
What’s New With 10.X Startup and Configuration
1008 - 1

1008

What’s New With 10.X Startup and Configuration
John Fenwick

Development Engineer
Open Systems Software Division

Hewlett-Packard Company
Cupertino, California, USA

fenwick@cup.hp.com Tel. 011-408-447-4976

1.1 Design Considerations for 10.X Startup and Configuration Models

The 10.X Startup and Configuration models are similar to the designs used by other major
UNIX vendors. Important new features of the design include:

• The model separates the execution scripts from the configuration information required
for execution. System administrators may easily modify the behavior of the star-
tup/shutdown sequence by changing configuration variables.

• As a result of the separation of OS code from user-entered configuration values, the
design solves the problem of correctly updating modified system configuration files.

• Individual subsystems may now be started or stopped on a per-runstate basis. This
enables fine levels of control and subsystem separation.

• All subsystems are now treated uniformly at startup. There are well-defined interfaces
for input parameters and exit values for startup scripts. This makes the design easy to
extend and modify.

1.2 Startup/Shutdown Overview

The old /etc/rc -based startup and configuration design have been replaced in the HP-UX 10.X
release. The new startup/shutdown design consists of three parts:

1. Execution Scripts used to startup and shutdown individual subsystems are contained
in /sbin/init.d .

2. Configuration files for each execution script are contained in /etc/rc.config.d and
reside in a filename that is generally equal to the script for which they configure.

3. Link Files in /sbin/rc*.d control the sequencing order of the execution scripts. The
ordering of these link files should not be modified by the user.

FIGURE 1., “9.X - 10.X RC Configuration Mapping”, shows the relationship of 9.X files to 10.X
files. Prior to 10.X, both script code and configuration information, such as IP addresses and
hostnames, were contained within the files. The new model partitions the configuration data
from the scripts. Administrators use the configuration variables in /etc/rc.config.d to change
the behavior of scripts in /sbin/init.d. Script sequencing is also a new feature for 10.X and is
controlled through link files in /sbin/rc*.d directories.

What’s New With 10.X Startup and Configuration
1008 - 2

FIGURE 1. 9.X - 10.X RC Configuration Mapping

2. Startup and Configuration Models
This section describes the new startup and shutdown model components: execution scripts,
configuration variable scripts and link files.

2.1 Execution Scripts

The /sbin/init.d directory contains all scripts used to startup and shutdown various sub-
systems. No script may invoke any of the other scripts in this directory. Scripts obtain configu-
ration data from variables in /etc/rc.config.d (more on this later), which must be sourced by
the execution script. All files in the /etc/rc.config.d directory may be read by sourcing the sin-
gle file /etc/rc.config .

The startup and shutdown scripts shipped by HP in /sbin/init.d are not to be edited. Any
changes made to these scripts will be overwritten when a new software release is installed.
Modifying the behavior of a subsystem script is accomplished by using configuration variables,
discussed in 2.3.4, “Configuration Files”.

In general, each script under /sbin/init.d should perform both the startup and shutdown func-
tions. In order to control the functionality within the script, each must also support standard
arguments and exit codes. Scripts must be written for the POSIX shell. A template script may
be found in /sbin/init.d/template.

2.1.1 Arguments to scripts

The startup/shutdown scripts must recognize the following four arguments:

• start_msg. The “start_msg” argument is passed to scripts so the script can report
back a short message indicating what the “start” action will do. For instance, when the
lp spooler script is invoked with a “start_msg” argument, it echoes “Starting the LP
subsystem”. This string is used by the startup checklist. Note that when given just the
“start_msg” argument, scripts will only print a message and NOT perform any other
actions.

• start . Upon receiving the “start” argument, the script should start the subsystem. All
output should be echoed to stdout.

• stop_msg . The “stop_msg” argument is passed to scripts so that the script can report
back a short message indicating what the “stop” action will do. For instance, when the
lp spooler script is invoked with a “stop_msg” argument, it echoes “Stopping the LP

9.X Files 10.X Files

/etc/rc*

Script
Code

Variable
Values

/sbin/init.d

/etc/rc.config.d

Scripts

Variables

/sbin/rc*.d

Link Files

What’s New With 10.X Startup and Configuration
1008 - 3

subsystem”. This string is used by the shutdown checklist. Note that when given just
the “stop_msg” argument, scripts will only print a message and NOT perform any
other actions.

• stop . Upon receiving the “stop” argument, the script should shutdown the subsystem.
All output should be echoed to stdout.

When passed the start and stop arguments, an execution script should not echo any mes-
sages indicating the entry or exit from the script. start_msg and stop_msg arguments will be
passed to the execution scripts by /sbin/rc to record these messages both on the console and
in log files, indicating the execution of the script.

2.1.2 Naming Conventions

The startup and shutdown scripts are named after the subsystem they control. For example,
the /sbin/init.d/cron script controls the cron daemon.

2.1.3 Scripts and Console Output

To ensure proper reporting of startup events, startup scripts will be required to comply with a
few guidelines for script output and exit values.

The messages echoed by the execution script when start_msg and stop_msg arguments are
passed should contain a single line message with no more than 30 characters.

Status messages, such as “Starting Subsystem daemon”, must be directed to stdout. All error
messages must be directed to stderr. Both stdout and stderr are redirected to the log file
/etc/rc.log , unless the startup checklist mode is set to the raw mode. In this case, both stdout
and stderr output go to the console.

Startup scripts, and the daemons or binaries they execute, must not send messages directly to
the console during system boot or shutdown. This restriction exists because console output
during the boot or shutdown sequence will overwrite the graphical checklist, leaving the check-
list unreadable. These messages should be directed to stdout or stderr.

2.1.4 Exit values

Exit values for startup scripts are as follows:

0 -- script exited without error. This causes the status “OK” to appear in the checklist.

1 -- script encountered errors. This causes the status “FAIL” to appear in the checklist.

2 -- script was skipped due to overriding control variables from /etc/rc.config.d files or
for other reasons, and did not actually do anything. This causes the status “N/A” to
appear in the checklist.

3 -- script executed normally and requires an immediate system reboot for the
changes to take effect. This is reserved for key system components.

These are the only exit values acceptable. Returning an arbitrary non-zero exit value from a
command to indicate failure may cause the script to appear to have been skipped in the check-
list, or may cause the system to reboot.

2.2 Configuration Variable Scripts

Instead of spreading configuration data throughout the various rc files in the system, configu-
ration data is structured as a directory of files that allows developers to create and manage

What’s New With 10.X Startup and Configuration
1008 - 4

their own configuration files, without the complications of shared file ownership. The directory
that holds the configuration variable scripts is /etc/rc.config.d . The configuration variable
scripts will be sourced by the startup and shutdown execution scripts in /sbin/init.d during
system startup and shutdown. This configuration information is used by the execution scripts
to enable/disable and configure subsystems (such as IP addresses).

Examples of these variables include:

• HOSTNAME: Internet name of your system.

• IP_ADDRESS[0]: Internet address of your system, in dot format.

These configuration variables may be defined as either simple shell variables of type string, or
may be defined as singly-indexed array variables of basetype string. The use of indexed vari-
ables adds a powerful, yet easy to understand and use, capability to the system. Consider a
system that contains two (or more) network interfaces and may serve as a routing agent. The
various network interfaces can be simply defined and manipulated as follows:

INTERFACE_NAME[0]=lan0

IP_ADDRESS[0]=15.13.186.87

SUBNET_MASK[0]=255.255.248.0

LANCONFIG_ARGS[0]=”ether ieee”

INTERFACE_NAME[1]=lan3

IP_ADDRESS[1]=15.27.233.2

SUBNET_MASK[1]=255.255.248.0

LANCONFIG_ARGS[1]=”ether ieee”

Each execution script may reference its variables in one of two ways. If the execution script ref-
erences only the variables delivered with its product or fileset, it may explicitly source the file in
/etc/rc.config.d/<subsystem>. If the script requires variables that are delivered by other
products or filesets, it may just source /etc/rc.config, which is a script that sources all the files
below /etc/rc.config.d . The master configuration file /etc/rc.config skips filenames named
“core” , or containing the characters [.,~#] when it sources the contents of /etc/rc.con-
fig.d/ , to avoid sourcing a binary core dump file or a backup file that may have been left in that
directory by a system administrator.

There must be no requirements on the order of the files sourced. This means configuration
files must not refer to variables defined in other configuration files, since there is no guarantee
that the variable being referenced is currently defined. Also, there is currently no registry of
variable names maintained, so developers should take care to avoid variable namespace colli-
sions.

Configuration variable scripts are written for the POSIX shell (/usr/bin/sh or /sbin/sh), and not
the Bourne sh, ksh, or csh. In some cases, these files must also be read, and possibly modi-
fied by other scripts or the SAM program. For this reason, each variable definition must appear
on a separate line, in the syntax:

variable=value

What’s New With 10.X Startup and Configuration
1008 - 5

No trailing comments may appear on a variable definition line. Comment statements must be
on separate lines, with the “#” comment character in column 1. An example of the required
syntax for configuration files is given below.

Cron configuration. See cron(1m)
#
CRON: Set to 1 to start cron daemon
#
CRON=1

The name of a configuration script in /etc/rc.config.d corresponds to the names of the associ-
ated startup and shutdown scripts found in /sbin/init.d . In many cases the same 10-character
base name may be used for the execution script, the sequencing links, and the configuration
file. Here is an example using the cron subsystem.

/sbin/init.d/cron execution script

/etc/rc.config.d/cron configuration file

/sbin/rc2.d/S730cron start sequence symbolic link

/sbin/rc1.d/K270cron kill sequence symbolic link

/usr/sbin/cron cron daemon (binary file)

The file /etc/TIMEZONE contains the definition of the TZ environment variable. Its location is
defined by standards documents. It is sourced by /etc/rc .config along with the other
/etc/rc.config.d/* files. The file /etc/rc.config.d/LANG contains the National Language Sup-
port language specification.

A more detailed listing of /etc/rc.config.d/ configuration files is given in APPENDIX 2., “Con-
figuration Files HP-UX Release 10.X”.

2.3 Sequencing Scripts with Link Files

The third aspect of the startup/shutdown design is controlling the order of script execution with
link files. An important feature enables developers to control individual subsystems among
run-levels. This is accomplished by providing symbolic link files in run level directories that
point to the scripts in /sbin/init.d .

2.3.1 Run-level Directories: /sbin/rc#.d

The /sbin/rc#.d (where # is a run-level [0..6]) directories are startup and shutdown sequencer
directories. They contain only symbolic links to startup/shutdown scripts in /sbin/init.d that are
executed by /sbin/rc on transition to a specific run level. For example, the /sbin/rc3.d direc-
tory contains symlinks to scripts that are executed when entering run level 3. (There is more
information on /sbin/rc in Section 2.4, “Run Levels and /sbin/rc”).

These directories contain two types of link files: start links and kill links. Start links have names
beginning with the capital letter “S” and are invoked with the “start” argument at system boot
time or on transition to a higher run level. Kill links have names beginning with the capital letter
“K” and are invoked with the “stop” argument at system shutdown time, or when moving to a
lower run level.

What’s New With 10.X Startup and Configuration
1008 - 6

FIGURE 2. Startup/Shutdown Component Relationships.

Further, all link files in a sequencer directory are numbered to ensure a particular execution
sequence. Each script has, as part of its name, a three digit sequence number. This, in combi-
nation with the start and kill notation, provides all the information necessary to properly startup
and shutdown a system.

Figure 2 shows the run-level directories and the relationship of the link files to the scripts.
Because each script in /sbin/init.d performs both the startup and shutdown functions, each
will have two links pointing towards the script from /sbin/rc*.d : one for the start action and one
for the stop action.

2.3.2 Naming Conventions

The naming conventions for the link files are as follows:

The various components have the following meanings:

1. Run Level Number: The sequencer directory is numbered to reflect the run-level for
which its contents will be executed. In this case, Start scripts in this directory will be
executed upon entering run-level 2 from run-level 1, and Kill scripts will be executed
on entering runlevel 2 from runlevel 3.

2. Sequencing Type: The first character of a sequencer link name determines whether
the script is executed as a start script (if the character is “S”), or as a kill script (if the
character is “K”).

3. Sequence Number: A three digit number is used for sequencing scripts within the
sequencer directory. Scripts are executed by type (start or kill) in lexicographical order.

Scripts
/sbin/init.d
sendmail

diagnostic

rbootd

hostname

net

inetd

lp

savecore

syncer

cron

swap_start

nfs.server

/sbin/rc1.d /sbin/rc2.d /sbin/rc3.d/sbin/rc0.d

K480syncer

K900ount

S100localmount
S320hostname
S440savecore
S500swap_start
S520syncer

K780syslogd
K460sendmail
K500inetd
K660net
K270cron
K280lp

S204clean_tmps
S340net
S500inetd
S540sendmail
S670x400
S700acct
S720lp
S730cron

S100nfs.server

Link Files Config Files
/etc/rc.config.d
cron

diagnostic

localmount

hostname

netconf

mailservs

lp

nfsconf

savecore

Note: The sequence numbers above are only for example and may not accurately represent your system.

/sbin/rc2.d/S730cron
1 2 3 4

What’s New With 10.X Startup and Configuration
1008 - 7

4. Script Name: Following the sequence number is the name of the startup script. This
name must be the same name as the script to which this sequencer entry is linked. In
this example, the link points to /sbin/init.d/cron.

Scripts are executed in lexicographical order. The entire file name of the link is used for order-
ing purposes. When adding new sequencer entries, sequencer numbers are chosen to allow
for gaps so that future entries may be inserted without requiring renumbering of existing
entries. (There is more information on sequence numbers in Section 2.5, “Link File Sequence
Number Assignment”).

Subsystems are killed in the opposite order they were started. This implies that kill scripts will
generally not have the same numbers as their start script counterparts. For example, if two
subsystems must be started in a given order due to dependencies (e.g., S111sys1 followed by
S222uses_sys1), the counterparts to these scripts must be numbered so that the subsystems
are stopped in the opposite order in which they were started (e.g., K555uses_sys1 followed
by K777sys1).

Also, kill scripts for start scripts in directory /sbin/rc N.d reside in /sbin/rc (N-1).d. For example
/sbin/rc 3.d/S123system2 and /sbin/rc 2.d/K654system2 might be start/kill counterparts.

Core components of HP-UX will continue to support short filenames (i.e. 14 characters).
Because of the filename place holders for ‘K’, ‘S’ and the 3 digit sequence numbers, sub-
system script names in /etc/init.d should be restricted to 10 characters in length.

2.4 Run Levels and /sbin/rc

In previous HP-UX releases, /etc/rc was run only once. Now /sbin/rc may be invoked several
times during the execution of a system, once on each occasion the init process changes run
levels. /sbin/rc sequences through the execution scripts as it transitions through the run lev-
els. However, only the subsystems configured for execution, through configuration variables in
/etc/rc.config.d , are started or stopped when transitioning the run levels.

Upon transition from a lower to a higher run level, the start scripts for the new run level and all
intermediate levels between the old and new level are executed. Upon transition from a higher
to a lower run level, the kill scripts for the new run level and all intermediate levels between the
old and new level are executed.

When a system is booted to a particular run level, it will execute startup scripts for all run levels
up to and including the specified level (except run level 0). For example, if booting to run level
4, /sbin/rc looks at the old run level (S) and the new run level (4) and executes all start scripts
in states 1, 2, 3, and 4. Each level is sorted and executed separately to ensure that the lower
level subsystems are started before the higher level subsystems.

Consequently, when shutting down a system, the reverse takes place. The kill scripts are exe-
cuted in lexicographical order starting at the highest run level and working down, as to stop the
subsystems in the reverse order they were started. As mentioned earlier, the numbering is
reversed from the startup order.

States 0 and S are special cases. When entering state 0, /sbin/rc will run start scripts in
/sbin/rc0.d . Start scripts in state 0 are quick system administration scripts that prepare the
system for a shutdown. When entering state 0 from a higher run level, the system is halted.
When entering state S on startup, the init process executes entries only of type “sysinit” in
/etc/inittab and does not invoke /sbin/rc . Instead, init execs a shell at the system console and

What’s New With 10.X Startup and Configuration
1008 - 8

the system is in single user state. The following table summarizes the run level definitions.

2.5 Link File Sequence Number Rationale and Assignment

The HP-UX 10.X operating system and its associated products have been structured using a
paradigm that groups various related functions into the same run state. This is accomplished
by reserving blocks of sequence numbers for these functions. The paradigm is described in
the sections below. Some entries provide examples of subsystems that are started at a partic-
ular level. A more detailed listing of sequence numbers may be found in APPENDIX 1.,
“Start/Kill sequence numbers HP-UX 10.X”. Please consult an HP-UX 10.X system for a com-
plete and accurate listing.

2.5.1 Run Level 1 Paradigm

Run level 1 provides core services such as mounting filesystems and configuring key system
parameters.

0XX reserved for temporary links
1XX mount local filesystems
2XX essential process initialization/kill
3XX set essential system parameters (hostname, lan address)
4XX set other system parameters (date, privilege groups)
5XX start essential daemons (swapper and syncer daemons)
6XX-8XX: not currently used
9XX reserved for future expansion

2.5.2 Run Level 2 Paradigm

Run level 2 is the general multi-user run state where most services are started.

0XX reserved for temporary links
1XX software installation/configuration (SD)
2XX essential local daemons and services, started before network startup (clean log/tmp

files, syslogd)
3XX network startup

30X network tracing/logging must be first
31X-33X network link-level services (FDDI,ATM,Fiber,token ring)
34X traditional TCP/IP initialization (ifconfig,route,gateway,net-

Table 1: Run Level Definitions

Run level State Sequencer Dir /sbin/rc interaction

0 Halted /sbin/rc0.d All start and kill scripts executed

S Single User

1 Minimal System Configuration /sbin/rc1.d

When entering from lower state, all
start scripts are executed.

When entering from higher state, all
kill scripts are executed

2 Multi-User /sbin/rc2.d

3 Exported File Systems /sbin/rc3.d

4 HP-VUE or CDE /sbin/rc4.d

5,6 Not currently used. /sbin/rc5.d
/sbin/rc6.d

What’s New With 10.X Startup and Configuration
1008 - 9

mask,etc.)
35X-39X other network startup (x25, loopback daemon, naming daemon)

4XX NFS/NIS initialization
5XX-6XX services built on top of network services (DCE,DFS,NCS, rbootd, NetLS, mail)

(Also client/server services: X font server, Kanji server)
500 inetd super-server

7XX-8XX other local daemons/services (lp, cron, diagnostics, auditing, accounting, etc.)
9XX reserved for future expansion

900 “Generic” number for run state 2

2.5.3 Run Level 3 Paradigm

Run level 3 is the networked multi-user state. This run level is used to export file systems. Cur-
rently HP only supports NFS exports. Other vendors (Solaris) also do RFA exports here.

0XX reserved for temporary links
1XX NFS exports (NFS server)
2XX-8XX not currently used
9XX reserved for future expansion

2.5.4 Run Level 4 Paradigm

Run level 4 is reserved for graphical interface managers. Currently, HP-VUE or CDE is started
in this run level, but is invoked as an entry in /etc/inittab . No start/kill links are currently
shipped in run level 4.

3. Startup Displays and Logging

3.1 Startup Display on System Console

The 10.X startup display has adopted the screen-oriented interface used in the HP-UX 9.0
Instant Ignition product. As individual subsystems are started a status line is written to the sys-
tem console; this is the string returned when the execution script is invoked with start_msg or
stop_msg . The execution script returns a value of 0, 1, or 2 (or 3 for the special case of
Reboot) which is displayed as OK, FAIL , or N/A. For terminals supporting HP terminal escape
sequences, the table is displayed in screen-addressing mode; for other terminals the display is
written in line (scroll) mode. A busy /wait status is flashed if a subsystem takes longer than 5
seconds to start up. An example of a startup display is as follows:

HP-UX Start-up in progress Status
-------------------------- ------

Mount file systems [OK]
Setting hostname ... [OK]
Set privilege group [OK]
Display date ... [OK]
Save system core image if needed [N/A]
Enable auxiliary swap space [FAIL] *
Start syncer daemon [OK]

* - An error has occurred !
* - Refer to the file /etc/rc.log for more information.

What’s New With 10.X Startup and Configuration
1008 - 10

3.2 Startup Logging

All startup messages are logged to the file /etc/rc.log . All execution script output should be
directed to stdout or stderr, and not to /dev/console. The log file /etc/rc.log is re-written on
every system boot, so that it contains the history of all runstate transitions for the current
bootup. The immediately previous log is preserved in the file /etc/rc.log.old.

4. Extending the Startup Model

4.1 Adding Subsystems

System administrators and software product developers may have a need to add their sub-
system(s) to this model. This may be easily accomplished by following a few steps.

A good place to start is with the execution script. This may be derived from any of the system
execution scripts found in /sbin/init.d. There is also a blank template in /sbin/init.d/template .
The guidelines for execution scripts must be strictly followed such that the interface with
/sbin/rc is correctly maintained. Any failure to do so will likely cause the execution script to fail.

A configuration file may also need to be added to /etc/rc.config.d . This file should contain a
variable assignment that enables the user or system administrator to enable or disable the
particular subsystem. The file should also contain any other variable assignments required by
the subsystem during startup. The configuration file should not contain any executable script
code other than variable assignments.

Selecting a run state and a sequence number should probably be done last. Many times it is
difficult to determine exactly where the subsystem should fit until it has been coded and
tested.

4.1.1 Selecting Sequence Numbers

All of the sequence numbers for HP products have been carefully assigned to ensure correct
ordering, eliminate overlap and allow room for growth. Each of these products has registered
with a central organization and has been given specific sequence numbers based on a num-
ber of factors about the product. When choosing sequence numbers for products or applica-
tions, system administrators and software product developers should adhere to the guidelines
below.

Commercially available products may require specific sequence number ordering. Software
developers should not arbitrarily choose an unused/unassigned number that happens to be
absent from the system or table they are reviewing. Absent numbers that appear unused may
have already been assigned by Hewlett-Packard to a product not yet released, or is not
installed on a particular system. Developers are encouraged to contact HP during their devel-
opment cycle to determine correct assignments.

If specific ordering is not a concern and the subsystem may be started at any point after sys-
tem boot and initialization, run level 2, number 900 should be used for the start link and run
level 1, number 100 for the kill link. These “Generic” numbers may be used by any product or
application without registering with Hewlett-Packard. Even if there are multiple entries of this
type, the links are still unique because the entire filename is significant in ordering the scripts.

4.2 Guidelines for Startup/Shutdown Scripts

Startup execution scripts are installed in the /sbin/init.d directory and sequencer links are
installed directly into the /sbin/rcN.d/ directories directly from the install media. The startup

What’s New With 10.X Startup and Configuration
1008 - 11

execution scripts and the sequencing links are not customer editable. No provisions are made
to keep newconfig versions of the scripts; any changes made by a customer to a system exe-
cution script are overwritten and lost when an update occurs.

Administrators and users should remain aware of the following:

• Execution scripts must not be modified. If a script in /sbin/init.d is modified, the modi-
fication will be lost at the next update, when the script is overwritten with a new ver-
sion.

• It is not necessary to remove scripts from the sequencer. If a script is removed from
the sequencer, it will be replaced at the next update. Control variables in files within
/etc/rc.config.d should be used to control whether a startup script is executed.

• Sequencer links must not be renamed. If a symbolic link in the sequencer directory is
renamed (or renumbered), at the next update, a symbolic link with the original name
will be installed. This will result in two copies of the same startup script appearing in
the sequencer.

All HP-supplied startup scripts are meant to be present in sequencer directories as installed.
They should not be removed or renamed (to change the relative sequencing).

4.3 Developing Startup/Shutdown Scripts

Developers should take care to carefully design and test the start and kill scripts for their prod-
ucts. A startup script that may work on one individual test system may cause intermittent or
misleading failures on other systems that are configured differently unless the script has been
robustly developed and tested. Here are several considerations a startup script developer
should review when designing a script.

1. The script should be written for the POSIX shell (/sbin/sh), and not the Bourne shell,
K-shell, or C-shell. The POSIX shell is the only shell that is guaranteed to be present
on the root filesystem at system bootup.

2. Scripts should be carefully tested by the developer before they are installed on a sys-
tem. Scripts may be tested by executing the script and explicitly reviewing the script
input parameters and exit values. This may be easily done by executing the command:

% /sbin/sh -xv <your_startup_script> <input_parameters>

where <your_startup_script> is the name of your script and <input_parameters>
may have the possible values: (start_msg, start, stop_msg, stop) . For each of these
invocations of the startup script under test, the script exit values should be verified to
be one of the allowed exit values: (0,1,2,3). Please refer to earlier sections of this
paper for definitions of these input parameters and exit values.

3. Sequence numbers should be chosen carefully to not conflict with sequence numbers
that may already be assigned. Even if a sequence number is not installed on your sys-
tem in the directory /sbin/rc[0-4].d/ , it may still be assigned to another product.
Please refer to documentation in the directory /usr/share/doc for more complete list-
ings of assigned startup sequence numbers.

What’s New With 10.X Startup and Configuration
1008 - 12

4. Startup scripts must be written to use commands and libraries that are guaranteed to
be present on the root filesystem of the system at bootup time. Startup scripts must
not invoke any commands or libraries that are located under the /usr , /opt , or /var
directories. In a multiple disk configuration, these directories are often located under
filesystem mount points that are not available until late in the bootup cycle.

5. Startup scripts should be written to be portable across multiple product lines (S700
and S800), and as independent as possible of system configuration. A developer
should test each startup script across a broad variety of systems and configurations.

6. Startup scripts should be written to work correctly when HP-UX is booted into any of
the possible runlevels: (S,1,2,3,4). A developer should test that each script continues
to work correctly when HP-UX is brought up in each of these runlevels, and is transi-
tioned between various combinations of these runlevels.

4.4 Developer Assistance

All of the sequence numbers for HP products have been carefully assigned to ensure correct
ordering, eliminate overlap and allow room for growth. Each of these products has registered
with a central organization and has been given specific sequence numbers based on a num-
ber of factors about the product. When choosing sequence numbers for products or applica-
tions, system administrators and software product developers should adhere to these
guidelines.

Commercially available products may require specific sequence number ordering. Software
developers should not arbitrarily choose an unused/unassigned number that happens to be
absent from the system or table they are reviewing. Absent numbers that appear unused may
have already been assigned by Hewlett-Packard to a product that has not yet been released,
or is not installed on the system. Instead, developers should contact HP through:

HP-UX Coexistence Program
Email: coexist@cup.hp.com
Specify Subject Line: ”SEQUENCE REQUEST”

Developers will be asked to complete a checklist about their product and assigned a set of
numbers (start and kill). The product will then be registered with Hewlett-Packard and be
ensured that no other registered products will have duplicate numbers that may corrupt an
end-user’s system. However, duplicate numbers may be assigned for applications that do not
conflict. Developers are encouraged to contact HP late in their development cycle, as close to
application release as possible.

4.5 An Illustrative Example

Figure 3 below depicts a simple example for the startup of cron. The relationships of the files
between the static and dynamic file systems is also shown.When entering run state 2 from a
lower level, the ‘S’ scripts are executed. In the example, S730cron is a link to the cron script
under /sbin/init.d. Cron will start because the configuration variable in /etc/rc.config.d/cron is
set to 1. A value of 0 would not start cron.

What’s New With 10.X Startup and Configuration
1008 - 13

FIGURE 3. Implementing cron in the New Model

4.6 File Name Conventions, Permissions, and Fileset Packaging

File name conventions have been presented in previous sections. Often, a developer may use
the same 10-character file basename for the various startup file names and for associated
daemons. Execution scripts are typically delivered (owner, group, permissions) = (bin, bin,
0555 read/execute), configuration files with permissions = 0444 read. All startup and configu-
ration files should be delivered in the same fileset as the rest of the product, so that startup
files may be installed and de-installed at the same time as the product is installed. This
approach helps prevent invalid and potentially incorrect startup files from remaining on the
system after a product is removed or updated. An example of file naming and fileset packaging
is as follows.

Table 2: Startup File Naming and Packaging

Filename Purpose Product Fileset

/sbin/init.d/lp Execution script PrinterMgmt LP-SPOOL

/sbin/rc1.d/K280lp -> /sbin/init.d/lp Start sequence link PrinterMgmt LP-SPOOL

/sbin/rc2.d/S720lp -> /sbin/init.d/lp Kill sequence link PrinterMgmt LP-SPOOL

/etc/rc.config.d/lp Configuration file PrinterMgmt LP-SPOOL

/usr/sbin/lpsched Daemon (binary) PrinterMgmt LP-SPOOL

/usr/bin/lp Command (binary) PrinterMgmt LP-SPOOL

/ (root)

/etc/sbin

* minimum commands
 to boot and mount
 other filesystems

system config

STATIC FILES DYNAMIC FILES
(Private)(Shared)

init.d rc.config.d

cron cron

rc2.d

S730cron

rc.config

cron startup
#
. /etc/rc.config

if [$CRON = 1]
then /usr/sbin/cron
fi

cron config
#
CRON=1 to start
#
CRON=1

symbolic link

What’s New With 10.X Startup and Configuration
1008 - 14

5. Summary
This paper has reviewed the changes to the HP-UX startup and configuration models. Users
are encouraged to review the documentation delivered with the HP-UX 10.X releases under
the directory /usr/share/doc for the most recent changes and assignments to this system. For
developers seeking additional assistance, a Hewlett-Packard contact has been established.

