
Caching Disk Subsystems: Bridging the Gap Between High Performance and High Availability
1014-1

Paper #1014

Caching Disk Subsystems:
Bridging the Gap Between High Performance and

High Availability

Presented by

Brett Kelleran
SEEK Systems

11014 120th Ave NE
Kirkland, WA 98033

(206) 822-7400
brettk@seek.com

Caching Disk Subsystems: Bridging the Gap Between High Performance and High Availability
1014-2

Introduction

The requirements placed on I/O subsystems have grown at a staggering pace over the
last several years. Factors in this growth include: an exponential increase in CPU
power; a boom in network bandwidth and activity, including internet and intranet
applications; and new methods for managing and analyzing data, with techniques such
as data warehousing and data mining. Unfortunately, magnetic disk drive
technologies, while showing dramatic improvements, have failed to keep pace with the
rest of the computer industry.

Several methods have been used to address the limitations of magnetic disk drives.
Roughly speaking, these techniques may be broken down into two areas: methods to
improve availability, and methods to improve performance. Availability techniques
have often centered around RAID (Redundant Arrays of Independent Drives)
technology. This includes mirroring (RAID level 1), as well as higher levels of RAID
which offer more economical use of disk space. Performance techniques have
centered on balancing the load across multiple disk drives, along with implementing
disk caching at the host level.

Unfortunately, many of these performance and availability techniques were seen as
being mutually exclusive. Early implementations of RAID did not meet performance
expectations, with the RAID 5 write penalty becoming particularly infamous.
Conversely, spreading data across multiple drives makes this data much more
vulnerable to disk drive failures.

Over the past few years several methods have surfaced to try to provide both
performance and availability. RAID 0+1 (mirrored stripe sets) offers reasonable
performance and high availability, but requires twice as much disk space. Solid State
Disk has provided a high performance and availability alternative, but at a cost that is
prohibitive to most applications. And most RAID controllers have implemented buffer
caches that help improve performance, including write-back cache which can be used
to essentially negate the RAID 5 write penalty.

Recently, a new hybrid of Caching Disk Subsystems has surfaced which utilize
advanced caching algorithms and large amounts of memory to provide the most
effective coupling to date of high availability and high performance. By using these
algorithms to store active data in memory while flushing inactive data to disk, the
Caching Disk Subsystem can provide performance that nears Solid State Disk, at a
fraction of the cost. And by coupling the caching with a RAID (or hybrid RAID) back
end, the Caching Disk Subsystem offers high availability as well.

Caching Disk Subsystems: Bridging the Gap Between High Performance and High Availability
1014-3

Cache Utilization

In the past few years the speed at which a CPU can load and store data has greatly
outpaced the ability of magnetic storage devices to supply this data. In an attempt to
lessen the impact of this performance mismatch, most systems now include various
caches. A cache is a relatively small amount of very fast solid state memory which sits
between the CPU and the data storage subsystem. In cache memory is a duplicate of
some of the information which exists in magnetic memory. Since the time required to
access the information in the cache is much shorter than the time needed to access
information residing on magnetic media, system performance can be greatly improved
by maximizing the use of the cache contents, thereby achieving high cache utilization
and lower disk activity.

Buffer Cache

Traditionally, most disk cache has been an I/O buffering tool using a Least Recently
Used (LRU) algorithm. The result is similar to a stack of cafeteria trays, in which
trays are added to the top, and removed from the bottom. This is the most common
type of caching algorithm, and as the most recently requested data is read into cache, it
pushes out the "oldest" data. Buffer cache is only meant to hold data on its way to or
from a disk, so is usually fairly small (8Mb - 64Mb).

Buffer cache may be configured as Write-Through or Write-Back. Write-Through
cache passes all writes directly on to disk, so that the data in cache always matches
what is on disk. Performance improvements with Write-Through cache are limited to
improving read performance through read cache hits. Write-Back cache stores writes
in cache, waiting for an optimum time to write the information to disk. Write-Back
cache offers the best performance improvements, but requires a non-volatile cache
environment as data can be held in cache for an extended period of time before writing
it to disk.

For additional performance gains, buffer cache algorithms can be combined with
prefetch of reads and concatenation of writes to further optimize performance when a
read or write to disk is required. Utilizing prefetch, when the host requests data not in
cache, the requested data and data immediately after this data is read into cache.
There is a high likelihood that data near requested data will be requested next, and one
large operation to disk is much more efficient than two smaller ones. For writes to
disk, concatenation of writes increases performance in much the same way that
prefetch improves read performance. When writeback to disk is required, the
controller organizes data according to where the data resides on the physical disk, and
writes it accordingly. The result is fewer, larger, more efficient writes to disk.

Caching Disk Subsystems: Bridging the Gap Between High Performance and High Availability
1014-4

Significant performance improvements can be seen with buffer cache, especially with
Write-Back cache. This is particularly true in a RAID 5 environment, where Write-
Back cache can effectively negate the write penalty. However, there are limitations
associated with the fact that it is essentially a buffering tool. As such it handles bursts
of activity, but does not perform as well in a sustained high activity environment.

Adaptive Cache

Adaptive cache, in contrast to buffer cache, looks to store data semi-permanently in
memory. By keeping active data in cache and migrating inactive data to disk, an
adaptive cache can drastically improve the overall performance of an I/O subsystem.
In general, adaptive caches are much larger than buffer caches, typically ranging in size
from 64 MB up to 1 GB and beyond.

The prime measure of effectiveness of any cache system is the cache hit rate. Any
Caching Disk Subsystem is therefore dependent on its caching algorithms. Because
memory is so much more expensive than magnetic disk, it is imperative that active data
remain in cache, while inactive data, and only inactive data, be moved to disk. When
inactive data pushes active data out of cache, the Caching Disk Subsystem suffers
from a condition called cache pollution, a condition that is extremely detrimental to
performance.

There are a number of algorithms that may be employed in an adaptive cache to limit
cache pollution. The goal of all these algorithms is the same: to identify hot data and
keep this data in cache. In general, these algorithms analyze data patterns as they are
received from the host in an effort to anticipate what will be accessed in the future.
One method implemented by advanced Caching Disk Subsystems is to use a Least
Frequently Used (LFU) algorithm along with the Least Recently Used (LRU) method
found in most buffering caches.

To see how this might work, consider a Caching Disk Subsystem that actually
segments the cache into two parts, a buffered cache and a protected cache. The
buffered cache uses an LRU algorithm as previously described. However, the Caching
Disk Subsystem also monitors how often each block of data is accessed. Blocks which
exceed a certain threshold are declared "hot", and moved to protected cache. Here the
active data remains in cache until the data access patterns of the host change, and they
are replaced with data that has become more active. Such an approach combines two
performance improvements. It buffers all data with an effective LRU algorithm, and it
continually monitors, updates, and retains active data in protected cache with a Least
Frequently Used (LFU) algorithm. This ensures that the most heavily used data is
kept in protected cache, available at solid state speed and safe from other data moving
through the buffer cache.

Caching Disk Subsystems: Bridging the Gap Between High Performance and High Availability
1014-5

How Does It Work?

To understand how an adaptive cache minimizes cache pollution and optimizes
performance, we must define clean, updated and protected data. Clean data is data in
cache that exactly matches the same information stored on magnetic disk. Updated
data is data in cache that does not match the corresponding data on disk because it has
been updated in cache and not yet written to disk. Protected data is data that has been
flagged to remain in protected space and may be either clean or updated.

Consider the case of a read. On a read, the controller first looks to see if the data is in
cache. If it is, the read can proceed without disk I/O. If the requested data is not in
cache, the data plus the extra data in the prefetch, is read from disk to cache and the
requested data sent directly to the host. The least recently used data is cleared to
make room for the new data (Figure 1).

FIGURE 1

READ
plus PREFETCH

CLEAN UPDATED
CLEAN
CLEAN
CLEAN

CLEAN

PROTECTED

CLEAN

CLEAN
UPDATED

On a write, the controller first checks to see if the information is in cache. If it is in
cache, the appropriate data is updated and flagged as such and the host immediately
released. If it is not in cache, the least recently used clean line is cleared and the new
data is written to cache, flagged as updated and the host released (Figure 2).

PROTECTED

WRITE
UPDATED

UPDATED

CLEAN
CLEAN
CLEAN
CLEAN
CLEAN

CLEAN

CLEAN
UPDATED

FIGURE 2

When any data in cache is accessed (read or write) more than a set number of times, it
is flagged as protected (Figure 3). Once data is protected, the only way it may be
cleared from protected space is to be pushed out by more frequently accessed
protected data. What this application of the LFU algorithm does is ensure that the
hottest data is always in cache and available at solid state speed.

Caching Disk Subsystems: Bridging the Gap Between High Performance and High Availability
1014-6

READ

CLEAN
CLEAN
CLEAN
CLEAN
CLEAN

UPDATED

PROTECTED

CLEAN

CLEAN
UPDATEDUPDATED

CLEAN

FIGURE 3

Eventually, and periodically, data must be written to disk. Typically three events can
initiate a write to disk: the updated stack gets too large; the clean stack gets too
small; the controller senses inactivity from the host. When any of these occur the
updated data is sent to the write-back queue where they are sorted for the most
efficient writes. Once updated data is written to disk it is flagged as clean and placed
on the clean stack.

Bottom Line Performance Gains

The following chart (chart 1) underscores the importance of the caching algorithms
just discussed. As the data clearly demonstrates, it is the cache hit rate that determines
the I/O performance of the Caching Disk Subsystem.

Database I/O Performance
(4 KB blocks; 8 msec avg access time for disk drive)

0

200

400

600

800

1000

1200

1400

1600

Disk 50 60 70 80 90 100

Cache Hit Ratio

IO
's

/s
ec

Chart 1

Caching Disk Subsystems: Bridging the Gap Between High Performance and High Availability
1014-7

A Caching Disk Subsystem offers the user a chance to choose the performance
required for an application. By adjusting the cache to disk ratio of the subsystem, the
cache hit ratio can be increased or decreased. This also allows scalability as
applications and the data they require grow.

Many variables go into sizing Caching Disk Subsystems. I/O access patterns, size of
data storage, and the requirements of the endusers are all important variables that must
be taken into consideration. Most vendors will provide a consultation service to help
customers size a system properly. When evaluating the performance of a system, it is
always important to have a good metric by which to judge success or failure. This is
especially true with Caching Disk Subsystems. Whether this metric is an important
batch job, screen refresh time, or the percentage of time the CPU spends waiting on
I/O, it is essential to have something definite and repeatable on which to perform
benchmarks.

Availability

While the caching algorithms of the Caching Disk Subsystem provide the performance,
there are many factors which provide availability. These implementations will vary
significantly between systems, but in general one should expect to see availability
addressed at three levels: the system level, the controller level, and the drive level.

SYSTEM AVAILABILITY:
System availability includes power, cooling, maintenance, and monitoring capabilities.
Power is often handled by redundant power supplies, and should be backed up with
some type of UPS when Write-Back cache is implemented. Cooling will often use
redundant fans as well as some type of temperature monitor inside the cabinet or
Caching Disk Controller. Maintenance may be designed to be handled by either
technical or non-technical personnel, but in either case most work should be able to be
done on line (e.g., via hot-swappable components). Monitoring tools vary greatly
from device to device, so it is important to choose a system that meets one’s particular
requirements. Many Caching Disk Subsystems may be monitored remotely through a
dial-up or network connection.

CONTROLLER AVAILABILITY:
The controller of the Caching Disk Subsystem is a solid state device and is therefore
the most reliable piece of the system. However, in truly high availability applications a
dual controller may be used. In an active-passive configuration one controller waits
idly, ready to take over should the other controller fail. In an active-active
configuration both controllers are functional, and each can assume the function of the
other should it fail. When Write-Back cache is implemented, any dual controller
configuration requires mirrored caches to ensure data integrity.

Caching Disk Subsystems: Bridging the Gap Between High Performance and High Availability
1014-8

DRIVE AVAILABILITY:
Magnetic disk drives, with all of their moving parts, are the most common point of
failure in a Caching Disk Subsystem. As a result, most implementations will build in
some redundancy at the drive level. Typically this will be a mirroring (RAID 1)
configuration for smaller systems, and higher RAID levels for larger systems.

RAID Levels and Caching Disk Subsystems

In the past, choosing a RAID level has typically meant choosing between RAID levels
3 and 5. In a single-user, sequential environment, RAID 3 was selected, while in a
multi-user, semi-random environment (such as database applications), RAID 5 was
chosen. However, two factors have recently begun to change this. The first is the fact
that in a Caching Disk Subsystem, the controller manages all I/O between the disks
and the host, thereby changing the I/O patterns seen by the disks. The second is the
progress that has been made with hybrid RAID levels.

A Caching Disk Controller, when it needs to go to disk, will try to group data in an
organized, efficient manner. As part of this process most controllers will try to
maximize I/O transaction size, which requires less overhead and increases data rates.
This means that in a Caching Disk Subsystem that is operating effectively, a multi-user
semi-random environment (such as database applications) can look much more
sequential to the disks. In some cases that may appear to be RAID level 5
environments, it may be more effective to run at RAID level 3.

There has also been a surge recently in hybrid RAID levels. Some of these combine
existing RAID levels to harness the positive attributes of each, while using cache to
effectively mask deficiencies. Others use an adaptive RAID level which will actually
adjust RAID levels (usually 1, 3, and 5) on the fly, depending on the access patterns.
While all of these implementations offer protection against disk failures, the
performance of these new RAID levels is directly tied in to the caching and disk access
algorithms of the controller.

Application

A Caching Disk Subsystem is effective in any environment that demands high
performance and high availability. System bottlenecks will generally occur in four
areas: network, CPU, memory, or I/O. Areas suffering from I/O bottlenecks will see

Caching Disk Subsystems: Bridging the Gap Between High Performance and High Availability
1014-9

the greatest performance gains with Caching Disk Subsystems. Many system analysis
tools exist to pinpoint bottlenecks, both at an application level and at an operating
system level. On UNIX systems SAR and IOSTAT are two utilities that can provide
valuable insight. Some vendors also offer an initial performance consultation free of
charge.

Relational Database Applications

Relational database applications in particular put extreme pressure on I/O response,
while at the same time demanding high availability. They are thus strong candidates
for Caching Disk Subsystems. Files that drive the highest I/O include temporary
tablespace (or workspace), transaction log files (also referred to as before image files),
and heavily used indexes. Temporary tablespaces are where all intermediary
processing is carried out. For complex queries, such as those found in data
warehousing applications, the activity to these tempspaces is particularly write
intensive, as data is written and updated repeatedly. Table sorts, updates, joins and
similar commands make intensive use of tempspace. Transaction log files are used to
keep track of database updates, and are also very write intensive.

Conclusion

Cached Disk Subsystems are playing an increasingly important role in providing the
high I/O bandwidth required by today's CPUs and transaction intensive database
applications. When coupled with availability techniques such as RAID, these
subsystems can be an effective component of the most critical production systems.

