
Tuning Your I/O Performance on MPE/iX Systems
1028-1

Tuning Your I/O Performance
On MPE/iX Systems !

Paper number: 1028
Paul Wang

SolutionSoft Systems, Inc.
2350 Mission College Blvd. Suite 715

Santa Clara, CA 95054
paulwang@netcom.com

408.988.7378

Abstract

System performance tuning maximizes the return on your hardware and software investments.
A key component of that tuning is I/O optimization. Many low throughput and long response time
problems are due to I/O bottlenecks.

The CPU speed doubles roughly every 18 months. On the other hand, disk speed only improves by 30
percent or so in the same time frame due to its mechanical nature. As the gap widens between CPU
and disk speed, I/O tuning becomes increasingly more important. While the same is true for low and
middle level systems, the problem is particularly daunting for high-end systems where multiple CPUs
are furiously pumping data at the potential I/O bottlenecks.

This paper gives an overview on disk I/O and MPE/iX I/O subsystem. It also provides tips and
guidelines on do's and don'ts of preventing I/O bottlenecks and maximizing I/O throughputs.

MPE/iX I/O Subsystem Overview
To better understand how to tune your I/O performance on MPE/iX systems, it is very helpful to first
understand the I/O subsystem. There are three levels of the I/O subsystem: the physical hardware
level, the I/O disk manager level, and the file system level. Let’s examine them one by one.

Physical Hardware Level
To perform an I/O to a disk, the total time it takes is the sum of seek time, rotation delay time, and
data transfer time. Seek time is for the disk read/write head to move the target track. Once the head
is on the right track, it then must wait until the target sectors spinning underneath the head, which is
the rotation delay time. Finally data are transferred to or from the disk, which is the data transfer
time.

Seek time is the most time consuming operation. However, if the head is already on the target track,
then no seek is necessary and the seek time will be zero. This is key for disk I/O performance. Please
note that the impact of seek distance is negligible on modern disks. They have a very small disk
surface to begin with (3.5 and 5.25 inches) and they are getting smaller every day. Furthermore, the
seek time is dominated by the head to "ramp up" and "ramp down" (command processing,
acceleration and deceleration, settling time and servo reacquisition), the actual traveling time for the

Tuning Your I/O Performance on MPE/iX Systems
1028-2

head is negligible. Putting critical data in the middle of the disks are once popular techniques in the
70's. However, this particular tuning technique is out-of-dated and has no effects on system
performance.

The faster the disk spins, the smaller the rotation delay time is. The average rotation delay time after
a seek is half of the disk rotation time. Another key for disk I/O performance is to eliminate rotation
delay. Since there are gaps between sectors and disk can prepare next I/O while it is processing the
current I/O, issuing ‘sequential’ I/Os on contiguous sectors (on the same track) requires no rotation
delays.

I/O Subsystem Level
The basic I/O unit is a page, or 4 Kbytes, or 16 sectors. The size of any I/O must be in a multiple of
pages. Currently an I/O is between one to sixteen pages. In addition, multiple I/Os can be linked
together so that there is only one interrupt to the OS when all the linked I/Os are completed.

MPE/iX I/O subsystem is priority based. Each disk is associated with its own disk manager, which
handle all I/Os against that disk. Each disk manager has 32 queues. Depending on the priority of the
I/O request, it is queued to the corresponding queue. Requests within the same queue are serviced
first-in-first-out (FIFO). The disk manager always services the first request on the first non-empty
queue. Finally, disk managers are independent of each other. Concurrent I/Os can be in-progress on
multiple disks the same time.

In this way, urgent I/Os are serviced immediately. On a heavily loaded system, I/Os from more
important processes take precedent of lesser ones. The down side is possible starvation for lowest
priority I/Os. To this end, the disk manager will boost an I/O request priority (by moving it to a
higher queue) if the blocked issuing process’s priority is boosted.

File System Level
File system has very sophisticated algorithms to issue I/Os. Let’s examine how read, write, and
checkpoint I/Os are handled.

For a random read (such as FREADDIR), file system issues an I/O that covers the record of interest,
which is most likely a one page I/O. For a sequential read (such as FREAD), file system prefetches
data ahead and recycles data behind. By bringing in “new” data ahead of time, chances are they will
be available (already in memory) once it is needed. By making “old” data overlay candidates for the
memory manager, more memory will be available for other processes. The file system prefetches
eight pages ahead initially. If it detects the process is consuming faster than it prefetches, then file
system increases the prefetch amount by one page, up to the maximum of sixteen pages. On the other
hand, if it detects the prefetched pages disappear (by memory pressure) before it is used, file system
decreases the prefetch amount by one page, down to the minimum of one page. Finally, if a process is
using random intrinsic (such as FREADDIR) access data sequentially, file system will detect that
after 4 tries and switch to sequential mode. Once the sequential access pattern is violated, file system
immediately switch back to random mode.

For a write, file system encourages concurrent I/Os by “post ranges”. It first divides the write into
ranges (up to 32 ranges), where a range is a virtual address range that covers a single disk. It then
issues I/Os concurrently on all the ranges. The number of I/Os it issues for each range depends on the
number of outstanding I/Os against that disk at the time to prevent flooding. Those I/Os are linked
and when they are completed, file system will then issue the next bunch. If there are more than 32
ranges, file system will pickup the rest of the ranges when the current 32 ranges are all done.

Tuning Your I/O Performance on MPE/iX Systems
1028-3

At checkpoint time, all updated Transaction Manager (XM) data, such as IMAGE/SQL, KSAM, User
Logging files, associated with the log are posted to disks. This is done periodically so that XM can
safely reuse the log. Checkpoint is a massive I/O bound operation. It is done 4 files at the time until
all dirty XM files are posted to disks.

As far as I/O priority is concerned, it usually inherits the process priority. An exception is when
closing a file, which produces the lowest priority. Finally the checkpoint I/O priority is at CQ base.
As a result, it should have unnoticeable I/O bandwidth impact for system processes (AQ and BQ) and
interactive users (CQ). Batch processes (DQ and EQ) which are I/O bound might see slower response
time during checkpoint time.

Tips on MPE/iX I/O Tuning
The CPU speed doubles roughly every 18 months. On the other hand, disk speed only improves by 30
percent or so in the same time-frame due to its mechanical nature. As the gap widens between CPU
and disk speed, I/O tuning becomes increasingly more important. While the same is true for low and
middle level systems, the problem is particularly daunting for high-end systems where multiple CPUs
are furiously pumping data at the potential I/O bottlenecks.

To access same amount of data and faster, we can either reducing the number of I/Os (i.e. increase the
size of average I/O) and/or balancing concurrent I/Os across multiple disks. The placement and size
of file extents are the most dominant factors for I/O performance tuning. The following are some tips
to increase I/O performance.

Combine Extents for Files
Generally speaking, a large extent is better than many small extents with the same accumulated size.
One large extent uses fewer system resources. The system also performs better with a large extent
during virtual address-to-disk address translation (for example, servicing a page fault), since fewer
extents need to be searched. This is noticeable when servicing a page fault causes still more page
faults on the corresponding system translating structures. Furthermore, one large extent discourages
disk fragmentation at extent deallocation time.

Most importantly, a large extent increases I/O effectiveness by encouraging bigger and fewer I/Os.
For example, considering the cases of reading from a 64 Kbytes file with either one 64 Kbytes extent
or sixteen 4 Kbytes extents. The former would take 16 I/Os and the latter just 1! Although the
amount of data transferred is the same (64 Kbytes), the one extent case is 16 times faster! The reason
is due to disk seek time and rotation delay time for each I/O, which are the major components of disk
I/O time. Of course, in addition to the response time savings, don’t forget about CPU time savings!
It takes an order of magnitude of the number of CPU instructions to generate sixteen I/Os vs. one I/O.

All small files, which are less than 512 Kbytes, should be combined. All physically contiguous files
(extents are contiguous on disk) should also be combined. This happens a lot due to extent faults and
extent placement always going for the same, most empty disk. All program files as well as data files
with dominant sequential access patterns are also excellent candidates to be combined. In general, a
combined file is better as long as I/Os against the file would not cause a bottleneck. Please note that
in the sequential access case, the file system performs automatic "prefetch ahead" and "post behind"
for users so I/O is not a problem.

Tuning Your I/O Performance on MPE/iX Systems
1028-4

Spread Extents for Files
On the other hand, a very large extent (tens of megabytes) with an intensive multi-user random access
pattern can be a performance problem. Page faults or prefetches against the same extent are all
targeted for a single disk. An I/O cannot be serviced until all higher priority I/Os and previous same-
priority I/Os are completed. The problem is worse when a checkpoint (posting all dirty data) is in
progress. Hundreds of checkpoint I/Os are generated continuously and they may also be competing
for the same disk.

In this case, it is more advantageous to spread the space evenly across multiple disks. Since multiple
I/Os can be serviced by multiple disks concurrently, the throughput and response time are greatly
improved. For example, the spreading of extents for the Debit/Credit benchmark's "Account" dataset
across seven disks (except the master volume) on a HP 3000 Series 960 with 128 megabytes of
memory boosted the throughput by 50 percent compared to the non-spreading case. In fact, the
response time criterion (90 percent of transactions are completed within two seconds) cannot be met
without spreading the extents!

Please note that in the previous example, avoiding the master volume allows us to separate the
transaction manager's log I/Os from the database I/Os. This is especially important for ldev 1, since
I/Os against system libraries and data structures also consume I/O bandwidth. In general, if the
number of volumes within a volume set is greater than five, it is best to spread across all member
volumes without the master volume; otherwise, do spread across all volumes.

When spreading a file, try not to spread one extent per disk. For example, a 50% capacity dataset
spreading this way may only utilize half of the disks! Even though there are extents on the other half
of the disks, there are no data in them yet!

Users are advised to always spread their performance-critical files (with intensive multi-user random
access pattern). Since hashing and B-tree accesses are by nature random (i.e. 99% of on-line access
to KSAM, IMAGE/SQL or ALLBASE/SQL), performance-critical databases are almost always
excellent candidates to be spread.

Defragment Disks Regularly
Since extents are of different sizes, as extents are allocated and deallocated, the average size of free
space tends to become smaller and very tiny fragments of free space may be created. This is called
disk fragmentation. Disk fragmentation encourages small extents, which in tern promotes more I/Os
and less efficient I/Os (small I/Os). In addition, disk fragmentation wasted disk space. Any free space
less than 64 Kbytes are wasted and free space between 64 and 512 Kbytes are not available to
allocation request bigger than 16 Mbytes.

The solution is to proactively defragment the disks. Rather than waiting for the fragmentation to
accumulate and cause problems, we always keep the disks clean. It is recommended to defragment all
disks at least once each week. This can be easily automated into daily or weekly batch processing.

Checkpoint Considerations
Faster checkpointing is very desirable. Faster checkpointing discourages checkpoint collision, where
the current checkpoint can not proceed until the previous checkpoint is completed. Checkpoint
collision can be a very serious performance problem where users pause for a long time periodically. It
usually occurs with big memory system (more dirty pages to post) coupling with unbalanced and
fragmented disks (takes longer to checkpoint). Secondly faster checkpointing has less impact on
batch jobs and CQ base users (due to CQ base priority checkpoint I/Os). Finally, faster checkpointing

Tuning Your I/O Performance on MPE/iX Systems
1028-5

encourages faster recovery time after system interruption. Why? If the system crashes while no
checkpoint is in progress, then recovery manager only needs to recover the current log-half up to the
crash point. On the other hand, if the system crashes while checkpoint is in progress, then recovery
manager must also recover the entire previous log-half in addition to the current log-half. The latter
case on average triples the recovery time of the former case (1.5 log-half vs. 0.5 log-half)!

Checkpointing is an I/O bound operation, where all dirty pages associated with the log-half are posted
to disks (four files at a time). The first three tips are critical to speedup checkpoint. To reduce the
number of I/Os or to increase the average size of I/Os, we combine small files and periodically
defragment the disks. To balance concurrent I/O for all disks, we spread medium to large files.

Finally for serious checkpoint collision problem, consider partitioning the applications on the volume
set into multiple volume sets. Now each volume set will take longer to checkpoint and there are less
dirty data to be checkpointed. In addition, multiple user volume sets increase application resiliency.
If a disk crashes, only one volume set will be affected and it takes less downtime to rebuild the
volume set (less data to be restored).

Use Store XL and COPY Command to Copy Files
FCOPY, DSCOPY, and CM Store copy data by sequentially reading and moving data in blocks. It
has many undesirable effects: A fill-disk operation is performed each time an extent is allocated for
the target file. Since the copied data will override the fill pattern, fill-disk operations are
unnecessary. It degrades response time and doubles the number of I/Os for the target file (fill-disk
plus posted data). For sparse files, "non-existent" data (fill pattern) in extent gaps will be copied and
cause target files to be fully allocated, wasting disk space. Worse yet, source files will also no longer
be sparse files after copying, and will be fully allocated due to reads! Finally, the algorithm tends to
generate many extents for target files. These extents are allocated dynamically as data is copied.

There are many ways to copy files. In particular, Store XL and the COPY command generate
desirable extent distributions since they use both the contiguous block and automatic extent spreading
algorithms. On the other hand, FCOPY, DSCOPY, and CM Store generate many smaller extents.
They not only foster disk fragmentation but also perform more slowly. This is especially noticeable
with sparse files.

Of course, those subsystems have unique features that are not provided by Store XL and the COPY
command. Users should continue to use those subsystems when it is necessary, but using Store XL
and the COPY command will be both faster and better for your disk usage.

Avoid Double I/O
Initial allocation is always more efficient than allocating dynamically later and avoids costly fill-disk
operations. If the disk space requirements are known in advance, it is a good practice to initially
allocate the space.

If the disk space is not pre-allocated, then it is advisable first to write data beyond the file EOF, and to
extend the EOF (FCONTROL or FCLOSE) only after the writing is done. This way, costly fill-disk
operations are eliminated. This is particularly valuable with initial file loading.

Tuning Your I/O Performance on MPE/iX Systems
1028-6

Disk Array Considerations
With the advent of disk arrays (C2252, C2254, C2258), disk capacity grows dramatically. C2252's
capacity is 2.7 Gbytes, C2254's capacity is 5.4 Gbytes, and C2258's capacity is 8 Gbytes.

To balance the I/O subsystem, it is recommended that users not mix disks of greatly differing
capacities within a volume set. The reason is to avoid disk space allocation dominated by big disks,
which could become an I/O bottleneck and would foster unbalanced I/O by nature.

Consolidating a volume set from many disks into few C2254s or C2258s deserves special attention.
Even though they have much better seek time and transfer time than "conventional" disks, the
number of disks within a volume set could decrease six to twelvefold! As a result, if the environment
requires heavy random-access I/Os, a few C2254s or C2258s might perform more poorly. For
example, consolidating 12 C2202s with I/O load averaging 10 I/Os per second per disk into 2
C2254s generates unreasonable I/O demand of 60 I/Os per second per disk! This demand is
obviously beyond the C2254's capacity and the system response time would suffer as a result. In such
a case, consolidating into 4 C2252s might be a better option.

Add New Disks
Adding new disks into a volume set may easily create an I/O bottleneck. This is especially true when
the volume set is full or close to capacity.

MPE/iX extent placement algorithm places new extents on the disk with most free space. When a
new disk is added, it will be THE place where new extents are allocated. Due to data locality, those
new data tend to be the most active data. Worse yet, if any performance critical databases are
restored or reorganized, then they will be allocated solely onto the new disk! Clearly the I/O demand
for the new disk may easily exceed its bandwidth. As a result, the system throughput and response
time may suffer. It is recommended to re-balance the disk allocation immediately after adding new
disks into a volume set. This will not only prevent those new disks from becoming an I/O bottleneck,
but also improve system performance by increasing I/O concurrency across all disks in the volume
set.

It is of critical importance to populate the volume set to rebalance the disk allocation immediately
after adding a new disk. This will not only prevent the new disk from becoming an I/O bottleneck,
but also improve system performance by increasing I/O concurrency across all disks in the volume
set.

Small System Volume Set
Since ldev 1 is treated specially for extent placement algorithm such that it is always placed at the end
of the sorted eligible list, small system volume sets with only two or three disks require special
attention.

For a small system volume set, this tends to fill up the member volumes and leave lots of free space
on the master volume, ldev 1. As a result, extents for a performance critical file tends to be all on the
member volumes or all on ldev 1. This may become an I/O bottleneck. In addition, a full or very
fragmented member volume may cause system errors described in the severe disk fragmentation case
mentioned previously.

Users are advised to re-balance the disk allocations once a disk is, or close to, full. This is especially
true for a small system volume set, which is more likely to generate full member volumes. Please
note that "small" here means the number of disks rather than the disk capacity. In fact, a member
volume could be a disk array, which could be as big as 8 Gbytes.

Tuning Your I/O Performance on MPE/iX Systems
1028-7

Not to exceed Channel bandwidth
Even though the I/O channel adapter physically can connect up to 15, 7, 8 devices for the Fast/Wide
SCSI, single-ended SCSI, and Fiber Link respectively, doing so would almost certainly cause I/O
performance problems. The combined I/O load on all devices attached to the channel may easily
exceed the channel bandwidth and the channel becomes the I/O bottleneck. A good hint is when
there are excessive number of processes waiting for I/Os and the average I/O queue length on disks is
not very high.

Although the exact number of disks a channel can connect without impact performance depends on
user environment, a good rule of thumb is not to exceed 9, 4, 4 disks for the Fast/Wide SCSI, single-
ended SCSI, and Fiber Link respectively. Be extra careful when the channel is also shared with tape
devices.

Conclusion
System performance tuning maximizes the return on your hardware and software investments.
A key component of that tuning is I/O optimization. Many low throughput and long response time
problems are due to I/O bottlenecks. I/O optimization is becoming increasingly more important as
the gap widens between CPU and disk speed.

MPE/iX systems have sophisticated mechanisms, such as post ranges, intelligent prefetch and
checkpointing, to handle I/Os effectively. It performs best when extents are of large size, disks are
clean, and active extents are balanced across all disks. As more loads and data are added to the
system, situation deteriorates and eventually I/O bottleneck emerges.

Rather than suffering or fixing it when the bottleneck occurs, let’s apply the I/O tuning tips
proactively to prevent it from ever happening. Best of all, many of the tips can be automated into
weekly or monthly jobs. Let’s always keep our disks clean, data balanced, and I/Os streamed.

Biographic
Paul Wang is the president of SolutionSoft Systems, Inc. He is a software developer and consultant,
specialized in transaction management, system performance, file system internals, data base, disk
space management and On-line transaction processing. Previously, he was an internal architect of
transaction management in HP's Core MPE/iX lab.

