
                              Middleware - The missing link in Client-Server migration
                                                                      4008-1

Paper 4008

Middleware - The Missing Link in Client-Server Migration

William Carter
Southeastern Data Cooperative, Inc.

2100 East Exchange Place
Tucker, Georgia  30084-5313

c/o Russ Rino
LeeTech Software
(408) 253-1987

Background

Southeastern Data Cooperative was established in 1976 as a turnkey supplier of data
processing hardware and software solutions to the Rural Electric Membership Cooperative
market.  We presently have over 100 HP 3000 installations at member corporations located
across the United States from Alaska to Florida.  These stand-alone systems range in size from
the 918 through the 987 and all are running the full suite of electric utility billing and
accounting applications developed, maintained and supported by SEDC on behalf of its
member companies. In these constantly evolving mission-critical applications, three large and
complex TurboImage databases have been developed to support several hundred batch and
interactive programs using COBOL and View running on ‘dumb’ terminals.

The User Mandate

It goes without saying that over such a long period of time,  in such a highly regulated industry
spanning 49 states and serving over 100 independent companies, the data structures and
supporting code have become quite complex.  A re-design of the databases would immediately
force a rewrite of all application logic and would be, of course, an economic impracticality.
Re-engineering for client-server on those terms was out of the question for us. Nevertheless,
our user community, like users everywhere, had discovered the world of personal computing
and had begun to clamor for freer access to their data, more user-friendliness in the
applications and interaction with the numerous off-the-shelf decision support tools available to
them.

We feel that this tide of enthusiasm and end-user involvement will not be turned back and that
any sign of reluctance to participate on our part, however well-intentioned or soundly based in
systems theory, will be perceived as a negative.  Complexity is at the very heart of  the data
processing industry and we believe that it is our responsibility to respond to our users’ needs
and desires with imaginative yet sound business computing solutions, regardless of the degree
of difficulty involved.  It was with that attitude and an almost total lack of understanding of
even the most basic client-server terminology that we attended the first HP technology camp
over 5 years ago, in January of 1991, held in Cupertino, California.



                              Middleware - The missing link in Client-Server migration
                                                                      4008-2

Setting the Corporate Objectives

From what we learned in those early seminars and meetings we were able to develop our
corporate client-server migration objectives.  Simply stated, we needed to find a safe, secure
and supportable way to migrate our large and complex COBOL Image and View-based
legacy applications to a PC-based  client-server model on a step-by-step basis,
simultaneously preserving the old while gradually introducing the new, one module and
one program at a time, utilizing, to the fullest extent possible, only industry compatible
tools and techniques.   

Since that time I have been involved in client-server research and product evaluations.  My
assignment was to design the development infrastructure and standards within which we would
be able to accomplish these ambitious objectives without losing control of our business or the
confidence placed in us by our users.

By honoring the mandate, we are able to see many immediate benefits, including:

• Eliminating the need for an up-front re-design of the system.  Even if this was a practical
thing to consider, it would be best not to attempt at a time when, as a company, we are at
the lowest point on the client-server learning curve.  The knowledge gained during the
migration will surely pay dividends in the future when the inevitable re-engineering effort
actually does take place.

• Protecting our users’ sizable investment in HP hardware by being able to coexist with the
terminal-based software while gradually introducing the PC-based system, one seat at a
time.

• Greatly lessening the impact of change and training on our end users and on our customer
service and product support personnel.  Because the new and the old can coexist, the
pressure is off the learning cycle, allowing the early pace to be set by the individual
learner.  This is very important in a nationwide environment such as ours.

• Protecting our investment in man hours of program development by using, to the fullest
extent possible, only industry compatible tools and techniques.  We are not being naïve on
this topic and we realize that this is an imperfect and developing environment, but we also
know that time is of the essence from a user perception point of view and that by sticking
to our self-imposed standards as closely as possible, we are a lot closer to the goal of
‘openness’ than if we allow our programming effort to take off in multiple directions at
the outset.  Through the careful use of ‘middleware’ products we have been able to
modularize the host and database access functions so that our programs contain, with
minor syntactical variations, only standard coding while achieving ‘industrial strength’
performance.



                              Middleware - The missing link in Client-Server migration
                                                                      4008-3

Selecting the Relational Database Engine

It is obvious that the ability to coexist with the existing software and hardware is vital to the
feasibility of our client-server migration project.  It also means, however, that our underlying
TurboImage database structure cannot be replaced for the duration of the migration effort (a
process we estimate will take between 3 and 5 years to fully complete).  Our obvious (and
only) choice for a relational database engine was the Image/SQL product from Hewlett
Packard.

This strategically important product enables us to gradually transform our programs into an
industry standard SQL-based relational format without disrupting the TurboImage core upon
which all the rest of the system depends.  Only after this transformation is complete will we be
able to consider using another database product.

Selecting the PC Operating System and Network Protocol

Because this is our first official foray into the world of PC-based applications and at the time
of its introduction we had not yet made our first production installation, we felt it would be
best to start at the most current OS level, so we have selected Windows 95.  TCP/IP support is
bundled with Windows 95 so it was the obvious choice for our network protocol stack, greatly
simplifying the Host/PC network connection to MPEix.

Selecting the Software Development Language

We evaluated a number of promising software development tools and languages with the hope
of finding one that could handle all of our programming requirements.  Again guided by our
management mandate to use, wherever possible, only industry-compatible tools and methods,
we took a special interest in Microsoft Visual Basic (Professional Edition).  Out of the box,
this product appeared to offer the syntactical strength, support for the graphical user interface
and database access capabilities that we felt were necessary for a successful conversion of our
software.  We were somewhat concerned by rumors we had heard about the execution speed of
Visual Basic programs, however, so we  reserved the option of developing some of the more
code-intensive routines in C++.  As it turned out, we never found it necessary to invoke our
C++ safety net because, in the world of graphical user interfaces, event-driven programming
techniques and host database access routines, the Visual Basic execution speed on a modern
PC is a good match. Certainly in terms of long term supportability, simplicity  and
standardization of code, we feel that any trade-off in terms of faster program execution speed
or, within limits, PC resource utilization, is a compromise well worth making. All of our
application programs, written exclusively in Visual Basic,  execute crisply and responsively.
In a user-driven environment, any other run-time considerations become academic.  I would not
want to say that we will never develop any lower level code modules but at this time it appears
to be highly unlikely.



                              Middleware - The missing link in Client-Server migration
                                                                      4008-4

Making the PC a Team Player

Regardless of the development tool set in question, throughout our evaluation process we found
a consistent and serious lacking in the area of support for multiple-programmer development
environments.  This included such things as  code library functions, source file management,
version control, audit capabilities against accidental or intentional file corruption, group
compilations, etc.  This was no less true with Visual Basic than with the others.

It is imperative to structure and define the development, testing, debugging and production
environments before any serious software development takes place.  Postponement of this
important step will likely result in an out of control situation  early and often in the project life.

There is probably enough material here to warrant a separate paper and there are certainly
plenty of software products out there attempting to deal with these issues, including the
bundled Source Safe product from Microsoft, but suffice it to say that we found it more
advantageous to develop our own server-based Source File Librarian, loosely patterned after
the discontinued Microsoft Delta product, than to try to adapt to the complex rule bases
imposed by the off-the-shelf solutions we tried.  This program, like all of our programs to date,
was developed strictly in Visual Basic.  It is simple to use, is tailored to its specific task and
has enabled us to move forward in a controlled fashion with a startup force of four full-time
programmers and two system designers.

Project Definition -- Batch Job Front Ends

Rather than to initially attempt a full-blown SQL-based rewrite of our off-line reports,  we
have decided to front-end each of the jobs with a small Visual Basic program launched by, and
under control of, the Application Manager.  By choosing this path we are able to put a new
face on our software in a relatively short time frame while simultaneously developing a
repository of GUI-based programming skills and experience.  Because the existing COBOL
programs are ultimately executed under this scheme, we are able to postpone the development
of the more intense database navigation and update routines, thus allowing some additional
time for the supporting software tools, such as Image/SQL, to stabilize and mature.

We have found that it is very easy to underestimate the steepness of the learning curve for both
new and experienced programmer/analysts and we have learned to take the conservative view
wherever relational DBMS features or performance issues are involved.  The ultimate redesign
of the off-line reports for full SQL compliance will be in the second phase of our project.



                              Middleware - The missing link in Client-Server migration
                                                                      4008-5

Project Definition -- Interactive Modules

The inquiry, posting and file maintenance portions of our system, because of their
complete dependency on the Block Mode terminal features, do not correlate well to
the Windows environment. Our early attempts at transposing these modules directly to
the GUI environment have yielded mixed results at best. Event driven programming
requirements and limited screen ‘real estate’, when compared to the dumb terminal
interface, define the need to completely redesign these applications for Windows
compatibility at the outset.

Again trying to allow as much time as possible for the more intense Image/SQL
features such as row locking and transaction control to develop and mature, we have
decided to begin our interactive rewrite with the Inquiry modules.  Building upon the
foundation of Visual Basic programming techniques developed during the batch job
front-end phase, our programmers will now be able to focus on the issues of SQL
database access and recordset manipulation.  It is our hope that, by this time, the
techniques associated with screen handling and event coding will have become more of
a background concern for both our programmers and our system design team.  Here,
again, a respect for the steep learning curve can go a long way toward minimizing
frustration and improving programmer productivity in the long run.

Design and implementation of the posting and file maintenance routines will follow the
successful deployment of the inquiry modules with the objective of again building upon
the knowledge gained and skills developed during the inquiry rewrite.

Project Definition -- The Application Manager

In conjunction with all of the system elements described above and the enabling technologies
(middleware) described below, we developed the Application Manager PC-resident control
program.  Written entirely in Visual Basic, Application Manager is the centerpiece of our
client-server system.  It connects our ODBC compliant Visual Basic programs, executing from
either a LAN-connected Windows workgroup or individual LAN-connected workstation, with
MPEix and the existing TurboImage databases on the host.  Properly authorized users are able
to move freely between batch and interactive functions on any of the three SEDC software sub-
systems.  They  may switch between the old and the new code versions, as required, while
security remains the responsibility of the host system.  By using only standard Windows
controls and methods, we have been able to give all of our programs, including Application
Manager,  a consistent ‘look and feel’.

The high degree of modularity built in to our system design permits us to release our product
on a program-by-program basis.  Remembering that the end-user learning curve is also a steep



                              Middleware - The missing link in Client-Server migration
                                                                      4008-6

one, these system characteristics were designed to  make it easier for them to acclimate
themselves to the new methodology confidently and, at least initially, at their own pace.

The Missing Link

Having selected the host database engine, the network protocol, the PC operating system, the
programming language and the source file librarian, we needed only to decide upon a
middleware piece to bring the disparate Host and PC worlds together.

It soon became obvious that to truly present a complete PC-based client-server solution to our
users, we were going to need a lot more than the ability to read and write the host database
from the Visual Basic programs.  We would need, in fact, some sort of programmable
message-level interface to the 3000 for logon security, batch job front-end setups, job control
and spool file management.  To keep within the management-mandated safety and security
guidelines, we wanted all security issues to continue to be handled by MPEix on the 3000,
realizing that any information maintained on the PC must realistically be considered to be
public information.  For this message-level interface functionality we selected the LeeTech
Software, Inc.  Client-Server Foundation (CSF) middleware product.  CSF allows us to
seamlessly connect, via four simple DLL function calls, to our existing User Menu Security
system by attaching the workstation’s Application Manager program to our COBOL-written
message handler residing on the host.  The message formats and functions were designed by us
to accommodate security, job and spool file issues.  Our green bar Print Preview feature for
off-line reports has been very well received by our end-users and has provided both an added
value and an incentive for them to implement and learn the new software quickly.  In addition,
browsing the report and standard list files has turned out to be an effective low-stress learning
method  for Windows/Mouse beginners.

We also discovered that while standard ODBC with SQL pass-thru to Image/SQL gave our
Visual Basic programs logical access to our existing TurboImage databases, it seriously lacked
in robustness, performance and flexibility to the point where, after much evaluation,  we felt
that it was not suitable for use in our project at this time.  To solve this problem, we again
selected a LeeTech Software, Inc. middleware product called SQL Developer Kit or SDK.
This product provides direct access to the Host-resident TurboImage databases without
invoking either the Microsoft Jet Engine routines or the ODBC drivers.  Used exclusively in
our interactive module rewrite and soon to be used in phase 2 of our batch job redesign, SDK
has proven to be a high-speed, reliable, industrial-strength SQL database interface, portable
across a variety of popular industry platforms and relational database products.

Avoiding Third Party Dependency

A major concern whenever a third party product is introduced is that we might become so
dependent upon the intrinsic functionality of that product that we wind up creating just another



                              Middleware - The missing link in Client-Server migration
                                                                      4008-7

hard-coded, proprietary, ‘closed’ system.  We, too, were concerned about this phenomenon as
it pertained to our middleware selection.  Instead of backing away from the tool, however, we
used the tool itself to develop a set of library routines which allow us to write our programs as
if they were standard ODBC applications, replacing the Visual Basic record set statements on
a one-for-one basis with almost identical function and sub-function calls.  Should it ever
become necessary, desirable or practical for us to switch back to a pure ODBC solution, we
are basically only a compile away, after some very minor syntactical changes to convert our
record set functions back to standard Visual Basic statements.

This is the least obvious feature of our system but is also one of its major strengths, for it
allows us to confidently go forward with our development, using a truly robust database
interface, without having to compromise our stated objectives concerning future operating
system and database independence, industry standardization and upward compatibility of code.

Regardless of the timing or direction of future ODBC development, the LeeTech/SDK will
continue to shield us from the intricacies of the various vendors’ implementations by allowing
us to simply insert a different SDK ‘engine’ between our standard Visual Basic code and the
Host operating system or database environment.  This is an oversimplification to some extent
but, as long as we avoid the use of vendor-specific SQL extensions in our code, the concept is
sound.

It would be foolish to attempt to predict the future of the industry today but we feel that with
all of our Visual Basic code remaining ODBC compliant and the LeeTech/SDK serving as our
database interface, we are well positioned to respond to future changes in the
ODBC/Relational Database paradigm.

Conclusion

Much work remains to be done and we in no way think that ours is the only viable answer or
that we have examined every possibility in this new world of possibilities.  I offer this paper
simply as a means of telling our story and in the hope that it may contain something of value to
you.  The enthusiastic acceptance exhibited by our user community gives rise to the feeling
that, at least within our own purview, we are on track for an overwhelming success.

We hope that our presentation today will effectively demonstrate that with thorough planning,
careful selection of tools and strategic use of solid middleware products, all of the pieces can
be brought together, enabling all of us to meet our client-server migration objectives in an
orderly, cost-effective and supportable manner.


