
Allbase by Design
3018-1

Paper # 3018

Allbase by Design

Jeff Townsend
ASI Market Research, Inc.

101 N. Brand Blvd., suite 1700
Glendale, CA 91203

(818) 637-5600

Introduction

Database performance will be an important and often crucial goal for client-
server and server-driven OLTP and OLAP development. The logical and physical
design of an HP Allbase/SQL database have a profound impact on data throughput.
With the vast amount of technical documentation on relational databases, it is difficult
to separate the nonessential from the truly important, performance-critical information.
 Design, creation and administration tasks in Allbase/SQL that especially impact
resources and have performance implications will be identified. Recommendations will
be made on DBA tasks and configuration preferences.

[A great source for an introduction to relational database terms and basic concepts is
HP's mini-guide: AUp and Running with Allbase/SQL.@ Practicing with the provided
sample DBEnvironment, PartsDBE, will be beneficial.]

DESIGN

Normalization

A careful and thorough list of entities and their related attributes will help you
arrange the data into, respectively, tables and columns. Relational databases perform
best when the data is normalized, as this process reduces data redundancy and
facilitates efficient retrievals and updates. The goal is to get to third normal form
(3NF), or even Boyce-Codd normal form (BCNF). BCNF can also be stated as:
AEvery Attribute must be determined by the Key, the whole Key, and nothing but the
Key, so help me Codd!@

There are drawbacks, however, to overnormalization such as more joins and
additional referential integrity indexes. You may consider denormalizing two columns

Allbase by Design
3018-2

always reported together or fast access columns. If two rather static tables are
constantly being joined, consider combining tables or duplicating some columns. Not
all joins are expensive and there is a cost to the alternative denormalization. Consider
the effect of denormalizing on other processes and tune to the most used or most
important process. Follow another computing adage,

ANormalize 'till it hurts, then optimize 'till it works!@

Partitioning the data is another trick used to improve performance. Horizontal
partitioning divides a large table containing historical data into two: a current data
table and an archive table with a "shadow" of its parent table's column structure.
Vertical partitioning removes less frequently accessed columns to their own table. Be
sure the primary key values are copied so a 1:1 join can be performed if necessary.
This trick will reduce the size of the parent table's rows making it more efficient to
process.

Data Selection

Understanding what the data is, where it comes from and how it will be used is
crucial. Table design should be modified to accommodate planned data selection,
multi-table joins and views. Anticipating how data will be selected and used helps in
defining relationships between tables, keys and attribute columns. Consider separate
views for restricted access to one or more tables. Views have the added benefit of
presenting a consistent and simplified representation of a related set of data.

Constraints

Ensure integrity by designing unique or referential constraints on columns.
Duplicate key values are eliminated via the unique constraint. Referential integrity
assures a dependency relationship where a key value exists before a row with that key
value is inserted in a referencing table.

Other Issues

Other design issues, such as application characteristics (on-line vs. batch, static
vs. volatile data, etc.), should be well thought out prior to implementing your logical
design into a physical one.

Index Types

The most common cause of bad database performance is misused and poorly
designed indexes. A relational index can be defined on one or more columns in a

Allbase by Design
3018-3

table. Its primary objective is to speed data retrievals, but with the unfortunate side
effect of slowing modifications due to the overhead of index maintenance for data
inserts, updates and deletes. Understand also that all queries against Allbase/SQL pass
through its Query Optimizer, whose task is finding the optimal access path. You
cannot explicitly request the optimizer to use a particular index. You can, however,
implicitly improve the chances of index use by ensuring an index exists for queries
where certain values for table columns are to be selected. Design indexes according to
your application's most executed and most important processes.

Allbase/SQL currently provides for four types of indexes: unique, clustered,
normal and hashed. A unique-and-clustering combined index type can be defined as
well. The first three types store values in a B-Tree (or B+ -Tree actually, as the leaf
pages are doubly linked). A hash structure, to be precise, is not a physical object like
the other index types, but a way of arranging data in the DBEFile pages.

A unique index, as the name implies, ensures no duplicate key values exist. A
clustering index attempts to place data rows with similar key values physically close
together on the same or consecutive pages. Performance degrades on a clustering
index as these pages become full, when new rows must be inserted wherever a page
with room can be found. Utilize a clustering index only where an application needs to
search large volumes of data to retrieve rows in sequential key value order, and where
the table is either static or the number of insertions are nearly equal to the deletions on
the table. A normal index is neither unique nor clustered, and used solely for its B-
Tree retrieval performance. Hashing is best used with uniformly distributed, unique
key values and direct per-value access ("equal" in the query predicates, or "where"
clauses) is the overriding concern. Hashed tables are preferred to B-Trees if rows are
frequently inserted and/or deleted and key values themselves are not changed during
updates, but they require manual maintenance by the DBA to continually optimize its
performance.

Indexes do not have to be permanent objects, but can be created when needed
then dropped. This provides improved performance for the duration of the index'es
existence without the continual index maintenance overhead. This strategy is
particularly suited to monthly and other reporting or archiving cycles.

CREATION

A thorough and well thought out logical design must now translate into an
equally solid physical design and implementation. Allbase/SQL performance is also
closely tied to DBEnvironment configuration and object creation options.

Allbase by Design
3018-4

DBE

A DBEnvironment is newly created with the "start dbe new" command. You
supply startup configuration parameters with this statement. These parameters set
environment operating limits such as: single or multi user mode, autostart mode,
archive mode, user timeouts, language, DDL enabling, DBEFile0, log file(s),
maximum transactions, data and log buffers, and runtime control block pages. Most
parameter values, though important, have little impact on performance. Shared
memory buffers, however, have a large effect on I/O performance.

For every multi-user DBE session started, a block of shared memory is reserved.
All users and programs accessing the DBEnvironment share this allocated memory,
which is composed of three types of buffers: runtime control blocks, data buffers, and
log buffers. Control blocks are needed for such DBCore services as database access
control, locking and buffer pages. Data buffers hold data pages currently in use. Log
buffers hold changes made to data pages during a transaction until they are written to
log files on disc.

Lock management is the greatest user of runtime control block buffer pages.
Consequently, depleting this resource is less likely with shorter transactions, coarser
locking strategy (table vs. page vs. row), or more efficient concurrency practices.
Formulating the number of runtime control block buffer pages is based on several site-
and situation-specific factors. An HP manual states:

AThe number and type needed at any one time depends on such factors
as the number, duration, and type of concurrent transactions, the
amount of page level locking, and the amount of update activity
occurring.@

- Allbase/SQL Database Administration Guide
I recommend trying an initial setting between the default 37 and, say, 100 pages. The
first time you receive a "shared memory lock allocation failed" (DBERR 4008), pass
on HP's solution of re-executing the transaction with a 20% buffer size increase and,
instead, minimally double your current value. The maximum setting allowed is 2000
pages.

For the data buffer, composed of 4096-byte pages, set the parameter to about 12
times the number of active transactions or the default (100) whichever is greater. With
too few pages, there will be excessive page swapping. With too many, performance is
decreased as all data buffer pages are searched to see if the needed page is already in
memory. For a more quantitative approach, examine the tables accessed in
performance-crucial transactions. The right number of buffer pages is approximately
the number needed to hold the small tables and the aged, least used pages of the large

Allbase by Design
3018-5

tables. An excellent discussion, with examples, can be found in the ADBE Guidelines
on System Administration@ section of the Allbase/SQL Performance Guidelines
manual.

Provide for enough 512-byte log buffer pages (independent of data buffers) to
give all active transactions enough log space. Additional buffers will not help
performance, but neither will it degrade it noticeably. The maximum is 1024 pages.

Do not exceed the amount of shared memory available on your system as you
adjust the shared memory (buffer) parameters. Excessive shared memory may cause
page faults. A formula to approximate total shared memory used (SM, in Kbytes) is:

SM = (4.2 * Data Buffer Pages)
 + (0.5 * Log Buffer Pages)
 + (0.16 * Number of Concurrent Transactions)
 + (4.1 * Control Block Pages)

Increasing data buffer pages and control block pages increases total shared memory
much more than log buffer pages or number of concurrent transactions. Total shared
memory should not exceed free real memory available on the system at any given time,
as you never get a performance benefit by defining more page space than will stay in
real memory. Too many data buffers may force paging of virtual space and will
degrade performance.

Database Objects

Physical design is primarily implemented by arranging data in tables, which reside
in DBEFiles, and putting DBEFiles in DBEFileSets. DBEFileSets are also the logical
home of tables, which are always created in a particular DBEFileSet.

Avoid putting any user-defined tables in the System DBEFileSet, as it is accessed
frequently and its tables locked differently than in other DBEFileSets. Place tables
larger than 1000 pages or in their own DBEFileSets. This makes sequential scans and
maintenance, such as "update statistics", perform faster. Group smaller tables together
into DBEFiles of 1000 pages or less, and place in their own DBEFileSet. This reduces
the number of physical files the system has to find and open. It utilizes discspace
efficiently and minimizes real I/O.

DBEFiles are the physical files used to store table and index data. Create them
in multiples of 253 pages (1 page table page followed by 252 data pages). Use
dynamic DBEFile expansion, setting initial, maximum, and increment page sizes to
avoid creating unused extra space yet also avoid running out of DBEFile space at run
time. Create separate "table" and "index" DBEFiles, especially for large tables, and
consider placing on separate discs to improve I/O performance. Create a "mixed"

Allbase by Design
3018-6

DBEFile for a small table, especially with a single index, where data and index rows
will be on alternating pages resulting in faster processing and better space utilization.

In creating the database object Atable,@ not to be confused with the Atable@
DBEFile, the designer implicitly defines the access and locking mode. This has a
tremendous effect on performance! The four table types, in order of increasing
consistency and decreasing concurrency, are: publicrow, public, publicread and
private. The first two are for maximum concurrency, holding many locks of finer
granularity but for shorter periods. "publicread" can improve performance by using
fewer table locks for writes, but locking the table means it can only be modified by one
transaction at a time. Tables that have a lot of read activity and very little updating,
except in batch at off-hours, are ideally suited to this type. "private," the default (!),
holds exclusive table locks for read and write and should only be used for special
tables accessed by only one user at a time.

A table must have at least one named column and its datatype. Avoid nulls
which may cost an additional 5% overhead. Also avoid variable length datatypes that
may waste more space than they save, and may change the row's position or data page
when the column is updated later. If null or varchar/varbinary columns are
unavoidable, place them as the trailing columns in the table schema to minimize the
row shifting. Integer values may be 5-15% more efficient than packed decimal. Since
SQLCore only performs 4-byte arithmetic, all smallint values are automatically
converted to integer. For better performance, use datatypes appropriate to the
programming language and application, and avoid data conversions. If space savings
is paramount, smallints only require half the storage space as integers.

Indexes and Constraints

Indexes should always use "not null" columns as keys. If a column is constantly
used in a "where" clause, it should have an index. Contrary to some HP
documentation which states Aindexes are always created explicitly,@ certain DDL
(data definition language) commands implicitly cause indexes to be created. Buried
deep in the documentation is a non-trivial piece of information on implicitly created
indexes:

AIf you are using unique or primary key constraints, Allbase/SQL auto-
matically creates unique indexes which can be used for data retrieval. If
you are using referential constraints, Allbase/SQL creates a PCR
(parent-child relationship), which is an index on the two tables in the
referential relationship.@

- Allbase/SQL Performance Guidelines
If you have already applied a unique or primary key constraint on a column, do not
execute a "create unique index" command or you will likely double the resource and

Allbase by Design
3018-7

performance hit of duplicate indexes. The Query Optimizer already has the option to
use for retrievals the index implicitly created by the constraint.

Integer and char index columns are preferred to decimal or date, and keep the
length to 20 bytes or less. Create a compound index if the "where" clause contains "="
(equal) comparators along with "and"s. Place the most used column, and outer sort
sequence, in the first position. Create separate indexes on columns from a single table
used extensively with the "or" predicate. Do not bother creating indexes on columns
with very few values (e.g. yes/no, year), especially when retrieval is expected to return
30% or more of the rows. On a side note, I strongly suggest naming each constraint.

Check constraints are essentially search conditions placed on a particular column
to validate values as they are inserted. The performance is marginally better compared
with doing the check programmatically. Check constraints and default column values
benefit a system by standardizing actions that cannot be circumvented by any
application using the database.

Views, Rules, Procedures, Sections

A view is essentially a "select" command stored in the system catalog and not a
physical copy of the data. Allbase/SQL performs the data retrieval when the view is
used. It is a strategy to present a consistent view of selected data to authorized users.
 The column names could be simplified and the selection criteria made transparent for
a more intuitive and understandable display of information to the user. Views, per se,
have little or no impact on performance compared with similar programmatic selection
of the data.

Rules and procedures provide a mechanism for the database itself to enforce data
relationships and data integrity, but far more flexible than the simple integrity
constraint. A procedure is created, then called by a rule triggered under certain
conditions. The "where" condition is checked before the procedure is loaded, so
triggering on or after the "where" clause can avoid overhead if the clause is false.
More control and better performance is gained by developing several rules with
separate conditions and procedures rather than a single rule with no condition and one
big procedure that makes decision checks before executing certain steps.

Procedures as well as preprocessed, SQL-embedded programs are stored as
sections. A number of actions against the database will invalidate some or all sections,
such as "update statistics." To avoid the overhead incurred with automatic
revalidation when the first transaction attempts to execute an invalidated section, the
DBE should use the "validate" command. Preferably, use both of these statements
during periods of low activity.

Allbase by Design
3018-8

ADMINISTRATION

Sqlutil

Sqlutil is a DBA tool to look at and change DBECon parameters. It also
performs many tasks on log files, and is used to back up and restore DBEnvironments.
 DBEFiles may be purged with this utility, but be sure to drop them from the
DBEnvironment in ISQL first. One particular performance task it can perform is
moving DBEFiles and log files among your disc drives. This is known as "load
balancing." HP recommends improving performance by using "movefile" to place
table and index DBEFiles for the same table on different discs. Also recommended is
putting log files on a separate disc drive than the DBECon file.

Monitoring

The database administrator (DBA) should keep close tabs on table capacities and
index efficiency using SQLMON, a diagnostic utility, or by accessing and reporting
from the system tables. This information should be examined only after an "update
statistics" has been performed on the tables of interest. DBEFile usage and percent of
capacity can be found in SQLMON=s Static DBEFile screen. The following SQL
statement will report essentially the same information:

select dbefname, dbefupages, dbefnpages,
 dbefupages*100/dbefnpages from system.dbefile;

Indexes on tables that have undergone multiple updates and deletes may use
unnecessary space by creating sparsely populated pages. From a performance
standpoint, maintaining efficient, compact indexes is very important. The cluster count
of an index indicates how many times a different page must be accessed to retrieve the
next row during an indexed retrieval. The greater the cluster count, the greater the
I/O overhead. Cluster counts (ccount's) for indexes are reported in SQLMON=s
Static Cluster screen. To report index ccount=s directly from the system tables, use
the SQL statement:

select tx.indexname, tx.tablename, tx.ccount, tt.nrows, tt.npages
 from system.index tx, system.table tt
 where tx.owner = tt.owner and tx.tablename = tt.name;

and for constraints:
select tc.constraintname, tc.tablename, tc.ccount, tt.nrows, tt.npages
 from system.constraintindex tc, system.table tt
 where tc.owner = tt.owner and tc.tablename = tt.name;

Allbase by Design
3018-9

When the cluster count about equals the number of pages used, then the table is
optimally clustered for that index. If the cluster count nearly equals the number of
rows, it indicates little or no clustering and the index is quite useless. When the cluster
count exceeds half the value of nrows, the DBA should consider dropping and re-
creating the index. The method should make use of an "unload internal" command
using a "select" with an "order by" on the index key, then a "load internal." For very
large tables, it may be 300 to 500% faster to reload programmatically utilizing the
"bulk insert" command.

CONCLUSIONS

While there is a vast amount of Allbase and SQL information found in various
publications, the crucial performance-related aspects are not clearly differentiated by
degree of impact. The one HP manual that comes closest is AAllbase/SQL
Performance and Monitoring Guidelines,@ but this is better suited as a reference than
as a guide. Certain design, creation and administration tasks in Allbase/SQL have a
much greater impact on resources and performance than others.

Allbase/SQL is a powerful relational database that approaches industry-leading
SQL performance provided the designer starts with a solid, normalized relational
model. This must be followed by creating appropriate database objects with optimal
parameters. The physical design must stem from a thorough understanding of the
application and utilization of data by users and processes of the database. Lastly, as
the database is changed dynamically by its use, the DBA should monitor, correct and
optimize inefficiencies as they appear.

