chan

All these issues of deciding how to synchronize your data, choosing which sources are y
masters and which are your slaves, setting up any addition databases/tables for mappin
fields (such as I showed for the various definitions of Customer ID), etc. - these are all pa
what we call Data Normalization.

Once you have a fully normalized data model you have effectively agreed a meta data m
across all of your applications.

As you can probably now appreciate, data integration and normalization is a major part o
overall EAI effort, and one that is not to be underestimated!

CCare
Translator

OMgmt
Translator

GetOrderDetails(971-BU-20000102)

Customer Care

Customers Customers Orders

Order
Management

CustID
Translator

1004 BS-1004-GB971-BU-20...
1005 BS-1005-AT972-HA-20...

...

GetOMID(1004, CC)1
2

September 11 2000 Page 16

Application Integration (EAI) Basics

 the
 will

ges.

e

.)

 new
ric API

n,

ce
o want

d-
able

 to be

ou
ocesses

ble to
on
Summary
• We’ve seen that to integrate your application systems using EAI technology, involves

use of a central, generic message bus (Middleware) across which all the applications
talk - via translators.

• You then write (or buy) translators (often called “Adapters”) that allow your application
systems to plug in to the Middleware message bus, and thus send and receive messa

• You only need one translator per application system.

You can quite happily have more if you want - so they can share the load - but one is
enough to get you going.

• A translator makes the application system look like it has a generic, callable API in th
language of the Middleware bus.

• A translator hides all application specific details (file structures, internal API calls, etc
from the Middleware bus, and thus from the other application systems.

• Using a translator gives you “plug-and-play” capability.

You can upgrade an application system from Version X to Version Y without the other
systems knowing about it. All you need to do is to rewrite the translator to access the
version of the application system, and make sure that you keep the same set of gene
calls.

• You can buy translators for many of the major application systems.

These translators are typically Dynamic in that they can be configured on your site to say
what functions they expose and how those functions are implemented.

• You will need to Normalize your data.

This will mean going through and resolving issues of data duplication, synchronizatio
and semantics. Data Normalization is a major task, and one that you should not
underestimate.

Great! So that’s it! Off you go and expose all sorts of functionality for all your application
systems ...but... what functionality should you expose? Who says that a GetBillingHistory()
function is a worthwhile thing to make available from your Billing system? I mean, let’s fa
it, these application systems never used to talk to each other, so who is suddenly going t
to make this GetBillingHistory() call?

It’s at this point that most people realize that to carry out application integration as a stan
alone project is not the right thing to be doing. Buying-in the necessary Middleware to en
your application systems to talk is essential, but the decisions as to what functions need
exposed from each application system needs to be driven by your business processes!

Once you are comfortable that you have the right Middleware and the right translators, y
should then step back and look at the business processes that you need to define - the pr
that are actually needed to run your business - the processes that span these application
systems. By defining these business processes you are then in the perfect place to be a
determine exactly what functions need to be made available from the individual applicati
systems.

It is the business process that drives the application integration!
September 11 2000 Page 17

Application Integration (EAI) Basics

nt to
ere
 order
er.

 to

Adding Process

Remember the original diagram?

We have various systems, all carrying out their particular part of the business. We now need to
operate across all of them. We need to build processes that span these application systems and
make them appear as one homogeneous system.

We now understand that EAI technology allows us to look carefully at these underlying
application systems and decide what functions and services they currently provide to the
business, and then expose these as callable functions.

All we need now is a translator for Changengine so that it can plug-in to the Middleware bus
and call these functions. Indeed, we don’t just want a one-way conversation - we also wa
allow the application systems to call Changengine. You can easily imagine a situation wh
you would like (say) the Order Management system to call Changengine whenever a new
is placed and have it kick-off a process to manage the fulfillment and payment of that ord

Architecture
To write a translator for Changengine that allows it to plug-in to the Middleware bus, the
translator simply needs to use the CeAPI to access a work list. The translator then looks
Changengine like any other Changengine client or user. It logs on to its work list and from
there it can start processes, and handle any work items that are sent to it.

It looks something like this:

The business operates across all of these...

Customers Orders

Customer Care

Customers

Order Management Billings

Customers Billings
September 11 2000 Page 18

Application Integration (EAI) Basics

s

t like
r (port

The CE Translator (usually called a “CE Adapter”) simply connects to the Middleware Bu
and “talks” the same language as all the other translators.

On the Changengine side of things, the CE Translator (adapter) logs on to its work list jus
any normal Changengine client or adapter. It uses the CeAPI to connect to the API Serve
9123 by default), and accesses its personal work list via the Worklist Server. It could also
connect-in via the Web Server (port 80 by default) and work just fine...but using the API
Server is faster!

Middleware bus

CCare
Translator

OMgmt
Translator

Billings
Translator

Customer Care

Customers Customers Orders

Order
Management

Billings

Customers Billings

CeAP

Worklist

Receiver

Worklist

Server

Process

Engine

Web
Server

API Server

CE
Translator

Worklists
(Queues)
September 11 2000 Page 19

Application Integration (EAI) Basics

ou do
ult of
ation
tions

hey

ifferent
s

fort

ough...

d
ich are

d in

eets
fore we
Defining the Process
It is the process that drives the application system integration.

Once we have analyzed and designed our process, and determined what services we require
from the underlying application systems we can then go about the application integration
knowing exactly what functions and abilities we need to expose to the Middleware bus.

So when designing your business process, you should assume that you have a fully integrated
set of application systems at your disposal - you probably don’t as yet, but assume that y
have all these application systems integrated. You then design the process and as a res
that you end up with a set of services (functions) that you need from the underlying applic
systems. You can give this to the EAI team and they then have a specification of the func
they need to expose from the underlying application systems.

Now they might find that when they look into it, there are some services (functions) that t
can not offer, in which case you need to work with them to determine a compromise. You
would need to make adjustments to the process definition to compensate and design a d
service call. It’s an iterative situation, but because the starting point is the overall busines
process, you all have a clear understanding of exactly what the application integration ef
must achieve.

Let’s now consider how we might design a process, and the basic steps we would go thr

As with all business processes, you need to get the right people involved, go through an
determine all the steps that have to happen, determine which can happen in parallel, wh
sequential, where the loops are, etc. etc..

So let’s say you design your process and it looks something like this:

Typically, when initially prototyping this process, we define all the data that needs to be fe
to the start node. We might define a whole host of data items, such as:

Cust ID
Cust Name
Cust Address
Cust Postcode
Cust Phone Number
Order Number
Order Details
Billing Address
Purchase Order Number
etc...

This has the convenience that we can then easily demonstrate the process and see if it m
our requirement. However there are some important areas that need to be considered be
would look at going live with this process:

• This process is carrying around with it all the data.
September 11 2000 Page 20

Application Integration (EAI) Basics

cess.

in
ses.

es

o just

rself
.
Care
you
ence

s is
w best
the

ss

urce
We definitely do not want to duplicate application data here within the process. Instead we
want the process to refer to the real data that is maintained within our application systems.
Where ever possible, keep the application data out of the process model.

• This process assumes that all these steps happen just for this particular business pro

We need to consider which steps, or sequences of steps, are potentially reusable with
future process within our business. Reusability is a key point to build business proces

• The process may well be started by one of your external application systems.

It is highly likely that the process is started by one of the external applications (Order
Management, Customer Care, whatever) and not by some person logging onto
Changengine and typing in data.

Let’s look at these in more detail...

Application Data within the Process
We’ve just spent the first half of this CeTN understanding that we probably have data
duplicated across potentially many existing application systems (Customer Care, Order
Management, etc...) We certainly do not want to implement another system that duplicat
data!

Rather than the process carrying around a copy of all the data, you want to try and aim t
carry around the various ID’s for the data objects involved. Let the underlying application
systems maintain the application data, you just need the process to know an ID for the
customer, an ID for the particular order, etc..

Indeed, more than that, when you are first defining your process don’t even concern you
with where the Customer ID (or whatever) is defined in your existing application systems
Remember, your application systems might all define it differently (1004 in the Customer
system, 971-BU-20000102 in the Order Management system, etc.). That doesn’t bother
when defining your process. All you need to worry about is that you need to have a refer
to that customer ID (or whatever) within your process.

Go ahead and define your process assuming a normalized data model. Once the proces
defined, you will then see exactly which data items you need and can then investigate ho
to supply these via the Middleware. In other words, let the application systems maintain
application data and have the EAI effort handle all the normalization and synchronization
issues.

Let Changengine handle the sequencing of the work that needs to be done.

Functional Decomposition of the Process - Reusability
When defining the business process, reusability is a key point! You need to break it down into
its constituent services and be constantly looking at what services and sections of your proce
might be reusable for building other processes within your business.

A Changengine service defines the interface between the business process and the reso
(person or application) that will actually perform this activity.

For example:
September 11 2000 Page 21

Application Integration (EAI) Basics

 needs
un

sable.
ide
a

vice

al

e a
ut...
should

ware

tages
We then connect these services into our business process via work nodes. The work node will
basically specify which Changengine service it calls at that point in the process - passing the
appropriate process data.

Don’t forget that a Changengine service is reusable. That is, we can define a service that
to happen (it might be “Billing Activation” (as shown above), “Raise a purchase order”, “R
a credit check”) and then define it as a globally reusable service within Changengine.

Also, by identifying a service as a potential for reuse in later process definitions (or even
within the same process definition), it can help you to generalize it so that it is indeed reu
For example, rather than defining a service called “Credit Client Account”, you might dec
to define it as “Adjust Client Account” where it can be called from different stages within
process to either credit or debit an account based on what value you pass into it.

Note: Refer to the “Process Development CeTN” - section “Reusable Services and
Subprocesses” for more detailed explanations and examples.

It is these Changengine service definitions that determine what functions will need to be
implemented on your Middleware Bus.

For example, you might have a work node called “Bill The Customer” which calls the ser
“Billing Activation” (shown above), passing it Cust ID and Order ID, and expecting to get
back the Status. You might decide that this is something to be implemented by your actu
Billing system - hence you would need to do the necessary EAI work to provide this “Billing
Activation” service on the Middleware Bus.

Remember, when defining your business process you want to try to imagine that you hav
fully integrated set of applications and fully normalized data. You probably don’t have ...b
you want to assume that you do and then put together what the business process really
be - specifying the low level Changengine services that are required to do the job. These
services then become your set of functions that must then be implemented on the Middle
Bus. These services effectively define exactly what integration you need across your
application systems.

If we consider the earlier example Changengine process, the functional decomposition s
might look like this:

Status

Order ID

Cust ID

Service: Billing Activation
September 11 2000 Page 22

Application Integration (EAI) Basics

y
t to set

e
ys be
ilding

r Care
going
t into a

able

 the

Identify some overall phases to the process:

It might be that these are phases and you just wish to annotate them within the Process
Diagram - that’s fine. But it might be that you identify that some or all of these are actuall
common steps that will be repeated in future business processes. In which case you wan
these up as subprocesses, called from a top-level process.

(In this example, I am showing a fairly simple process diagram and it just happens to hav
three phases that match our three external application systems. Clearly this will not alwa
the case. I’m just trying to show the basic principles because they are essential when bu
good reusable business processes.)

Define the subprocesses:

I’ve shown here that the overall process is in three main phases where both the Custome
section and the Billing section break down into subprocesses. The Order Mgmt section is
to be reusable, but it only needs to be a single service - so there is no need to break it ou
subprocess.

What I’ve really done is say that the overall process breaks down into three globally reus
services - two of which are to be implemented as Changengine subprocesses.

This can often be difficult to understand at first, so I strongly recommend that you refer to
“Process Development CeTN” - section “Reusable Services and Subprocesses” for more
detailed explanations and examples.

Customer Care Order
Mgmt

Billing

Customer Care Order
Mgmt Billing
September 11 2000 Page 23

Application Integration (EAI) Basics
Define the services for each of these work nodes:

By the way, in this diagram I show every service looking exactly the same (2 inputs, 1 output)
- this is just a pictorial representation :-)

Obviously each service would be defined according to its needs - whatever inputs/outputs it
required. But that is the whole point of this step - to specify the full list of services that we
require to be implemented. To specify the inputs, outputs and the resource for each service, and
to decide which of these are to be implemented across the Middleware Bus.

Map the services onto the Middleware Bus

Not every service is necessarily going to be performed by the underlying application systems.
They may be, but I would expect to see a mix of services implemented by people and services
implemented by applications. It all depends on the business process you are defining.

At this stage you have the list of services that are required to implement your business process.
For each of these services you also have a clearly defined interface and specification of what
the service must carry-out and what values (if any) it should return. For the services that are to
be implemented via the underlying application systems you can now give these service
definitions to the EAI team and this becomes their spec. for what functions they must make
available across the Middleware bus.

When the EAI team have implemented these services you can run the process...and you can
imagine that it would look something like this:

Customer Care
Order
Mgmt Billing
September 11 2000 Page 24

Application Integration (EAI) Basics

ed to
en of

he

age

 for

I’ve shown five of the services mapping to the Middleware bus. The other two are presum
be implemented by sending the work item to a user. As I said earlier, it may be that all sev
these services map to the bus.

If you wanted to enable this whole process - the top-level process - to be startable from t
application systems, then you would also need to map the start node’s service to the
Middleware bus. (I just don’t show it on the diagram because I couldn’t fit it all onto the p
very easily :-)

You have your business process defined. All reusable services and sections are in place
building future processes. You are bringing together the data and the intelligence of your
underlying application systems. You now have a solution!

Middleware bus

Customer Care

Customers Customers Orders

Order
Management

Billings

Customers Billings

Customer
Care

Order
Mgmt Billing

CE Translator

CCare
Translator

OMgmt
Translator

Billings
Translator
September 11 2000 Page 25

Application Integration (EAI) Basics

e
ays
Additional Benefits
Whilst these next points are not necessarily to do with EAI, I mention them here because they
are benefits that arise from functionally decomposing your business process in the way just
described.

Process Metrics

If you think of our end-to-end business process, it started out looking like this:

and after breaking it down into reusable and functional areas, it now looks like this:

This has actually given us the ability to use the Changengine Business Console to give us
metrics on our top-level process. This can show us straight away where we spend most of our
time - in Customer Care, Order Management or Billing!

If we then wish to drill down to one of these subprocesses we can analyze that.

So, by subdividing the overall process into subprocesses we instantly gain better reporting.

Don’t forget, the Changengine Audit Logs are just a set of SQL data tables/views, so if th
standard Business Console metrics reports are not specific enough for you, you can alw
expand it with your own. You could also make use of packages such as Crystal Reports.

Customer Care
Order
Mgmt Billing
September 11 2000 Page 26

Application Integration (EAI) Basics

e

s
d apply

rder
fer

lf to
Error Handling

By breaking down the overall process into its subparts we also make it easier to put in error
handling.

Obviously you can put a test after every single work node in every single process and test the
state for success or failure, but your process diagram typically becomes unreadable and it is
usually not necessary to go to that level.

What you probably want as a minimum is basic testing after each major phase. So your top
level process could become:

Where we basically put a error detection loop after each of the main phases of the process
(Customer Care, Order Management, Billing). The “Error Handling” node after each phas
would initiate whatever cleanup actions were necessary and then either exit or retry.

Obviously it is up to you to define what these error handling cleanups must be, but it doe
mean that you can define these steps and have the process automatically catch errors an
the clean up. You would also ensure that the service called within the Customer Care, O
Management and Billing nodes returned both a status and error text so that you could of
good reporting of the error.

By breaking the overall process down into reusable and functional areas it does lend itse
simple, effective and logical error handling.

Customer
Care

Order
Mgmt Billing

Retry? Retry? Retry?

Customer Care
Error Handling

Order Mgmt
Error Handling

Billing
Error Handling

Process
Successful

Process Not
Successful
September 11 2000 Page 27

Application Integration (EAI) Basics
Summary

You can see that to create a business process solution that spans integrated application systems
is an involved, but very rewarding, effort.

There are clearly two major parts to this:

1. Defining the business process

The business process will determine the scope of the integration effort that is to be
involved, and determine the specification for the services (functions) that need to be made
available on the Middleware bus.

This drives the integration effort.

2. Integrating the application systems

You need to choose the Middleware technology that you will use, the translators (adapters)
that you will need and whether you will need to write these or buy them.

You will need to come up with a normalized data model and then proceed to integrate the
application system so as to provide the functions required to satisfy the business process.

The process definition team and the application integration team could carry out a lot of their
work in parallel, but there would certainly be a lot of healthy discussion between the two. In
particular, if the application team felt that they could not provide a certain service (function)
for the process team then there would need to be discussion, and both teams would need to see
what alternatives could be worked out.

Remember:

It is the business process that drives the application integration!
September 11 2000 Page 28

	Summary
	Printing History
	Restricted Rights Legend

	Contents
	Introduction
	A Human Analogy
	EAI
	Application Integration
	Data Integration
	Summary

	Adding Process
	Architecture
	Defining the Process
	Application Data within the Process
	Functional Decomposition of the Process - Reusability
	Identify some overall phases to the process:
	Define the subprocesses:
	Define the services for each of these work nodes:
	Map the services onto the Middleware Bus

	Additional Benefits
	Process Metrics
	Error Handling

	Summary

