
Application Development with ODBC and IMAGE/SQL
3016-1

Paper #3016
Application Development with ODBC and IMAGE/SQL

Kriss Rant
Hewlett-Packard Company

Commercial Systems Division
Cupertino, CA
(408) 447-6653

INTRODUCTION

Recent support for Microsoft ODBC (Open Database Connectivity) in HP IMAGE/SQL and
ALLBASE/SQL enables database access from many third-party Microsoft Windows applications and
tools already available on the desktop such as Microsoft Excel and Lotus 1-2-3.

ODBC is an industry-standard API (Application Programming Interface) that enables PC applications
and tools to access Relational Database Management Systems (RDBMS) such as IMAGE/SQL and
ALLBASE/SQL in a client/server environment using SQL (Structured Query Language). SQL is the
industry-standard language of relational databases.

Decision support tools such as Excel and Lotus 1-2-3 require no SQL knowledge and allow users
direct access to corporate data for ad-hoc types of queries without any programming assistance. The
user simply utilizes the application GUI (Graphical User Interface) to describe what data to retrieve
and the application then creates the appropriate SQL statement to retrieve the data on the user’s
behalf. On the other hand, programmer’s who wish to take advantage of the simplicity of the GUI to
develop client/server applications using application development tools such as Microsoft Visual
Basic, PowerSoft PowerBuilder, or Gupta SQLWindows require a basic knowledge of SQL.

This paper will describe SQL, and how it can be exploited to quickly develop client/server
applications with IMAGE/SQL and ALLBASE/SQL. This objective will be accomplished by
presenting simple solutions to complex business problems. Examples will be shown using Visual
Basic. In addition, advanced application development SQL features like stored procedures and
business rules will be emphasized.

IMAGE/SQL and ALLBASE/SQL

There has been a lot of discussion in the HP 3000 community about the difference between
IMAGE/SQL and ALLBASE/SQL.

IMAGE/SQL is Hewlett-Packard’s popular TurboIMAGE Database Management System (DBMS)
recently enhanced with an SQL interface that enables relational access (read and write) to
TurboIMAGE data on the HP 3000. It gives you the benefits of investment protection, meaning you
can continue to run your existing TurboIMAGE applications unchanged, as well as access to many
new applications and tools that are based on SQL. ALLBASE/SQL, on the other hand, is Hewlett-
Packard’s open, industry-standard Relational Database Management System (RDBMS) for the HP
3000 and HP 9000. It is based on ANSI SQL, and supports advanced relational features such as
integrity constraints, BLOBS (Binary Large Objects), and stored procedures. Integrity constraints
allow you to define data validity checks directly in the database rather than coding them in the
application. As we move into the world of multimedia, the ability to store images and sound in the

Application Development with ODBC and IMAGE/SQL
3016-2

database becomes more important. BLOB data types allow you to accomplish just that. Stored
procedures which are available both with ALLBASE/SQL and IMAGE/SQL will be discussed later in
this paper.

IMAGE/SQL is an evolutionary product that allows you to move to relational technology at your own
pace. It is based on the ALLBASE/SQL SQL interface, which provides transparent data access to
both relational databases. In fact, the full ALLBASE/SQL product, which includes ODBC, is
included as a component of IMAGE/SQL; however, IMAGE/SQL customers are limited to storing 12
megabytes of data in a native ALLBASE/SQL database.

MANIPULATING DATA

A relational database is a logical collection of data arranged into tables, also known as relations.
Tables are equivalent to datasets in TurboIMAGE. Tables are composed of rows (or tuples) and
columns, which are equivalent to records and fields in TurboIMAGE.

A relational database is accessed using SQL. SQL is a powerful language that enables flexible access
to your data. SQL allows you to retrieve data using a SELECT statement, and to modify data using
INSERT, UPDATE, or DELETE statements. These general purpose SQL statements are referred to
as the Data Manipulation Language (DML), and they form the basis for developing relational
applications.

Let’s explore each of these SQL statements in depth.

Selecting Data

The SELECT statement is the most basic SQL statement. The SELECT defines what data you wish
to retrieve from the database. This is usually referred to as a query.

The SELECT statement occurs in many variations; however, in its simplest form it is composed of the
following items:

1) Column names
2) Table names
3) WHERE clause

The WHERE clause is used to define the search condition. The search condition is used to determine
which rows in the table are to be retrieved. If the WHERE clause is NOT present, then all rows will
qualify for retrieval. The column names are used to define which column values to return, and the
table names are used to define which tables the data is to be retrieved from. If there are two or more
tables in the table list, then the query is referred to as a Join.

Let’s look at an example using the PARTSDBE sample database. Suppose we wish to find all
vendors who reside in California. The example in Figure 1 shows us how this can be accomplished.

Note, the PARTSDBE database, which is Hewlett-Packard’s ALLBASE/SQL demonstration database,
will be used for illustration purposes throughout this paper; however, similar examples can be created
using any IMAGE/SQL database. The PARTSDBE can be created using a script called
SQLSETUP.SAMPLEDB.SYS, which is included with IMAGE/SQL.

Application Development with ODBC and IMAGE/SQL
3016-3

Figure 1. SELECT Example

The data is returned in a tabular format of rows and columns, and is called the query result. To
return values for all of the columns the * symbol can be substituted for the column list in Figure 1
above.

Inserting Data

The INSERT statement is used to add rows to a table. The INSERT statement requires the following
information:

1) Table name
2) Column names
3) VALUES clause

The VALUES clause is used to assign values to each of the column names in the list. There is a one-
to-one correspondence between each of the values in the VALUES clause and each of the column
names. For example, the first value in the VALUES clause is assigned to the first column name in
the list of columns and the second value is assigned to the second column name and so on. If the list
of column names is not present, then the values are assigned to the column names in the exact order
that the columns are defined in the table. It is recommended that the column list always be used for
ease of application maintenance.

Let’s look at an example. Suppose we wish to start doing business with vendor A1 Disk Drives. The
SQL statement in Figure 2 below will add the vendor to the Vendor table with a Vendor Number of
7777.

All column names that are not listed in the example are assigned default values. For a list of the
IMAGE/SQL default data types, see Table 2-5 in the HP IMAGE/SQL Administration Guide. For
ALLBASE/SQL tables, columns that do not have a value provided on INSERT are assigned NULL
unless a default is defined for the column.

Figure 2. INSERT Example

SELECT VENDORNUMBER, VENDORNAME, VENDORSTATE, VENDORREMARKS
 FROM PURCHDB.VENDORS
 WHERE VENDORSTATE = ‘CA’

INSERT INTO PURCHDB.VENDORS
 (VENDORNUMBER, VENDORNAME, VENDORSTREET,
 VENDORCITY, VENDORSTATE, VENDORZIPCODE)
 VALUES (7777, ‘A1 Disk Drives’, ‘123 Silicon Way’,
 ‘Orchard City’, ‘CA’, ‘99999’)

Application Development with ODBC and IMAGE/SQL
3016-4

Updating Data

The UPDATE statement is used to modify one or more columns in a table. The UPDATE statement
is composed of the following items:

1) Table name
2) SET clause
3) WHERE clause

The WHERE clause is used to define the search condition. The search condition is used to determine
which rows in the table are to be updated. If the WHERE clause is NOT present, then all rows will
qualify for update. The SET clause is used to assign new values to specific columns for rows that are
qualified by the WHERE clause.

For example, suppose we wish to assign real values to the columns that were assigned default values
for A1 Disk Drives in Figure 2 above. The SQL statement in Figure 3 will update these columns.

Figure 3. UPDATE Example

Deleting Data

The DELETE statement is used to remove rows from a table. The following items compose the
DELETE statement:

1) Table name
2) WHERE clause

The WHERE clause is used to qualify which rows are to be deleted. For example, suppose you wish
to stop doing business with vendor 7777 due to the lack of demand for their components. Assuming
that the vendor does not currently exist on any purchase orders, the SQL statement in Figure 4 will
remove the vendor from the VENDOR table.

Figure 4. DELETE Example

UPDATE PURCHDB.VENDORS
 SET CONTACTNAME = ‘John Smith’,
 PHONENUMBER = ‘408 255 9999’,
 VENDORREMARKS = ‘10% discount on all products’
 WHERE VENDORNUMBER = 7777

DELETE FROM PURCHDB.VENDORS
 WHERE VENDORNUMBER = 7777

Application Development with ODBC and IMAGE/SQL
3016-5

The WHERE clause is optional. If you wish to remove all vendors from the VENDOR table, simply
omit the WHERE clause.

VISUAL BASIC, ODBC, and SQL

Let’s take a look at how the SQL Data Manipulation Language can be used to access data in an
IMAGE/SQL or ALLBASE/SQL database using a PC application development tool like Visual Basic.

Visual Basic supports the SQL Data Manipulation Language via three methods: Data Controls, SQL
PassThrough, and ODBC API calls. The Data Controls, which utilize the Microsoft Jet Engine,
provide the highest level of data access with minimal programming effort. The Jet Engine, which is
built on top of the ODBC Interface, hides the complexity of the ODBC API. Jet is included with
Visual Basic. The second method is SQL PassThrough. SQL PassThrough offers many of the
benefits of Jet; however, the programmer has the option to eliminate the overhead associated with
processing SQL statements by Jet and send them directly to the ODBC Interface. The programmer,
who must create the SQL statements, has more control over the database access as well. The last
method is the ODBC API calls. The ODBC API provides the lowest level of access and gives the
programmer complete control over database access.

The most common method used for database access is SQL PassThrough. There is a lot of overhead
associated with the Data Controls, and hence, performance issues. The ODBC API calls offer the
highest level of performance at the expense of a complex programming interface.

Visual Basic supports SQL PassThrough via the CreateDynaset and ExecuteSQL Methods. The
CreateDynaset Method is used to retrieve data via a SELECT statement created by a programmer.
Visual Basic creates what is called a Dynaset to save the query result. Like a table, a Dynaset has
rows (records) and columns (fields). The ExecuteSQL Method is only valid for SQL statements that
do not return records. Examples of these statements are INSERT, UPDATE, and DELETE.
ExecuteSQL returns the number of rows affected by the SQL statement.

Figure 5 below demonstrates how to use the CreateDynaset Method, and Figure 6 demonstrates how
to use the ExecuteSQL Method. These examples were derived from a Visual Basic example called
PARTSD.ZIP that was downloaded from CompuServe. The file is located in the HPSYS Forum
under the MPE Library.

Note, the ODBC default for transaction control is SQL AutoCommit “ON”, which means each SQL
statement is automatically committed to the database. At the present time Visual Basic offers no
method to turn this option off unless the ODBC API calls are utilized.

Application Development with ODBC and IMAGE/SQL
3016-6

Figure 5. CreateDynaset Method Example

Figure 6. ExecuteSQL Method Example

STORED PROCEDURES AND BUSINESS RULES

In addition to supporting a data manipulation language, IMAGE/SQL and ALLBASE/SQL allow you
to create database objects such as stored procedures and business rules, which reduce the need for
extensive application programming in addition to providing a means to improve application
performance in a client/server environment by reducing network traffic.

Procedures define sequences of SQL statements that can be stored in an IMAGE/SQL database and
invoked as a group directly by an application program or indirectly through rules. Rules allow you to

'This example uses an SQL statement to create a Dynaset of Vendors from California.

Dim MyDB As Database, MySet As Dynaset
Dim SQLStmt As String
Const DB_SQLPASSTHROUGH = 64 ' Set constant.

' Open PARTSDBE as an ODBC database. PARTSDBE must be defined
' as a data source in the ODBC.INI file.
Set MyDB = OpenDatabase("", False, False, "ODBC; DSN=PARTSDBE; UID=")

' Prepare the SQL statement.
SQLStmt = "SELECT * FROM PURCHDB.VENDORS WHERE VENDORSTATE = 'CA'"

' Create the new Dynaset.
Set MySet = MyDB.CreateDynaset(SQLStmt, DB_SQLPASSTHROUGH)

'This example executes an action query that changes the Phone Number for Vendor 7777 in
'the Vendors table.

Dim MyDB As Database
Dim SQLStmt As String
Dim RecsChanged As Integer

' Open PARTSDBE as an ODBC database.
Set MyDB = OpenDatabase("", False, False, "ODBC; DSN=PARTSDBE; UID=")

' Prepare the SQL statement.
SQLStmt = "UPDATE PURCHDB.VENDORS SET PHONENUMBER = '408 255 8888'"
SQLStmt = SQLStmt + "WHERE VENDORNUMBER = 7777"

' Execute the SQL statement.
RecsChanged = MyDB.ExecuteSQL(SQLStmt)

Application Development with ODBC and IMAGE/SQL
3016-7

define relationships among tables by tying procedures to specific kinds of data manipulation on
tables.

Creating Stored Procedures

Procedures can include many of the operations available within an application program. For
example, you can use local variables, issue most SQL statements, create looping and control
structures, test error conditions, print messages, and return data or status information to the calling
application program. In addition, you can pass data to and from a procedure via parameters.

Procedures are normally created with ISQL (Interactive SQL) using the CREATE PROCEDURE
SQL statement; however, they may be created with any application program that supports SQL as
well.

Figure 7 demonstrates how to create a procedure using ISQL. The procedure defines the logic to add
a new purchase order item to the database and update the respective total price and quantity for the
order. It is assumed that the purchase order already exists and that the TOTALPRICE and
TOTALQTY columns had been previously added to the ORDERS table.

Figure 7. Create Procedure Example

CREATE PROCEDURE PURCHDB.ADDPOITEM
 (PONumber INTEGER NOT NULL,
 PartNumber CHAR(16),
 Price DECIMAL(10,2) NOT NULL,
 Quantity INTEGER NOT NULL,
 DateRequired DATE NOT NULL) AS
 BEGIN
 DECLARE Items INTEGER NOT NULL;

 SELECT COUNT(*) INTO :Items FROM PURCHDB.ORDERS
 WHERE ORDERNUMBER = :PONumber;

 INSERT INTO PURCHDB.ORDERITEMS
 (ORDERNUMBER, ITEMNUMBER, VENDPARTNUMBER,
 PURCHASEPRICE, ORDERQTY, ITEMDUEDATE)
 VALUES (:PONumber, :Items+1, PartNumber,
 :Price, :Quantity, :DateRequired);

 UPDATE PURCHDB.ORDERS
 SET TOTALPRICE = TOTALPRICE + :Price,
 TOTALQTY = TOTALQTY + :Quantity
 WHERE ORDERNUMBER = :PONumber;

 END;

Application Development with ODBC and IMAGE/SQL
3016-8

Invoking Procedures

Procedures are invoked directly using the EXECUTE PROCEDURE SQL statement via a PC client
application program such as Visual Basic or a host-based SQL program written in a language such as
COBOL or indirectly via business rules.

Creating Rules

Rules allow you to define generalized constraints or conditions on rows of a table by invoking
procedures whenever specified data manipulation statements are performed on a table. The rule fires,
that is, invokes a procedure each time the specified data manipulation statement (INSERT, UPDATE,
or DELETE) is performed and the rule’s search condition is satisfied. This permits data processing
to be carried out directly by the IMAGE/SQL database, resulting in less application coding and more
efficient use of resources.

Rules are normally created with ISQL using the CREATE RULE SQL statement; however, they may
be created with any application program that supports SQL as well. There is no statement to invoke a
rule since they are invoked indirectly.

The CREATE RULE statement identifies a table, types of data manipulation statements, a firing
condition, and a procedure to be executed whenever the condition evaluates to TRUE.

Figure 8 illustrates a rule and procedure example. The procedure UPDATE_PO_TOTALS “fires” or
executes whenever a purchase order line item is added or deleted or whenever the PURCHASEPRICE
or ORDERQTY columns on an existing line item is updated. The procedure
UPDATE_PO_TOTALS computes new values for the TOTALPRICE and TOTALQTY columns for
the purchase order. As illustrated in Figure 6 above Visual Basic can easily invoke this rule by
issuing INSERT, DELETE, or UPDATE SQL statements via the ExecuteSQL Method.

Note, procedures invoked by rules can include data manipulation statements that invoke rules that
trigger the execution of other procedures. IMAGE/SQL and ALLBASE/SQL support a maximum
rule chain of 20.

Application Development with ODBC and IMAGE/SQL
3016-9

Figure 8. Rule and Procedure Example

Transaction Handling Considerations

There are differences related to transaction management when a procedure is executed directly or
indirectly via a business rule. When a procedure is executed directly via the EXECUTE
PROCEDURE SQL statement, it is up to the programmer to determine where the transaction
boundaries should occur. The programmer has two choices. The transaction handling can be done
either within the procedure or outside the procedure. On the other hand, if a procedure is invoked via
a rule, SQL treats the data manipulation statement that invoked the rule and the stored procedure that
is subsequently executed as an atomic unit. Therefore, BEGIN WORK, COMMIT WORK, and
ROLLBACK WORK statements encountered within a procedure invoked by a rule will result in an
error condition and all previously executed statements tied to this rule will be undone.

CONCLUSION

As you can see, there are many features supported with the industry-standard SQL interface that make
it easy to quickly develop new client/server applications using ODBC. IMAGE/SQL allows you to
take advantage of these features, while protecting your investment in your existing TurboIMAGE
applications.

CREATE RULE PURCHDB.UPDATE_PO_TOTALS
 AFTER INSERT, DELETE, UPDATE (PURCHASEPRICE, ORDERQTY)
 ON PURCHDB.ORDERITEMS
 EXECUTE PROCEDURE PURCHDB.UPDATE_PO_TOTALS (ORDERNUMBER);

CREATE PROCEDURE PURCHDB.UPDATE_PO_TOTALS
 (PONumber INTEGER NOT NULL) AS
 BEGIN
 DECLARE TotalPrice DECIMAL (15, 2) NOT NULL;
 DECLARE TotalQty INTEGER NOT NULL;

 SELECT SUM (PURCHASEPRICE) INTO :TotalPrice,
 SUM (ORDERQTY) INTO :TotalQty FROM
 PURCHDB.ORDERITEMS
 WHERE ORDERNUMBER = :PONumber;

 UPDATE PURCHDB.ORDERS
 SET TOTALPRICE = :TotalPrice,
 TOTALQTY = :TotalQty
 WHERE ORDERNUMBER = :PONumber;

 END;

Application Development with ODBC and IMAGE/SQL
3016-10

The SQL Data Manipulation Language enables flexible access to your corporate data, while stored
procedures reduce the need for extensive application programming in addition to providing a means
to improve application performance in a client/server environment by reducing network traffic.

Armed with this information you should now be ready to take the next step to evolving to client/server
computing by initiating a client/server application development pilot with IMAGE/SQL!

