
Shell Script Data Base Modeling
3012-1

Paper #: 3012
Shell Script Data Base Modeling

F. John Kluth
National Machine Company

4880 Hudson Drive
Stow OH 44224-1799

330-688-6494

   In spite of it's somewhat cryptic nature, the Bourne shell script
of UNIX presents a number of tools and opportunities for modeling
data structures that will be quite useful in a number of common
situations.  I can list three situations from my own experience.  The
first situation involves the porting of data.  When programs and data
are ported from one platform to another, some data bases typically
will not move cleanly and must be modified.  This is especially true
where more than two platforms are involved and data must be combined.
The second situation involves a disaster were the computer is
destroyed and the system must be brought back from tape.  The
programs written in the shell script come back first, and are usable
as soon as the system is restored.  Encryption key problems may
prevent the use of vended software for days.  After the disaster,
users will want to know the state of the computer before the
disaster.  Though this information is on tape, it cannot be loaded
because the old data would need to replace active data, at a time
when active data is vitally needed by the organization.  A good
practice would be to maintain "prints to file" outputs of key
programs that would be manipulated with the shell.

A third situation arises when data is being generated but no
information about the nature of the data is available.  The shell can
record this data in whatever form seems suitable, then later this
data can be restructured with shell tools as more information about
the structure becomes available.  The shell script is not used as a
full development tool, but rather as an intermediate tool that allows
a better understanding of data structures and paths.  The particular
value of the shell script is that it allows the development of
flexible structures that can be easily modified with feedback loops
that involve actual manipulation of the data.  This third situation
will be examined in some detail using the Bourne shell because of its
wide availability.

   A top down approach to data base design is much to be preferred,
but it is not always possible.  A top down approach has a number of
advantages.  It provides a unified goal to which the various parts of
the project can be fit.  It takes advantage of the better
organizational visibility from the top.  The commitment of top
managers to a project is helpful mainly for this reason.  A project
which fits major goals of an organization are more likely to be
supportive of the organization.

   In spite of the truth of these statements it is sometimes not
possible to take a top down approach.  A crisis may prevent the
involvement of top management so that lower level personnel must fend
for themselves.  In this case one needs a more hypothetical approach.
Top level goals are hypothesized, and lower level activities are
designed to support these goals.  The effectiveness of the activities
are then observed.  If the activities lack effectiveness, then new
goals are hypothesized and the activities must be changed
accordingly.  This process can work even if there is little or no
organizational visibility.  What should be done in this case is to
record all relevant data coming in as well as requests for data going
out.  Typically the data that is recorded should be the data that has



Shell Script Data Base Modeling
3012-2

been of interest in the past, plus whatever will satisfy known
requests for data.  It is desirable at this point to be creative as
to what might be needed.  There is strong resistance for storing all
data simply because of the amount of data associated with every
conversation, phone call, and piece of junk mail.  It is better to
store too much, than too little, because without the data, patterns
will be lost.

   This process of focusing only on what is coming in and going out
is referred to as the black box approach.  Ideally the structure of a
data base is determined by the nature of the questions that are asked
of it.  In the black box approach both the data and the questions
should be stored in some way.  The questions asked must be analyzed
for their value of predicting future questions.  The data structure
may then need to be modified to accommodate new types of questions
that are being asked.  Typically, each question has its effect, and
the data base may be redesigned to accommodate the new questions.  A
question may not be literally recorded, but its record remains as the
changed structure of the data base.

   The UNIX shell script supports this black box approach to data
management because applications can be rapidly mounted and rapidly
modified.  When the data base becomes large and established, then
other tools should be used as their appropriateness is determined by
the data structures that become evident.  Unix shell script is not
going to be efficient with data analysis in situations where
applications exist to deal with the data.  Shell script will be
useful where applications do not exist, or where data structures
cannot be identified.  Shell script allows immediate data entry, and
then many shell tools are provided that allow manipulation of the
data structure to a more convenient form.  When the desirable form
for the data is identified, a program can be produced to increase the
data base size and increase the convenience of the data and speed of
access.  The UNIX shell script allows this to take place by
substitution by function, or as a whole.  Since the purpose of the
shell is to run programs, a more suitable program can replace all, or
part of the shell script.

A model is a structure which contains the relationships of a
real structure, but in a more convenient form.  In the data base area
modeling or more specifically, data modeling refers to the use of
diagrams or charts to graphically represent data flow and structure.
CASE tools purport to automatically convert these diagrams into
executable code.  Flow charts were once widely touted as an easy
graphical way to understand software programs.  Such modeling is, no
doubt useful, but it has its limitations.  Such diagrams work well
when the project is small, but as the project grows in complexity,
The diagrams become more difficult to manage.  Multi-dimensional
projects are impossible to model, because the two dimensional aspect
of the diagram fails to provide more than a cross-section of what is
going on.  To verify the model a parallel structure of code must be
constructed.  Only when the data is pumped through the code can the
model be verified.

   The UNIX shell script provides modeling, but not by diagrams.
What the shell provides is a logical structure to represent data flow
and structure.  By applying the logical structure of the shell to the
data flow of the computer, a situation can be set up to move data in
the same way as a real world situation.  The shell works as a
modeling tool because it has a full set of flow control structures,
complex expression matching capability, and the ability to provide
code that is modular at several levels.  The logic is well structured



Shell Script Data Base Modeling
3012-3

so that modularity is enhanced and documentation is minimized.  The
quick access to files and their manipulation adds to the development
power.

The purpose of the shell is to run application programs.  Shell
scripts provide a logical ordering of these programs and their
execution.  This is a key to shell script modularity.  The shell
script is composed of programs that execute, and it is composed of
such programs.  A shell script can be composed of other scripts that
isolate functionality of a program.  These sub-program scripts can be
replaced by compiled or interpreted programs in other languages such
as C or PASCAL.  The shell script can then define the functionality
of the program that will allow other programs to be written that are
more efficient.  The shell script has the advantage that typically
programs are written and executed much faster, but they are neither
as precise nor as efficient as programs written in standard data base
management languages.  The efficient approach seems to be to define
the basic structure of the data base application with a process that
uses shell scripts, then replace these scripts with data base
language or a complied program once the structure is known.

Typical data bases are fixed length fields so that records are
of equal length.  This allows the location of individual records to
be calculated.  Indices point to the results of these calculations.
Shell scripts lack the ability to reference records by indexed
location.  Typically files must be searched from beginning to end to
locate records.  Formerly, the access times of such data bases caused
severe limitations.  Contemporary machines can search hundreds of
thousands of bites in less than a second, so this is less of a
handicap now.  Since the whole file is searched, some indexing on
particular fields is not necessary.  Standard shell data bases are
character delimited with either the tab character or the space
character being the default character delimiter.  The delimiting
character can be changed  by modifying the IFS variable (internal
field separator), however programming is somewhat simpler if it is
not.  For small data bases fixed field files are useful for their
simplicity.  If the record can fit on the screen then formatting is
not required and printouts are particularly simple.  Care must be
taken with shell script commands used with these data bases because
typically extra white space will be removed and the formatting lost.

Typically, the difficulty with data base projects is not the
type, speed, or efficiency of programs; it is the availability of
good data.  Data that the computer delivers in response to questions
is not going to be any more accurate than the data that is entered.
The shell program awk provides rather elaborate tools for analyzing
data and formatting output.  The challenge is not providing answers
from data that is available; the challenge is getting good data in
the first place.  Many people only enter data that is requested, and
then only when it is required.  The shell has the disadvantage of
requesting very little.  And yet there are a variety of ways to enter
data, and one of the advantages is that it need have little
structure.  The text editors such as vi and ed allow you to just
start typing.  Scanners can also be used to copy in text.  Once the
data is in it can be studied for structure.  Descriptions,
instructions, and articles with subjects fit better into a file
structure with a name.  Lists that can be divided into rows and
columns can be formed into the fields of traditional data bases.  The
tree structure of the UNIX file path can be used if the data has a
parent child relationship.  The shell provides tools for other
structures as well.  What is required is a little creativity for
seeing the data structure.



Shell Script Data Base Modeling
3012-4

Perhaps the most challenging aspect of data entry for UNIX
shell data bases are the restrictions on characters that can be used.
Some printing characters are command characters for the shell.  In
some cases shell commands can enter characters which other programs
cannot handle, such as control characters.  In other cases the shell
interprets characters as commands and will not allow them to be used.
Some command characters such as # can be entered if quoted, but
others are more complex.   Either the program needs to be so
constructed that the necessary characters can be entered as data, or
a suitable substitution is made so that later the proper character is
inserted via the tr command just before the data is printed.

The simplest data bases for the beginning user are fixed field
data bases entered with a text editor such as vi or with a variation
of the cat command (cat >> temp waits for input from the keyboard),
or perhaps the mail command.  Printing such a data base is easily
accomplished with a print command such as pr and/or lp since the data
does not need to be formatted.  Such data bases are especially
convenient if the fields of one record fits on one line of the
display terminal.  Searching capabilities are typically available in
the editor used.  Other commands such as grep can be used, but
others, such as read, delete excess white space, thus destroying the
formatting.  The cut command can be used to convert such a data base
to the character delimited form.  The printif command of awk can be
used to convert character delimited data bases to fixed field ones.

Another form of data base that can be entered fairly easily
behaves similarly to hypertext.  This mechanism can be incorporated
into the shell using the following script:

#! /bin/sh
# File .hyper created 19960409 by F. John Kluth
file=l
while test "$file" != x
   do
   clear
   if expr substr "$file" 1 2 = ls > /dev/null
   then
      $file
   fi
   if expr substr "$file" 1 2 = pg > /dev/null
   then
      $file
   fi
   echo "enter x to exit, ls to list keywords, or pg (keyword) to
display"
   echo "enter keyword > \c"
   read file
done



Shell Script Data Base Modeling
3012-5

The file .hyper is a program that displays definitions.  The text is
entered as a file with the word defined (keyword) as the name of the
file.  The file .hyper resides in the same directory as the data
files.  The period as the first name of the file prevents it from
being listed as a keyword.  A dictionary of several thousand words
can be handled in this way.  The ls command can be used to limit the
search to the first few characters so more than a whole screen is not
displayed.  The grep command can search the files for a string that
is used in a definition.  The shell command nroff can be used to get
a formatted printout.

Character delimited files can also be entered with vi, but this
can be quite confusing.  The best solution is a program that lists
the field names and allows entry of data for each field.  What
follows is a description of such a program written entirely in shell
script.

#! /bin/sh
# file add
# Section 1
prog=$0
fldnam1=NAME
fldnam2=ADDRESS
fldnam3=PHONE
rcrd="_ _ _"
ndc=n
# Section 2
until test $ndc = y
do

clear
echo "Enter letter <space> value to change."
echo "Enter S to save or X to exit."
echo
# Section 3
ival=0
for field in $rcrd
do

ival=`expr $ival + 1`
eval echo "$ival. \$fldnam$ival = $field"

done
# Section 4
echo
echo $msg
echo "$prog > \c"
read input sval
# Section 5
n=0
for i in $sval
do

if test $n = 0
then

val=$i
else

val="${val}_$i"
fi
n=`expr $n + 1`

done
sval="$val"
if test $n = 0
then

sval=_
fi



Shell Script Data Base Modeling
3012-6

# Section 6
case $input in

[0-9]* ) clear
ival=0
rcrda=
for field in $rcrd
do

ival=`expr $ival + 1`
if test $ival = $input
then

if test $ival -gt 1
then

rcrda="$rcrda $sval"
else

rcrda="$sval"
fi

else
if test $ival -gt 1
then

rcrda="$rcrda $field"
else

rcrda="$field"
fi

fi
done
rcrd="$rcrda"
echo "rcrd=$rcrd"
msg= ;;

S ) echo "$rcrd" >> add.dat;msg="Data saved!" ;;
X ) clear; ndc=y ;;
* ) clear; msg="Bad input!" ;;

esac
done

Section 1 defines the basic variables for the program.  The
prog variable provides the program name for debugging purposes.  The
variables fldnam* form an array that lists the field names for the
record.  The variable rcrd stores the record itself and must always
contain as many field values as there are fields.  The variable ndc
provides an exit for the main program loop.  Section 2 begins the
main loop and displays instruction information. Section 3 interprets
the array and displays the field names and the current field values.
Section 4 displays messages and inputs data from the user.  Two
parameters are input.  The first is an instruction parameters that
indicates either that an instruction is to be executed or the number
of the field to be changed.  The second parameter is the new field
value.  Section 5 tests for a null entry and replaces it with an
underscore so that no fields are lost.  If a space is found it is
replaced with an underscore.  Section 6 is a case statement that
either modifies field values or executes commands.  This routine
forms the basic structure of a longer program mdat that includes a
number of other commands including a modify command, a search
command, a list command, and a thread command.  The full program
listing is available but will not be presented in any further detail
here.

The program listed above, named add, has a number of
advantages.  The most important is that fields are entered in an
unambiguous manner.  The field lengths are dynamic.  The menu
approach can be easily built upon to add many complex functions.  The
disadvantages include the fact that full screen editing is not
available.  More frustrating is the fact that the entry of certain



Shell Script Data Base Modeling
3012-7

characters will cause the program to fail.  The most significant of
these is the apostrophe, which cannot be entered at all.  The # sign
can be entered if it is quoted.  The * causes the curious result that
the contents of the current directory are incorporated into the data.
The one consolation of these problems is that you learn quickly about
the type of characters needed for your data.

A listing of the full program mdat with numerous enhancements
is available as a separate listing or file on disk from the present
author.  Though the code of the enhancements to this program are not
included here, the inspection of the general concepts involved is
quite instructional.  The modify feature uses the shell sed command.
The search feature uses the shell grep command.  It is quite useful
when designing a search command to allow a further search to reduce
the size of the found group if it is too big to display.  The thread
command is the most significant enhancement, because it allows
relating of two or more data bases.  The thread command is built upon
the observation that a data base can be constructed that has as its
records information about a number of data bases.   Each record
consists of the following fields:  The name of the data base, the
path and file of the data base, and a list of every field in the data
base.  The field names have the same order as the field data in the
records so the field names can be read from this data base as an
array.  Now so arrange the field names so that two records in
separate data base that have the same value in the same field are
referencing the same fact.  Two data bases that are connected by
having such an equality found by a program are said to be threaded.

As an example of threading I give the following example.
Companies in a vendor data base are given a unique company number
upon data entry.  Another data base is set up with company phone
numbers.  In this second data base, the company number is stored in
each record with a company phone number.  The company phone numbers
are found by locating the company by name in the vendor data base,
and then threading to the phone number data base to find all the
phone numbers associated with that company number.  This process can
be used to reduce duplication of data.  It can also be used as an aid
in searching for data.

Threading is heavily dependent upon the various search
routines.  The grep command can be used easily if the thread involves
the first or last field.  Threads involving other fields are
dependent upon more complex looping structures combining read and
grep. The awk command is quite suitable for this because of its
ability to reference fields by position.  One feature that must be
considered is the uniqueness of the data used for searching.  A
thread routine can easily be written which only displays the first
match found. This may be a mistake that causes the other values to be
lost.  The thread must be designed to handle all possible matches,
whether one to one, many to one, or one to many.

The mdat program has a data base which stores information about
other data bases including their location and field names.  This
feature compares field names and determines how many instances of a
field name occur.  This comparison is helpful for the threading
feature.  Data base names can be searched and by including a common
prefix for related data bases the search can list data bases by
topic.  This feature allows a particular data base to be the target
to be displayed.

The mdat program also stores the data from previous entries.
When new data copies previous data, the new data does not need to be



Shell Script Data Base Modeling
3012-8

entered.  In addition to reducing keystrokes, this feature also
displays regularities in the data.  When a new data base is connected
the program reads the last record and displays this data as the
previous data.

 The following routine provides another method of entering data.
This script has the advantage of allowing many more types of
characters to be entered as data including those that bothered the
previous script.  In addition, space characters are converted to
underscores, which makes the fields easier to handle by shell
programs.  The horizontal labeling of fields will be easier for some.
Full screen editing is not available here either, to the frustration
of many.

#! /bin/sh
# file addc
echo "^D saves; ^C quits without saving"
echo NAME.............ADDRESS...........PHONE
cat | tr ' ' '_' > addc.dat

Some consideration needs to be given to multi-user situations.
If a data base exists as a file that is readable to shell scripts,
then multiple users can read that file simultaneously.  Problems
occur when users are attempting to write to the file simultaneously.
The HP-UX system seems capable of managing simple appends in the
multi-user environment, so shell script programs incorporate some
multi-user capability.  The major problems come with attempts to
modify a file.  Suppose user A reads a file xx in state 1.  Five
minutes later user B reads the same file still in state 1.  Now user
A modifies 3 records and saves the changes to xx now in state 2.
User B now has possession of a file that is no longer current.  Now
user B modifies 2 different records and saves them to xx now in state
3.  What user B actually does is restore the original file plus what
changes were made by B.  This effectively destroys the changes made
by user A.

The simplest way to deal with the problems raised with file
modification is to put one user in charge of modifying files and give
other users the ability to read the files but not write to them.
This can be handled by changing the permissions on the file.  If more
than one user needs to modify the file, then some type of file
locking must be set up.  It appears that commands relating to
permissions will handle this as well, but no information is available
on the overhead that this might require.  Record locking schemes are
also possible, but this would require an additional field in the data
base that must be read and interpreted by the managing program.
Overhead may also be a problem here.

Overhead becomes a concern because of the shell approach to
reading data from a data base.  Typically every byte of the file is
searched.  On an Intel 386-20 running Interactive UNIX the grep
command can search a 250K file in 5 seconds.  On a HP9000 model E35
running HP-UX the grep command can search about 1 MEG in 5 seconds.
These figures represent the largest practical data files for these
systems using the grep command for the search.  250K represents about
500 pages of data and 17 to 35 hours of data entry time, or $500 to
$1000 of business investment just for data entry.  In spite of these
limitations, it is surprising how much data can be accumulated by
these techniques.  A separate paper by the author "Hazardous Chemical
Management in a Manufacturing Environment" is available which
describes an application using the bourne shell techniques described
here.  This application involves the use of 5 data bases, the largest



Shell Script Data Base Modeling
3012-9

of which has about 160k bytes and 1500 records.  Two separate
programs access these data bases.  One allows data entry which is
controlled by one person.  The other allows read only access to the
data and is available to every user.  The only characters to provide
problems with data entry have been # which is uniformly replaced by
NO and apostrophe which is simply omitted.

    Unix commands of use in this context:
1. For data entry - Parameters can be entered on the command line.
The var="value" structure can enter values into variables.  The echo
command can append whole lines including control characters to files.
The read command allows values to be assigned to several variables.
The editors ed, ex and vi allow entry of various types of text into a
file.  The cat command in the form cat >> filename is a simple
method.  The mail command can be used for data entry if you mail the
file to yourself.
2. For data search - Grep and its variations search the entire file
without regard to fields.  The search for specific fields is more
efficient in awk.  sed and vi provide text search as well.
3. For data base manipulation the commands cut and paste allow the
rearranging of fields, sort rearranges record, and allows sorting by
fields.  The command tr allows characters to be modified in records
and strings.  This is useful mainly for changing field separators,
and porting data.  The command vi allows moving of records and some
field manipulations.
4. For output there are a number of options - The printif command of
awk allows fixed-field output.  The awk command can be considered a
generalized report writer.  Nroff, in combination with pr serves a
similar function.  These programs can output both to the screen and
to the printer.
5.  The shell variable IFS contains the "Internal Field Separators"
which are normally space, and tab.
6.   If dates are entered in the form yyyymmdd then they can be
sorted using the sort command.

Normally, as the shell script data base becomes slow to access,
a project should be prepared to port the data to a more efficient
data base management environment, such as a 4GL.  If this is not
practical there are techniques for extending the usefulness of a
common UNIX data base.  The best supported approach is to use the
path structure of the UNIX.  If one field is used to enter data then
data files can be named for the first letter of the data to be
stored.  The data base will then consist of a number of files named
after the letter used to find them.  A still larger data base will
name paths after the first letter and files after the second letter.
In this way the file location of the record can be computed from the
data that is to be filed.

Data entry persons need to be protected from the power of the
shell.  For these persons shell looping structures can be used to
simplify entry possibilities.  Backup files can be created to assist
if the program crashes.  Writing each line to a file helps to
minimize data loss.

Inclusion of an index record as a field is redundant but
helpful with debugging data bases.  The simplest form of index has
the field value equal to the record number.  For sorting purposes it
is desirable to include leading zeros in this field so that every
value has a fixed string length.  Uniqueness can be checked by
comparing the field value against the record number.  Uniqueness is
important when the index is used to substitute values from one data
base into another.  One structural observation that can be made is



Shell Script Data Base Modeling
3012-10

that certain data hangs together.  The address of a company, for
example, is unique to the company and can be said to define it.
Often a separate data base is set up with an index called company
number, with a unique number and the name and address of that
company.  The particular value in the index is often referred to as a
pointer to that record.  A purchase order data base containing a
record of a purchase from a company contains only the index in a
field called company number.  The purchase order is said to be
related to the company data base by the company number field.  A
shell script program can be written which displays both the purchase
order information and the company information by using the value of
the company number field in the purchase order record to search the
company information data base.  One of the advantages of entering the
data into a shell script data base is that the clumping quality of
the data can be studied.  As the structure becomes obvious then ways
can be tried to symbolize and index it to enhance the performance of
the data base application.

Search strings need to be short strings that find data.  A good
search string is as short and unique as possible.  For example to
search for instances of where the two words "GRAND CENTRAL" occur in
a document, it may be sufficient to search for the string "ND C".
Often a search must be repeated on a new string if no data is found
because of the possibility of spelling errors in the data or search
string.  Some characters used in abbreviations such as & for 'and'
cause difficulty because of spelling and spacing ambiguity for
example B and D Supply could be written as B&D Supply, B. & D.
Supply, B & D Supply.  A search could be constructed for all
instances of B and D, but it would be easier to search for the word
Supply.

Shell script programming provides an efficient way to get
started on a data base application.  As the data is accumulated,
insights into the nature of the data are provided.  While these
insights are being gained, access to the data can be provided.  When
the data is well formed and a suitable application program is
identified, the data can be manipulated to input that the application
can accept.  These features make the shell script quite useful of
working with data base information.

Bibliography:

1. Arthur, Lowell Jay, Ted Burns, "UNIX Shell Programming", Third
Edition, John Wiley & Sons, Inc., New York, 1994.
2. Blinn, Bruce, "Portable Shell Programming: An Extensive Collection
of Bourne Shell Examples", Prentice Hall PTR, Upper Saddle River, New
Jersey, 1996
3. Hewlett Packard, "HP-UX Reference", Volume 1: Sections 1 and 9,
HP9000 Computers, HP-UX Release 9.0, Third Edition, Hewlett Packard,
USA, August 1992
4. Hewlett-Packard Company, "The Ultimate Guide to the vi and ex Text
Editors", Benjamin/Cummings Publishing Company, Inc.; Redwood City,
1990.
5. Hewlett Packard, "Shells: User's Guide", HP 9000 Computers,
Hewlett Packard, USA, Second Edition, August 1992.
6. Kluth, F. John, "Hazardous Chemical Management in a Manufacturing
Environment", paper presented at the Ohio Academy of Science 105th
Annual meeting, Malone College, Canton, Ohio, May 4, 1996
7. Kluth, F. John, "mdat, Shell Script Data Base Management Program",
unpublished, Last edit 03/19/1996
8. Leach, Ronald J., "Advanced Topics in UNIX, Processes, Files, and
Systems", John Wiley & Sons, Inc., New York, 1994.



Shell Script Data Base Modeling
3012-11

9. Peek, Jerry, Tim O'Reilly, and Mike Loukides, "UNIX Power Tools",
Bantam Books, New York, 1993.


