
Applications - Who needs them? 1

August 2001 COTC - T.RenzSoft 0

August 2001 COTC - T.RenzSoft 1

Applications –

Who needs them??

Tom Renz
August 2001

August 2001 COTC - T.RenzSoft 2

Introduction
! What is an application?
! Why do we need an application?
! How do we use an application?
! When do we use an application?
! Where do we use an application?
! Who uses/relies on an application?

Applications - Who needs them? 2

August 2001 COTC - T.RenzSoft 3

What is an application?
! A program
! A job
! A command file
! A subroutine
! A storage area of data
! A combination of one or more of

the above together to accomplish a
given task/outcome/result/etc.

August 2001 COTC - T.RenzSoft 4

Why do we need an
application?
! Processes our paychecks,

ordering, manufacturing, airline
tickets, etc.

! Provides jobs within the
department, region, and entire
company

! Provides jobs and new ideas for
outside vendors

August 2001 COTC - T.RenzSoft 5

How do we use an
application?
! Utilize some form of a

programming language (3GL, 4GL,
CI Commands, etc.)

! Execute a set of commands or
processes to provide a desired
outcome

Applications - Who needs them? 3

August 2001 COTC - T.RenzSoft 6

When do we use an
application?
! Run on a periodic basis (hourly,

daily, weekly, monthly, etc.)
! Submit via a schedule, other

software, via a check list, etc.
! When we require the outcome of

the application for other decision
making

August 2001 COTC - T.RenzSoft 7

Where do we use an
application?
! On our HPe3000
! On our PC
! Via the Web
! Via another computer system

utilizing some form of a
Client/Server process

! Etc….

August 2001 COTC - T.RenzSoft 8

Who uses/relies on an
application?
! Company employees
! Current and Potential customers
! OS providers
! Third party software providers
! Hardware providers
! Database tool providers
! Performance tools and surveys
! Etc……..

Applications - Who needs them? 4

August 2001 COTC - T.RenzSoft 9

“….just throw more hardware
at the problem.”

….a previous Manager in charge of budgets.
(1990)

August 2001 COTC - T.RenzSoft 10

“I don’t need to be
concerned with
performance, I’m using
Speedware and it will take
care of it.”

….a Consultant
(1996)

August 2001 COTC - T.RenzSoft 11

“…but it worked fast in test.”

….lots of development staff
(ongoing)

Applications - Who needs them? 5

August 2001 COTC - T.RenzSoft 12

Tom’s main quote

“If you take care of the
machine, it will take care
of you!”

….Tom Renz
(Since 1983)

August 2001 COTC - T.RenzSoft 13

Tools and Techniques to
improve your application

! Program recommendations
! File recommendations
! Speedware recommendations
! Suprtool recommendations
! Before and after timings

August 2001 COTC - T.RenzSoft 14

Program recommendations

! Use and abuse of tables
! Counters
! Reference modification (COBOL)
! In-line PERFORMs (COBOL)
! GoTo statement
! Functions
! Other suggestions

Applications - Who needs them? 6

August 2001 COTC - T.RenzSoft 15

Use and abuse of tables
Abuse:
! $Control BOUNDS – adds extra

code
! Initialize each field within each row
! Processes/checks every defined

row and field no matter how many
entries in table

! Use of poor index field definitions

August 2001 COTC - T.RenzSoft 16

Use and abuse of tables
(continued)
Ways to improve table processing:
! Use INITIALIZE “function”

INITIALIZE TABLE-A.

! Move LOW-VALUES when
initializing a table of counters

! Initialize first main row, then use
this row to initialize remaining rows

PERFORM VARYING A FROM 2 BY 1
UNTIL A > MAX-TABLE-SIZE

MOVE TABLE-ROW(1) TO TABLE-ROW(A)
END-PERFORM.

August 2001 COTC - T.RenzSoft 17

Use and abuse of tables
(continued)
More ways to improve tables:
! Keep and check for highest record

in table – don’t read entire table
during each pass

! Example:
- 3rd-party application
- 3-dimensional table w/ 200 by 300 by 400 rows
- during program run went to the limits for each row
- took around 8+ hours to run each month
- modified to keep a counter for each row and process

only to the current limit
- now takes 15 – 20 minutes to run each month

Applications - Who needs them? 7

August 2001 COTC - T.RenzSoft 18

Use and abuse of tables
(continued)
And other ways to improve tables:
! Use of poor index field definitions
! Poor choices (why?):

- Misaligned on non-word boundaries
- ASCII/Display/Packed number fields
- Unsigned integer fields

! Good choices:
- Double Integer fields (4 bytes – 2 bytes also ok)
- Signed integer fields
- Aligned on word boundaries

August 2001 COTC - T.RenzSoft 19

Counters
Good and bad counter definitions:
! Same as Index Field definitions
! Poor choices (why?):

- Misaligned on non-word boundaries
- ASCII/Display/Packed number fields
- Unsigned integer fields

! Good choices:
- Double Integer fields (4 bytes – 2 bytes also ok)
- Signed integer fields
- Aligned on word boundaries

August 2001 COTC - T.RenzSoft 20

Counters - Timings
! Unsigned counter timings*:

CPU: 0.471 ms; Wall: 0.475 ms
! Signed counter timings*:

CPU: 0.408 ms; Wall: 0.415 ms
! Display counter timings*:

CPU: 0.795 ms; Wall: 0.802 ms
! Misaligned counter timings*:

CPU: 0.795 ms; Wall: 0.803 ms

*Based on loop that adds 1 to a counter defined in various
formats (signed integer, display and misaligned for 1–million
times. (917LX)

Applications - Who needs them? 8

August 2001 COTC - T.RenzSoft 21

Reference modification
(COBOL)
! aka - Byte referencing
! Speed of memory instructions
! Old method – created table array for each byte in

a field
01 FIELD-A PIC X(80).
01 FILL REDEFINES FIELD-A.

05 BYTE-A PIC X OCCURS 80.
…….
MOVE ‘ ABC’ TO FIELD-A.

..or..
MOVE ‘A’ TO BYTE-A(4).
MOVE ‘B’ TO BYTE-A(5).
MOVE ‘C’ TO BYTE-A(6).

! New method – use new feature
MOVE “ABC” TO FIELD-A(FROM-BYTE:END-LENGTH).

August 2001 COTC - T.RenzSoft 22

Reference modification -
Timings
Old method timings*:
! CPU: 57.087; Wall: 57.580 (unopt)
! CPU: 52.262; Wall: 52.723 (opt)
New method timings*:
! CPU: 5.429; Wall: 5.477 (unopt)
! CPU: 5.367; Wall: 5.416 (opt)

*Based on loop that moves a string to a byte location and space
fill the remaining bytes to the end of the string for 1–million
times. (Move ‘DEF’ to Field-A(7:) (917LX)

August 2001 COTC - T.RenzSoft 23

In-line PERFORMs
(COBOL)
! Similar to “DO” Loops in Fortran,

“FOR” Loops in Basic, “LOOP” in
Speedware, etc.

! Faster, more efficient and less
object code for branching
instructions to a separate
paragraph

Applications - Who needs them? 9

August 2001 COTC - T.RenzSoft 24

In-line PERFORMs -
example
Left justify data in a string:

01 Byte Pic s9(9) Comp Value 0.
01 Field-A Pic x(80) Value Spaces.
01 Field-A-Len Pic s9(9) Comp Value 0.

…..
Compute Field-A-Len = Function LENGTH(Field-A).
Perform varying Byte from 1 by 1 until Byte > Field-A-Len

If Field-A(Byte:1) <> “ “
Move Field-A(Byte:) to Field-A(1:Field-A-Len)
Move Field-A-Len to Byte

End-If
End-Perform.

August 2001 COTC - T.RenzSoft 25

In-line PERFORMs -
Timings
PERFORM paragraph timings*:
! CPU: 15.385; Wall: 15.528 (unopt)
! CPU: 15.419; Wall: 15.565 (opt)
In-Line PERFORM timings*:
! CPU: 14.253; Wall: 14.385 (unopt)
! CPU: 13.028; Wall: 13.147 (opt)

*Based on loop that left justifies a string using reference
modification (see example in previous slide) for 1–million
times. (917LX)

August 2001 COTC - T.RenzSoft 26

GoTo statement
! Considered “Taboo” in COBOL-land
! Go ahead – shoot me – I use them

extensively to improve software
performance without compromising
structure

! Can hurt if used incorrectly – probably
why considered “taboo” and not a
“structured” option

! Used in other languages without
problems

Applications - Who needs them? 10

August 2001 COTC - T.RenzSoft 27

GoTo - Timings
PERFORM “GoTo-free” timings*:
! CPU: 0.753; Wall: 0.766 (unopt)
! CPU: 0.722; Wall: 0.735 (opt)
PERFORM “with GoTos” timings*:
! CPU: 0.377; Wall: 0.380 (unopt)
! CPU: 0.220; Wall: 0.222 (opt)

*Based on loop that performs a paragraph without “GoTo”
statement versus another that uses “GoTo” statements to exit
paragraph when conditions exist for 1–million times. (917LX)

August 2001 COTC - T.RenzSoft 28

Functions
! Available on all HP3000 systems for

those who might move to another job
and would like to use a specialized
routine (how many date routines avail?)

! Supported by OS provider – reduced in-
house maintenance

! Brings COBOL to the same realm as
other languages

! SQRT, RANDOM, Date routines,
Financial formulas, Table processing,
etc.

August 2001 COTC - T.RenzSoft 29

File recommendations

! Flat files
! Ksam files – both CM & NM
! Temp files

Applications - Who needs them? 11

August 2001 COTC - T.RenzSoft 30

Flat files
! Standard – serial read to find

unique data
! RIO – random access
! CIRcular – keep last ‘nnn’ records

– never gets full – like an odometer
! MSG – program to program

communication (FIFO)
! Byte Stream – like DOS/PC files –

each record is 1 byte

August 2001 COTC - T.RenzSoft 31

KSAM file - CM
! Keyed Sequential Access Method
! Requires 2 files – one data, one the key

pointer file
! Use KSAMUTIL to build and maintain
! File System code – Compatibility Mode
! Temp or Perm
! Use if a key chain length is greater than

20,000 – 25,000 records

August 2001 COTC - T.RenzSoft 32

KSAM file - NM
! Keyed Sequential Access Method
! Requires 1 file – both data and key

pointers together
! Use CI Commands to build and maintain
! File System code – Native Mode
! Temp or Perm
! DO NOT Use if a key chain length is

greater than 20,000 – 25,000 records
- 1.5+ million records w/ same key

value – 23+ hours to load
- 2 hours to load in CM KSAM

Applications - Who needs them? 12

August 2001 COTC - T.RenzSoft 33

Temp or “New” files
! Bypasses Transaction Manager
! Load large files in temp domain

then save as permanent, if needed

August 2001 COTC - T.RenzSoft 34

(917LX)

start timing "PERM" file

End timing "PERM" file

...CPU:141.466 Wall: 147.617

start timing "PERM w/Int" file

End timing "PERM w/Int" file

...CPU:128.552 Wall: 135.534

start timing "TEMP" file

End timing of "TEMP" file

...CPU: 144.476 Wall: 150.877

start timing "TEMP w/Int" file

End timing "TEMP w/Int" file

...CPU: 126.963 Wall: 132.980

start timing "NEW" file

End timing "NEW" file

...CPU: 145.858 Wall: 152.206

start timing "NEW w/Int" file

End timing "NEW w/Int" file

...CPU: 129.657 Wall: 135.685

(967)

start timing "PERM" file

End timing"PERM" file

...CPU: 62.792 Wall: 64.923

start timing "PERM w/Int" file

End timing "PERM w/Int" file

...CPU: 55.451 Wall: 57.530

start timing "TEMP" file

End of timing of "TEMP" file

...CPU: 62.678 Wall: 64.812

start timing "TEMP w/Int" file

End timing "TEMP w/Int" file

...CPU: 55.341 Wall: 57.426

start timing "NEW" file

End timing "NEW" file

...CPU: 63.221 Wall: 65.890

start timing "NEW w/Int" file

End timing "NEW w/Int" file

...CPU: 56.754 Wall:58.852

(979)

start timing "PERM" file

End timing "PERM" file

...CPU: 13.697 Wall: 17.417

start timing "PERM w/Int" file

End timing "PERM w/Int" file

...CPU: 11.742 Wall: 16.840

start timing "TEMP" file

End timing "TEMP" file

...CPU: 13.780 Wall: 16.562

start timing "TEMP w/Int" file

End timing "TEMP w/Int" file

...CPU: 11.818 Wall: 14.214

start timing "NEW" file

End timing "NEW" file

...CPU: 13.725 Wall: 14.501

start timing "NEW w/Int" file

End timing "NEW w/Int" file

...CPU: 11.669 Wall: 13.196

August 2001 COTC - T.RenzSoft 35

More before and after
timings
! Unique key values in a flat file

- Serially read flat file for every record processed
- 4 hours to complete (“…worked fast in test”)
- Copied code to several other new reports
- Changed to temp Ksam file
- 15 minutes to complete

! More yet to come

Applications - Who needs them? 13

August 2001 COTC - T.RenzSoft 36

Speedware recommendations
! Use of DCLFILE directive

- IMAGE data set – open mode
- Change access to read-only

(default – write access & can be slow)
- Assign several names for same data set/file for

different access requirements

! Be careful of the Optimizer – its
choice versus your “coded” choice

- Omnidex/Superdex first (can be a “gotcha”)
- IMAGE Key field second (use ‘[]’ to force)
- Serial read
-

August 2001 COTC - T.RenzSoft 37

Powerhouse
recommendations

! Send us your Powerhouse (Quiz,
Quick, QTP, etc.) performance
techniques, gotcha’s, horror
stories, and improvements realized

August 2001 COTC - T.RenzSoft 38

Suprtool recommendations
! Use and abuse of

- CHAIN
- $LOOKUP
- Set Limits TableSize n

! Utilize TPI when appropriate via
CHAIN

! Great use for totaling,
summarizing, averaging, lead-in
extracts, etc.

Applications - Who needs them? 14

August 2001 COTC - T.RenzSoft 39

Suprtool - CHAIN
! Use when only a few or very small

percentage is to be extracted
! No performance gain

(misconception) with this read
option (same as writing your own
program)

! 0.5 – 1.0+ % of total set entries is a
good cutoff point – if more, use
GET and “IF $LOOKUP…”

August 2001 COTC - T.RenzSoft 40

Suprtool – CHAIN
performance example
! Weekly job with ~50,000 +/- entries to

read via CHAIN & TABLE
! 8+ data sets read w/ 1-2 million records

each
! 8 – 12 hours to run (also a 27 hour

hybrid job runs on request w/ 200,000+
entries)

! Changed job to use GET and “IF
$LOOKUP…” for all extracts

! Run-time – 1½ hours (both versions)

August 2001 COTC - T.RenzSoft 41

Suprtool - $LOOKUP
! Used as a table lookup of a qualifying set of

values when extracting data and using ‘IF’
! Best performance – must be last condition in

the ‘IF’ statement
! Uses a binary search to locate table entries

for each record read in file/data set
! Can decrease speed of extract if used as

one of the first conditions on an ‘IF’
statement

! Have made changes to 3rd Party jobs and
client jobs and improved extract
performance by 20 – 50%

Applications - Who needs them? 15

August 2001 COTC - T.RenzSoft 42

Suprtool - TableSize
! Default value of 2
! Increase when you have ample memory

or nightly batch schedule
! Can reduce by day & increase by night

via settings control file
! Increase number (up to 5) to inform

MPE/iX to bring in more blocks into
memory improving speed

! Can be degrading if system is
overloaded or minimal memory causing
large numbers of page faults

August 2001 COTC - T.RenzSoft 43

Suprtool - TPI
! Same rules apply as defined for CHAIN

access
! Utilizes index items defined on data set
! “TPI” must be enabled
! Can use wild cards in data request
! Can only use one indexed item on

CHAIN command
CHAIN DATA-SET,INDEXED-ITEM=“A@”, “DE”
CHain DATA-SET,INDEX-ITEM2=“A@,-AB”

August 2001 COTC - T.RenzSoft 44

Suprtool – TPI example
! 3rd Party application
! Customer runs 5 iterations of job
! 30 minutes (average) to run – single

threaded (2½ hour completion time)
! 3rd party solution – create separate job

for extract and change other jobs to read
extract

! Our solution – use CHAIN & TPI, use
temp files and run at same time – run
time 3 – 4 minutes per job (15 – 20
minute completion time)

! 3 years later – same run time average

Applications - Who needs them? 16

August 2001 COTC - T.RenzSoft 45

Suprtool – other
capabilities
! Unit Price average process:

- 2-million part records
- Written in 4GL and modified to only pull 3 per

part
- 7 – 8 hours weekly to complete
- Modified to use Suprtool totally and average all

records for each part
- Takes 15 minutes to run

August 2001 COTC - T.RenzSoft 46

Suprtool – other
capabilities (continued)
! Check data sets for corresponding

entries
- 4GL process to check that an entry exists in 8
corresponding data sets

- Serially reads main data set – check key in all
others

- 6+ hours to complete
- Modified serial read and checks to use Suprtool

and SuprLink
- Feeds to original 4GL process only those that

are missing in corresponding data sets
- Takes 25 – 30 minutes to complete

August 2001 COTC - T.RenzSoft 47

! sh.hpbin.sys script 0.01
! CI.PUB.SYS commandfile 0.10
! Cognos Powerhouse 1.00
! Perl 1.20
! Basic/V Interpreted 1.64
! Speedware 1.433 to 2.61
! java -classic –nojit 12.00
! java -hotspot –Xint 21.00
! gcc unoptimized 106.00
! Pascal (CM) 119.33
! Pascal (NM, unopt) 130.10
! Pascal (NM, Opt level 1) 155.50
! c89 unoptimized 158.00
! COBOL (NM, unoptimized) 167.00
! COBOL (NM, opt level 1) 182.00
! java -classic -jit 194.00
! SPL (CM) 197.63
! Basic/V Compiled 199.60
! java -hotspot -Xmixed 288.00
! Pascal (NM, Opt level 2) 379.90
! gcc -O3 640.00
! gcc -O3 -funroll-loops 667.00
! c89 optimized 702.00

* Presented at HPWorld-2000 by Mike Yawn, HP – 09/13/2000
* Presentation title “java on mpe/ix: practical applications” (page/slide #6)
* Copied with permission from

“jazz.external.hp.com/src/java/documentation/index.html”
* These numbers are estimates only; code written/contributed by various

authors; not an actual measure of the various languages;
numbers based on executing on a HPe3000 988; used same
basic algorithm for number (SIEVE process); # times through loop
in 10 seconds.

jvm performance

java

Applications - Who needs them? 17

August 2001 COTC - T.RenzSoft 48

Toolbox

August 2001 COTC - T.RenzSoft 49

Performance Tools
! Glance/XL and Scope (old) – HP (OS

performance)
! SOS and Performance Gallery – Lund

Performance Systems (OS performance)

! SPT/XL – HP (view intrinsic calls by a
process and their timings)

! DBGauge – TRenzSoft (application
performance against your TurboIMAGE
database and timings – open that “black
box”)

! Others?

August 2001 COTC - T.RenzSoft 50

Contact info
! Would love to hear, feature and

share your performance findings
and savings

! tom@trenzsoft.com
! www.trenzsoft.com
! 877-TRenzSoft (877-873-6976)

Applications - Who needs them? 18

August 2001 COTC - T.RenzSoft 51

ΘΥ ΕΣ Τ Ι ΟΝΣ

Questions

August 2001 COTC - T.RenzSoft 52

Thank Thank
You!!You!!

Thank you

August 2001 COTC - T.RenzSoft 53

Other suggestions and
recommendations

