
Distributed Application Security Using Praesidium AS
2011 - 1

DISTRIBUTED APPLICATION SECURITY
USING PRAESIDIUM AS

Paper #2011
Charles Knouse

Early Adopter Program
General Systems Division

19111 Pruneridge Avenue, MS 44L7
Cupertino, CA 95014

cwk@cup.hp.com

INTRODUCTION
Security, always an important requirement for applications, becomes even more critical
and complex when an application is distributed over many computers on a network.
This paper examines requirements for distributed application security and presents a
new security product from Hewlett-Packard, the Praesidium Authorization Server
(AS). Praesidium (from the Latin word for fortress) provides security services for
applications that operate in a variety of distributed environments, such as the
Distributed Computing Environment (DCE). The primary value of Praesidium AS is
authorization of requests from clients to servers, using application-defined rules.
Praesidium AS also provides a uniform interface to security services of the
environment, including authentication and data protection. The Praesidium AS product
includes servers to manage application security data, libraries, and tools for the
administration and maintenance of the security data.

DISTRIBUTED SECURITY REQUIREMENTS
The security requirements for distributed applications can be classified as
authentication, authorization, and data protection.

• • Authentication
Authentication asks the question “Who are you?” It identifies who is using the
application. Typically this is done using some form of log-in, where users supply
public names and private passwords to prove they are who they say they are. This
is sufficient for a local operating system or application, where the password stays
within the system. But in a distributed environment, the log-in password should
not be transmitted in the clear over the network, in order to prevent it from being
intercepted by an eavesdropper. There are network authentication methods
available that solve this problem. The Kerberos authentication method is one of the
most popular. It is used by DCE and will be described later.

Distributed Application Security Using Praesidium AS
2011 - 2

• • Authorization
Authorization asks the question “What can you do?” Once a user is authenticated,
an application needs to determine what types of operations the user is authorized
to perform. A familar example is the permissions mask in the Unix file system,
which indicates whether a user can read, write, or execute a file. Access control
lists (ACLs) are a more sophisticated technique used in DCE. Praesidium AS
provides a powerful authorization method using entitlement rules. This will be
discussed in detail later.

• • Data Protection
Data protection determines “Can my data be seen or altered?” When data is sent
over the network, it can be intercepted by an eavesdropper. Using encryption
methods, the data can be rendered unintelligible to anyone but the sender or the
intended receiver. This is called data privacy. An attacker might also attempt to
surreptitiously alter data being transmitted over the network. To prevent this, an
encrypted checksum can be attached to the data to determine if the data has been
altered. This is called data integrity.

DISTRIBUTED APPLICATION ENVIRONMENTS
Praesidium AS can work with a number of distributed environments, including DCE,
the Encina Transaction Processing Toolkit, from Transarc Corporation, and the
Generic Security Service Application Programming Interface (GSS-API), an Internet
standard. Each of these environments provides security services that can be used
through Praesidium AS.

Distributed Computing Environment
The Distributed Computing Environment was developed by the Open Software
Foundation (OSF) and is implemented on a wide variety of platforms. DCE provides a
comprehensive set of services for distributed applications based on remote procedure
calls (RPCs). An RPC is a request from a client to a server to perform an operation
with input data. The server executes the operation and responds with the resulting
output data. The packaging and transmission of the request and response are done
automatically by DCE, using client and server stub modules generated by the DCE
IDL compiler. Security between a client and a server in DCE is also based on RPCs.

Authentication
DCE uses the Kerberos authentication method, developed at M.I.T. This technique
uses tickets, which are data structures that securely encode the identity of a principal
(a user or program). Tickets are generated by the DCE Security Server. Each principal
has a public name and a private key derived from a password that is known only to the
principal and the Security Server. Tickets contain information that is encrypted with
these keys to verify that the principal knows the password. The formats and protocols

Distributed Application Security Using Praesidium AS
2011 - 3

used by Kerberos are quite complex; see section 6.8 of my book Practical DCE
Programming (Prentice Hall PTR) for more details.

A user authenticates himself by executing the dce_login command, specifying his
principal name and password. This generates a ticket that identifies the user. When the
user runs a client program, that program usually inherits the user’s identity. A server
authenticates itself through a series of DCE security calls, which result in a ticket that
identifies the server. Before the client makes its first RPC to the server, it requests
another ticket to convey its identity to the server. This service ticket is attached to the
first RPC sent from the client to the server. The server can then retrieve the client’s
identity from the service ticket.

Authorization
DCE provides access control lists (ACLs) for authorization. Each ACL is a list of
principals with access permissions granted to each principal. An application server can
match the client’s authenticated identity to its ACLs to determine what operations the
client can perform.

Originally, a DCE application had to provide most of the code necessary to set up and
use ACLs. This was a considerable burden on application writers, which deterred the
use of ACLs for many applications. OSF Release 1.1 of DCE (which corresponds to
HP-UX DCE 1.4) includes an ACL Management Library that simplifies setting up and
using ACLs. The server still needs to make a number of DCE calls to do these tasks,
however. Praesidium AS provides a more powerful alternative to ACLs that is easier
to use and manage.

Data Protection
DCE incorporates data protection into RPCs. A client can choose the level of data
protection to be used for its RPCs, from no protection to data integrity and privacy.
The server can inspect the protection level of incoming RPCs and reject those RPCs
that do not meet a minimum level. Data integrity and privacy use an encryption key
that is generated by the DCE Security Service and included in the service ticket sent
from the client to the server.

Encina
The Encina Toolkit provides an environment for distributed transaction processing
applications. Encina is built on top of DCE, so it uses many of the DCE security
facilities, including Kerberos authentication. Encina uses transactional RPCs (TRPCs)
that are built on top of DCE RPCs. Consequently, TRPCs can use the RPC data
protection levels.

Distributed Application Security Using Praesidium AS
2011 - 4

Generic Security Service API
The Generic Security Service Application Programming Interface (GSS-API) is a
standard interface for security services, including authentication and data protection.
Underneath GSS-API is a security package, such as Kerberos, that provides the actual
authentication and data protection services. The OSF Release 1.1 of DCE provides
GSS-API on top of the DCE/Kerberos services.

Unlike DCE, GSS-API does not provide the transmission of data between a client and
a server. An application using GSS-API for its security must use another service, such
as Sockets, to transmit messages between clients and servers. GSS-API also does not
provide any authorization services.

AUTHORIZATION WITH ENTITLEMENTS
Praesidium AS provides authorization for DCE, Encina, and GSS-API using the
entitlement model. This model provides more flexibility and power than the ACLs
used with DCE. Important elements of this model are entitlements, privileges, profiles,
and principals.

Entitlements
An entitlement is a condition that must be satisfied before an operation can be
authorized to proceed. The condition is expressed as a rule, which compares the
values of attributes associated with the entitlement. Transaction attributes are values
supplied by the application and based on the requested operation. Privilege attributes
are provided by Praesidium and based on the user’s identity; they specify limits or
requirements for the user. Environment attributes are pre-defined by Praesidium and
provide information on the application’s execution environment, like the time of day.

Consider as an example a simple banking application, with a withdrawal()
operation that specifies (among other things) a type of account and an amount to
withdraw from the account. This operation might have an entitlement named
WITHDRAWAL, with the rule

ACCT_TYPE = VALID_ACCT_TYPE AND AMOUNT <= LIMIT

The transaction attributes for this entitlement are ACCT_TYPE, a character string that
specifies the type of the account, and AMOUNT, an integer that gives the withdrawal
amount. The privilege attributes are VALID_ACCT_TYPE, which defines the
accounts from which the user can make a withdrawal, and LIMIT , which defines the
maximum amount the user can withdraw from each type of account. The requested
withdrawal must then be from a valid account and less than or equal to the limit for
that account.

Distributed Application Security Using Praesidium AS
2011 - 5

Privileges
A privilege is a set of values for the privilege attributes of an entitlement. A user can
have one or more privileges for an entitlement that define the limits or requirements
for that user. In the WITHDRAWAL example, a user might have privileges like

WITHDRAWAL:VALID_ACCT_TYPE='CHECKING',LIMIT='300'
WITHDRAWAL:VALID_ACCT_TYPE='SAVINGS',LIMIT='1000'

This states that the user can withdraw up to $300 from his checking account and up to
$1000 from his savings account.

Entitlements and privileges are stored in the Praesidium AS databases. An entitlement
can be evaluated for a user and for a set of transaction attribute values by plugging in
the user’s privilege values until one set of privilege values makes the entitlement rule
true, or until all of the user's privilege values have been tried.

Profiles
A profile is a collection of privileges that can be defined for a class of users. All users
within the class can be assigned the profile and then inherit privileges from the profile.
Continuing with the banking example, there could be a profile STD_CUSTOMER that
includes the WITHDRAWAL privileges listed above. Each standard customer can then
be assigned the STD_CUSTOMER profile. If the bank decided to increase the checking
withdrawal limit for its standard customers, it need only change the profile privilege.
Another profile PREF_CUSTOMER could be set up for preferred customers, with
higher withdrawal limits.

Profiles can contain other profiles. A user assigned a profile inherits all of the
privileges from all of the nested profiles. This process is called unraveling. There are
rules for resolving conflicting privileges from nested profiles.

Principals
Each user is assigned a principal identity that is used to retrieve privileges for the user.
With DCE and Encina (and with the current implemention of GSS-API), this principal
corresponds to the DCE principal for the user. The DCE principal has a name and a
UUID (Universal Unique Identifier). Praesidium uses the principal UUID as a key for
privileges stored in its databases.

Enabling
Entitlements, privileges, and principals must be enabled to be effective. There are two
pieces of information that determine if an item is enabled: a flag that specifies
"enabled" or "not enabled", and the beginning and ending dates and times for which
the item is enabled. It is then possible to set up entitlements, privileges and principals

Distributed Application Security Using Praesidium AS
2011 - 6

that are in effect only during a certain time range. Profiles do not include information
regarding enabling; they are always in effect.

ADMINISTRATION
Praesidium AS provides several tools for the creation, modification, and deletion of
entitlements, privileges, profiles, and principals. These tools send requests to the
Praesidium AS servers to carry out the administrative tasks. The Architecture section
at the end of this paper outlines the servers that are involved.

odss_admin
The odss_admin program provides a Motif graphical user interface (GUI) for
Praesidium administration on HP-UX workstations. (The odss_ prefix comes from
an earlier name for the software: Open Distributed Security Server. It shows up in the
names for various program and functions.) The GUI includes windows for viewing,
creating, enabling, and deleting entitlements, privileges, profiles, and principals. It also
allows you to track the state of pending and completed requests. odss_admin is the
principal Praesidium tool used by security administrators.

authu_batch
The authu_batch program provides a command line user interface for the
execution of most of the Praesidium administrative tasks. (The authu_ prefix comes
from the server that executes the requests, as discussed in the Architecture section
later.) The commands are usually entered into a text file script that is input into
authu_batch . This tool is intended for repetitive tasks like creating a common set
of entitlements and privileges. It is also used for dumping and restoring the Praesidium
AS databases.

Administration Authorization
A user must be authorized to make administrative requests through odss_admin or
authu_batch . There is a large set of entitlements defined by Praesidium for this
purpose. For example, a user must have a privilege for the ODSS_CREATE_ENT
entitlement to be able to create an entitlement. There is a pre-defined profile,
ODSS_ADMIN_PROFILE, which contains privileges for all of the administrative
entitlements. A user can then be assigned this profile to be given authority to perform
all of the administrative tasks. The cell_admin principal, which is defined by DCE
as a kind of network superuser, is initially assigned the ODSS_ADMIN_PROFILE.
Then cell_admin can assign this profile and privileges to other users as necessary.
We recommend that you assign administrative authority to other principals as soon as
possible to minimize the use of the powerful cell_admin principal.

Distributed Application Security Using Praesidium AS
2011 - 7

Maker/Checker Approval
Administrative requests submitted by one user (called the maker) normally need to be
approved by another user (called the checker) before they take effect. This dual-
control of security administration prevents one user from subverting security, say, by
giving himself more privileges then he is warranted. When a maker issues a request, it
is put on a queue of requests awaiting checking. A checker, using odss_admin , can
then review the queue of pending requests and approve or deny each request. The
checker can also modify parameters of the request and resubmit it. Then the
resubmitted request must be checked again, by someone other then the original
checker.

A checker must have privileges to the appropriate entitlements to be able to check
requests. There are pre-defined entitlements for checking each type of request. For
example, the ODSS_CK_CRT_ENT entitlement authorizes a user to check requests for
creating entitlements. The ODSS_CHECKER_PROFILE contains the privileges for all
of the check entitlements. The ODSS_ADMIN_PROFILE includes this profile, so
administrative users can also check requests.

The Maker/Checker facility is normally enabled. It can be selectively or completely
disabled using the odss_ admin Check Table window. To do this, a user must have
privileges for the ODSS_USE_CHK_TBL or ODSS_UPD_CHK_TBL entitlements.

Audit Trail
Praesidium AS maintains a log of all changes to security data for auditing. Also, each
authorization performed by Praesidium AS is included in this audit trail. The audit trail
can be connected to HP's OpenView network management facilities, so security events
can be monitored and alarms can be raised.

odss_query and odss_query_batch
The odss_query program provides a Motif GUI for testing entitlement evaluations.
This is intended for use by an entitlement developer or a security auditor. The user
enters the entitlement name, a principal name, transaction attribute values, and
(optionally) a date and time. odss_query sends a request to a Praesidium AS server
to evaluate the entitlement rule using those parameters. The odss_query_batch
program provides the same service with a command line interface. To use these tools,
a user must have a privilege for the ODSS_CHECK_EVAL entitlement.

APPLICATION PROGRAMMING INTERFACE
Applications that use Praesidium AS call functions in the ODSS application
programming interface (API). Some of these calls encapsulate and simplify security
services in the underlying environment, such as DCE authentication. Other calls
provide access to the Praesidium AS authorization facilities.

Distributed Application Security Using Praesidium AS
2011 - 8

Initialization
There are several set-up calls for the ODSS API. These include a variable list of pairs
of input parameters that specify option keys and argument values.

• odss_set_environment()
Sets general options, such as the program type (client or server), control of
interface or operation checking (described in the Extension section of this paper),
and communication timeout values. (Some of these options are really specific to
DCE, but they are in this call for historical reasons.)

• odss_set_dce_environment()
Declares that the DCE environment is in use. There are no DCE-specific options.

• odss_set_encina_environment()
Declares that the Encina (and hence DCE) environment is in use. Encina options
include transaction naming and out-of-bound communications.

• odss_set_gss_environment()
Declares that the GSS-API environment is in use. The only GSS-API option is the
connection behavior between the application and the Authorization Server.

• odss_init()
Initializes the ODSS runtime in the application, using options specified in the
environment setup calls.

• odss_terminate()
Terminates use of the ODSS runtime, releasing any resources in use.

Authentication and Data Protection
These calls set up the application identity and other security parameters to be used by
the application client and server. They encapsulate the calls in the underlying
environment that do the real work.

• odss_establish_context()
Establishes the identity (login context) for the application. For a client, the login
context is usually inherited from the user’s dce_login . For a server, the login
context is usually set up using a principal name and key from a keytab file specified
in a parameter to this call.

• odss_release_context()
Releases a login context, including any resources used by it.

Distributed Application Security Using Praesidium AS
2011 - 9

• odss_register_server_info()
Specifies security information to be used between a DCE or Encina client and
server. This includes the server principal name and the data protection level(s) to
be used in RPCs between the client and the server.

Authorization
Three of these calls are used to evaluate an entitlement using transaction attribute
values from the application. The other two retrieve privilege attribute values for an
entitlement.

• odss_authz_eval()
Evaluates an entitlement for the application's identity and a set of transaction
attribute values. The function return indicates if the authorization represented by
the entitlement is granted or denied. The application can then take appropriate
action based on the return.

• odss_caller_authz_eval()
Evaluates an entitlement for the initiator of a remote call to a server. Transaction
attribute values are usually extracted from the remote call’s input parameters. The
function return indicates if the authorization represented by the entitlement is
granted or denied. Based on the return, the server can either allow the call to
proceed or reject it as unauthorized.

• odss_set_caller()
Sets the identity of the caller to be used in odss_caller_authz_eval() .
This is used only with the GSS-API environment. This is done automatically for
DCE and Encina, as discussed in the Extensions section below.

• odss_inq_entitlements()
Returns the privileges granted to the application principal for one or more
entitlements. This call allows an application client to determine what kind of things
it is authorized to do before it actually makes any requests. The client may then
disallow menu choices for actions that are not authorized.

• odss_inq_interfaces()
Returns privileges for the FUNCTION_ACCESS entitlement (discussed in the
Extensions section below), for specified interfaces. This is a special case of the
odss_inq_entitlements() call.

EXTENSIONS FOR ENVIRONMENTS
Praesidium AS integrates its security functions as much as possible with the
environment. For example, authorization of a remote procedure call can be done

Distributed Application Security Using Praesidium AS
2011 - 10

automatically, without requiring the application developer to explicitly code a call to
an ODSS function. To do this, Praesidium AS uses extensions, software modules that
provide an interface between an environment and the ODSS runtime. There are
extensions for the DCE and Encina environments. There is no extension for the GSS-
API environment.

Function Authorization
One of the primary tasks for the DCE and Encina environments is automatic
authorization of functions. For DCE, these are remote procedure call operations. For
Encina, these are TRPCs and transactions. There is a pre-defined entitlement,
FUNCTION_ACCESS, used for function authorization. The rule for this entitlement is

 INTERFACE=VALID_INTERFACE AND OPERATION=VALID_OPERATION

where INTERFACE and OPERATION are transaction attributes, taken from the
remote call or transaction, and VALID_INTERFACE and VALID_OPERATION are
privilege attributes that define what functions a user can call. A privilege for this
entitlement might look like

 VALID_INTERFACE='BANK',VALID_OPERATION='WITHDRAWAL'

which states that the user can call the withdrawal() operation in the bank
interface.

Authorization Levels
Authorization using Praesidium AS can be divided into three levels, depending on
where the authorization is performed and what entitlement is used.

• Level I (interface): The client evaluates the FUNCTION_ACCESS entitlement
before initiating a remote call or transaction. (This has been termed an interface
check for historical reasons, even though the client checks for access to both the
interface AND the operation.) This check is automatically performed by the DCE
and Encina Extensions.

• Level II (operation): The server evaluates the FUNCTION_ACCESS entitlement
when it receives an incoming remote call or transaction. This check is auto-
matically performed by the DCE or Encina Extensions.

• Level III (business rule): The application (normally the server, but occasionally the
client as well) evaluates an application-defined entitlement using transaction
attributes from the remote call or transaction. This check must be coded by the
application developer.

Distributed Application Security Using Praesidium AS
2011 - 11

The DCE Extension and odss_idl
The DCE Extension is invoked by the client and server stub modules generated by the
DCE IDL compiler from the application interface specification. To do this, Praesidium
AS supplies a surrogate for the IDL compiler called odss_idl . The application
developer uses odss_idl in place of the idl command, and odss_idl generates
client and server stubs that contain hooks into the DCE Extension. These hooks
automate a number of DCE security tasks listed below.

On the client side:

• Set up the security for the client’s RPC binding using the server name and
protection levels specified by odss_register_server_info() .

• Execute the Level I authorization check before sending the call. Raise an exception
if the Level I check fails, which normally aborts the client program. This exception
can be caught by a TRY-CATCH code block in the client.

On the server side:

• Register the server’s security parameters specified in its call to odss_
register_server_info() .

• Check the protection level of the incoming remote call to ensure that it is at least
as high as the level specified by odss_register_ server_info() . If not,
raise an exception which is relayed back to the client.

• Execute the Level II authorization check before executing the call. If the Level II
check fails, raise an exception which is relayed back to the client.

Encina Extension
The Encina Extension performs the same tasks as the DCE Extension, but it works
somewhat differently. The Encina Toolkit provides a callout facility, where appli-
cations can register functions to be called by Encina when certain events happen. The
Encina Extension registers callouts for the beginning and completion of transactions
and for the sending and receiving of TRPCs.

PRAESIDIUM AUTHORIZATION SERVER ARCHITECTURE
This section outlines the architecture of the Praesidium Authorization Server and its
clients. Figure 1 shows the architecture. Praesidium components are shaded; other
components are part of DCE or part of an application.

Distributed Application Security Using Praesidium AS
2011 - 12

Figure 1. Praesidium Authorization Server Architecture

Server Components
The server components of Praesidium AS run on one or more secure host systems.
The server components can be replicated to make sure at least one set of servers is
always available and to enhance performance.

• The Admin Database contains records for each defined entitlement, profile, and
principal. Privileges are attached to profile and principal records. Also, this
database contains records for administrative requests that are awaiting checking,
processing, or are completed (successfully, failed, or denied). The Admin Database
is implemented using the Raima Data Manager.

Application
Client

ODSS
Libraries

Application
Server

ODSS
Libraries

DCE
Security
Server

Security
Registry

AuthU AuthPA AuthPDAuthUAuthUAuthUAuthU

Admin
Database

Runtime
Database

AuthPD

odss_admin

libauthl

service
ticket

request
RPC

w/ticket

LI/inq authz
requests

LI/LIII authz
requests

check_eval
requests

trigger server callout

RPC RPC

update/read update read

RPC
principal update/read

Replicated Security Servers and Databases

authu_batch

libauthl

odss_query

libauthl

authu_maint

libauthl

Distributed Application Security Using Praesidium AS
2011 - 13

• The Runtime Database contains records for every privilege, indexed by principal,
and records for entitlement rules. This database is optimized for retrieval of
privileges during runtime entitlement evaluation. The Runtime database is
implemented using the Informix On-Line Database.

• The AuthU Server manages the entitlements, privileges, profiles, and principals in
the Admin Database. It exports a DCE RPC interface with operations for the
creation, deletion, modification, viewing, and listing of these objects. AuthU has
update access to the Admin Database. It makes remote calls to the AuthPA server
to update the Runtime Database when privileges and entitlements change. AuthU
can also manage principals in the DCE Security Registry through the DCE
sec_rgy interface.

• The AuthPA Server updates privileges and entitlement rules in the Runtime
Database. It exports a DCE RPC interface used by AuthU. AuthPA has update
access to the Runtime Database.

• The AuthPD Server retrieves privileges and entitlement rules from the Runtime
database and includes the general-purpose authorization evaluation engine. It
exports DCE RPC interfaces for privilege retrieval and entitlement evaluation,
used by the ODSS Libraries, the odss_query program, and the trigger server
callout (described below). It also has a sockets interface, used by the GSS-API
component of the ODSS Libraries.

• The DCE Security Server and Registry are DCE components that interact with
Praesidium AS components. When the ODSS Library libodssd (discussed
later) requests a service ticket on behalf of an application client, it also requests
that the Security Server attach to the ticket the client’s FUNCTION_ACCESS
privileges for the target interface. The Security Server makes a remote call to
AuthPD to retrieve these privileges. This process is called a trigger server callout.

Administrative Client Components
The administration client components can be run on any HP-UX host in the network.
(Some of the components require an X-Windows interface for their displays.)

• The libauthl library provides an interface for the creation, modification, and
deletion of Praesidium objects in the Admin database, and for other administrative
tasks. It binds to AuthU and makes remote calls to AuthU to carry out its tasks.

• The odss_admin program provides a GUI interface for management of
Praesidium objects and administrative requests. It uses the libauthl library to
interface to AuthU.

Distributed Application Security Using Praesidium AS
2011 - 14

• The authu_batch program provides a command-line interface for admini-
stration of Praesidium objects. It uses the libauthl library to interface to
AuthU.

• The authu_maint program provides maintenance facilities for the Admin and
Runtime Databases, such as deleting old records and synchronization. It uses the
libauthl library to interface to AuthU, which in turn makes calls to AuthPA.

• The odss_query program provides a GUI interface for trial evaluations of
entitlements. It uses the libauthl library to send evaluation requests to
AuthPD.

Application Components: ODSS Libraries
Application clients and servers that use Praesidium AS are linked with two (or more)
libraries, collectively called the ODSS Libraries.

• The libodssb library provides the ODSS API. It is independent of the
underlying environment, and it calls the libodssd or libodssg libraries to
perform requested tasks. All applications must link with libodssb .

• The libodssd library provides the implementation of the ODSS API functions
in the DCE environment. A DCE application must link with libodssb and
libodssd . This library binds to AuthPD and makes remote calls to AuthPD to
retrieve privileges and to evaluate entitlements with transaction attributes from
remote calls. It encapsulates the DCE authentication and data protection facilities,
and it includes the DCE Extension module. Part of the DCE Extension obtains the
service ticket for a client, so this library initiates the trigger server callout to
retrieve the interface FUNCTION_ACCESS privileges. These privileges are
included in the ticket attached to the first RPC between the client and the server.
Consequently the Level I and II checks can use the privileges in the ticket without
having to make additional remote calls to AuthPD.

• The libodsse library includes the Encina Extension module. This library
depends on the libodssb library, so an Encina application must link with
libodssb , libodssd , and libodsse .

• The libodssg library provides the implementation of the ODSS API functions
using sockets and GSS-API. Applications that do not use DCE link with
libodssb and libodssg to use Praesidium authorization. This library
authenticates itself to AuthPD using GSS-API and sends authorization requests to
and receives responses from AuthPD over a TCP connection.

Distributed Application Security Using Praesidium AS
2011 - 15

SUMMARY: BENEFITS OF PRAESIDIUM AS
The Praesidium Authorization Server provides a powerful set of tools for enforcing
security in distributed applications. Benefits of Praesidium AS are listed below, in
comparision to existing security methods like DCE ACLs.

• Centralized administration and control
All application security data is collected in one set of databases that can be
managed in a uniform way. In contrast, other security schemes like DCE ACLs
require each application to maintain its own security data, leading to a number of
different administration methods.

• Adminstration focused on users
The administration of application security data is organized around users, so it is
easy to determine what privileges a user possesses, and to revoke all of a user's
privileges if necessary. Other security schemes like DCE ACLs are focused on
applications, so it is necessary to find and query each application to which a user
might have access.

• Authorization using application rules
The Praesidium entitlement rule language allows developers to encode more
complex authorization decisions than are allowed by the permission bits in ACLs.
This is particularly true for authorization that requires value comparisons, like our
WITHDRAWAL entitlement example.

• Reduced development effort
The ODSS API encapsulates most of the work for authentication, authorization,
and data protection, relieving the application developer from those tasks.

• Consistent authorization policies
Use of the Praesidium authorization engine allows consistent policies to be
implemented across all applications in an organization. Entitlements can be
developed by security specialists and used by application developers without
extension security training.

• Support for multiple environments and platforms
Praesidium AS is currently available on HP-UX, Windows 3.1 (clients only), and
Windows NT. It is easily portable to new platforms and distributed environments.
Extensions can be developed that integrate Praesidium AS into new environments,
as requested by customers.

