
Developing for the Intranet

 1

Paper# 4009

Developing for the Intranet
How to Use WWW Technology for Just About Everything

by Dr. David Johnson
Johnson Computer Software Team Limited

5072 - 3080 Yonge Street, Toronto, Ontario M4N 3N1
(416) 487-3631

"Client/server as we know it is dead. It is being replaced by this framework"1. This is
probably on a par with the continued predictions of the death of COBOL but it does
point us in a new and interesting direction.

Since IBM "invented" the personal computer, the world of IS has been heavily focused
on the desktop. So much so that Microsoft was able to put the world on hold again
and again while it struggled to deliver Windows95. Because the world has been so
focused on the desktop, we all waited. The crack that Win95 equals Mac89 is funny
precisely because it is largely true. There is nothing terribly innovative or new about
this "new" operating system.

Now Where Was I ...

Where were we when Microsoft put the world on hold? Focused almost exclusively
on the desktop. More and more desktop applications with more and more arcane
features described aptly by one scribe as Jaba the Huts squatting on your disc.

What about client/server - isn't that looking beyond the desktop? Yes but the
focus with most development tools is almost exclusively on the desktop. "Fat" clients
do all the work and the server is often not considered more than a large shared disc.
Moreover all too often the client development has to be cognizant of the organization
of the server data: if you have two different databases on the server then you have
two ways of interacting with your server.

Is it any wonder then at the excitement being generated by the World Wide Web?
Originally released by CERN for use in 1991 to distribute scientific papers and results,
it became a revolution with the release of a graphical browser, Mosaic, two years later.

We have the ultimate Open System - nobody owns this stuff - built on a universal
client/server architecture. The need for proprietary e-mail, proprietary work group

1Marc Andreesen VP Technology, Netscape

Developing for the Intranet

 2

software or proprietary data warehouse systems, etc., begins to fade in the light of the
things that can be and are being done with the WWW technology.

The WWW technology provides a wonderful way to organize and retrieve
information; there is a beautiful simplicity to it that gives it elegance, that allows you
to think of all of the information out there available to you as one vast hyperlinked
document. Or think of the Web as the planetary disc drive. This can be applied to the
"intranet" as well: use the WWW technology to handle corporate information for
internal use. Being open systems technology it runs on the HP3000 just as well as
UNIX servers

The more we explored the concepts and the technology, the more we came to realize,
as expressed by Chris Cobb, "There are times when the 'cosmic tumblers' fall into place
and the resulting harmonic convergence changes the world overnight"2.

We realized the real power of the Web concept comes not from having a Web server
with information stored in html pages but from having a server with application
specific databases and a way of allowing the user to interact with these databases by
having html pages constructed 'on the fly'. After all, a basic interactive application
allows the user to:

get information into the system either by entering it or automatically from
another system
store and manipulate the information
retrieve and process the information.

That is, get it in, store it and get it out. It appeared that these could all be done quite
simply with the Web technology so we set out to see if we could actually build real
applications using it.

The First Application: Replacing Reporting with Publishing

We chose the path of least resistance: we tried the simplest thing first. We have a
major advertising package that runs on the HP3000 and dates back to the early 1980s
and still runs mostly on character based screens. The reporting requirements are
significant, a large advertising agency can produce dozens of reports a night, each
resulting in hundreds of pages. The first prototype was to produce on of these reports
as a set of linked html pages. All we did was to adapt an existing report to create files
that are html pages instead of printing the output and inserted what we thought were

2Weaving a World Wide Web: An Overview of Hewlett-Packard's Web

Strategy - hp-ux/usr January 1996

Developing for the Intranet

 3

appropriate hyperlinks to aid user navigation. This has a number of immediate
advantages over producing the paper:

Speed: it takes a long time to print and deliver a 700 page report, particularly if
there are a large number to produce. Eliminating the paper consumption means
the report is available to the user the instant it is done, usually by the time the
user comes into work in the morning.
Accessibility: by inserting hyperlinks into the report, the user can navigate to
the desired sections instantly. Flipping through a 700 page report is tedious,
pointing and clicking is much faster and more accurate. And most browsers
have a Find command to let you hunt for specific text strings in the loaded
page.
Flexibility: users do not have to be in the office to access their information.
Remote users simply need an internet connection.
Client accessiblity: with a little work in designing security, this approach solves
a problem we have faced since we first started developing on-line systems 20
years ago: clients wanting on-line access to their advertising campaigns. For
both technical and political reasons, allowing direct access to the information in
the application database has never been a viable option. Now users can
"publish" their client's information onto their Web server and allow the client to
access this snapshot with a Web browser over the internet.

One of the most interesting findings was that there is not a lot of work involved to get
your first Intranet application up and running.

The Poor Mans Data Warehouse

The next project dealt with involved a complex corporate hierarchy. An attempt to
report this hierarchy on paper, in complete detail, foundered on volume issues. When
we tried to create a report that showed the hierarchy at every stage there was so much
repetition of certain pieces at different levels we were attempting to create a report
with over half a million records. What we did instead was to present the information to
the users as a set of linked Web pages eliminating all 'repetition'. This is the
beginnings of a data warehousing: fetch existing data, organizing it in 'layers' to create
information and allowing the user to drill down from the top to increasing layers of
detail. The final stage is to allow users to do their own manipulation of the data. How
do you do this with "published" pages? Very simply, at the bottom of your data
hierarchy, create csv (comma separated value) files instead of (or as well as) html
pages. The users' browser can be configured to load Excel or Lotus in response to
receiving the file.

Developing for the Intranet

 4

Since the results of the publishing are a set of html pages, links can be added or
modified by hand as required.

The result? A very fast, very flexible and quite functional data analysis tool for
management at a very low cost.

Data Analysis

One facility in our advertising system is to provide access to audience survey data.
The rating information is provided by the organizations that perform the actual
measurements and make the resulting information available on tape. We load the data
into a database on the server to be used for post-analysis or after-the-fact reporting.
But the real use of the information is in the buying process where the users generally
resort to looking up the numbers in published books. There are ways to access the
data electronically but this generally involves either getting it on a CD-ROM and
acquiring special purpose custom software or running on terminals or terminal
emulation software accessing the database on the server. Developing a custom
client/server special purpose application was simply too expensive to justify.

Using the Web technology, we developed the application in only a few days. Up and
running involved creating 5 html templates (3 of which are shown in figures 5, 6 and
7) and three scripts or programs to be run by the Web server. The scripts are written in
C and vary from 400 to 1100 lines of C code.

Here's how it works: the user activates a link from another, permanent or static page
that launches the first of the three scripts. This first script opens the audience
information database, finds out what demographics, surveys and markets are available.
With this information it reads the appropriate html templates and constructs the
following page for the user:

Developing for the Intranet

 5

figure 1: selecting the search parameters

The user selects the desired demographic group, e.g. Women 18-49, the survey and
the market they are after and press the button "Get Programs". This launches the

second script which receives the chosen parameters as input. This script goes to the
database and retrieves all the programs for the selected market, and it too reads the
appropriate html templates and constructs the following page for the user:figure 2:

choose program or day and time

The user requests either a program name or a time period and clicks the button
"Get Audience" that launches the third script. This script dutifully returns to the
database and gets the requested audience numbers for the requested program or time
period:

Developing for the Intranet

 1

figure 3: requested audience information

This page is presented as a separate browser window leaving the previous page up in
the background to be used for subsequent searches.

There is actually a little more happening 'under the hood' in terms of automatically
developing numbers for non-standard demographics and averaging multiple weeks
(things a user simply would never have time to do manually), some security features,
etc. but the essence of the application is very simple and easy to create.

Some interesting notes are:

The system is very "modular": scripts are quite independent of each other
making it easy to distribute development. In fact there is nothing to say the
scripts have to be written in the same language.
It is important to separate the scripts that generate the information and the
presentation of the results to the users. We set it up so that the scripts use
template pages to create the pages for the user which means the layout of the
page and even whether the final screen of audience information is presented as
an html page or as a csv file to launch the user's favourite spreadsheet, is a
matter of a few keystrokes editing a template file rather than going back to the
programmers to make changes.
The Web technology provides the developer with the universal client/server
application. This audience lookup will run in-house if the agency has their
server set up as a Web server. It will run over the internet with the user in one
city and the server in another. It doesn't matter if the user is in the office or at
home so long as internet access is available. Last but not least it doesn't matter
if the user has a PC or a MAC.

A Complete Application

So far we have only discussed applications where the data is already in the data base
and all we are doing is extracting it. But what about using this universal client/server
to enter data? The browsers allow user input, of course, to get parameters and fill in
forms to capture information. Using this feature, it is easy to create dynamic input
forms to allow the user to upload files from another system and to capture input data.

In this application, most of the input is done via an electronic transfer, the main data
entry function is to upload a file. The html page that does this uses form input:

Developing for the Intranet

 2

<FORM ENCTYPE="multipart/form-data" ACTION="/cgi-bin/update.nmp"
METHOD=POST>
Send this file: <INPUT NAME="userfile" TYPE="file">

 <INPUT TYPE="submit" VALUE="Send File">
To clear the form, press this button: <INPUT TYPE="reset" VALUE="Clear
Form">
<hr>

</FORM>

But the users do have to add some additional data. For example, the users need to
enter a foreign exchange rate on a daily basis. They do this by accessing a page to
choose the month and the script executed in response pulls the existing entries,
displays them, as shown in figure 4. (they can be changed at this point) and allows the
user to add additional rates.

Developing for the Intranet

 3

figure 4: input/edit exchange rates

With all the information in place, requesting the 'reports' is a simple process of
accessing the "request" page, choosing the type of information required and receiving
an html page in the browser or a .CSV file into a spreadsheet. Once again, a simple,
flexible and functional application at a very low cost.

How to

To arrive at the functionality demonstrated in figure 1, requires a script (approximately
400 lines of C code) and 3 html templates (and a "blank" html page). The templates
are shown in figures 5, 6 and 7.

<HTML><HEAD><TITLE>BBM Lookup Request</TITLE></HEAD>
<FRAMESET ROWS="37%,63%">
 <FRAME SRC="/templates/bbmhead.html" TARGET="access" SCROLLING="no">
 <FRAMESET COLS="50%,50%">
 <FRAME SRC="/options.html" SCROLLING="yes" NAME="client" TARGET="search">
 <FRAME SRC="/blank.html" SCROLLING="yes" NAME="search"
TARGET="lookup">
 </FRAMESET>
 <!FRAME SRC="/blank.html" SCROLLING="yes" NAME="lookup">
</FRAMESET>
</HTML>

figure 5: bbmmast.html

<HTML><HEAD><TITLE>BBM Television Access</TITLE></HEAD>
<BODY><H1>
BBM Television Access
</H1>

figure 6: bbmhead.html

<HTML><HEAD><TITLE>Select Client</TITLE></HEAD>
<BASE TARGET="search">
<BODY>

<FORM ACTION="/cgi-bin/search.nmprg" METHOD="GET">
<TABLE>
<TD ALIGN="LEFT">Demo:
<TD><SELECT NAME="demo#">
<![+DEMOS]>
<OPTION><![DEMO]></OPTION>
<![-DEMOS]>
</SELECT>
<TD><TR>
<TD ALIGN="LEFT">Book:
<TD><SELECT NAME="start#">
<![+SURVEYS]>
<OPTION><![SURVEY]></OPTION>
<![-SURVEYS]>
</SELECT>
<TD> for: <INPUT TYPE="text" NAME="weeks" SIZE=2> weeks

Developing for the Intranet

 4

<TR><TD>Market:
<TD><SELECT NAME="market">
<![+MKTS]>
<OPTION><![MARKET]></OPTION>
<![-MKTS]>
</SELECT>
<TR><TD ALIGN="RIGHT"><I>and press</I>
<TD><INPUT TYPE="SUBMIT" VALUE="Get Programs" ALIGN="MIDDLE">
</TABLE></FORM>
</BODY></HTML>

figure 7:options.html

Users may access the system from one of several pages. The link they follow launches
the first script. This program is launched by the http daemon and gets its input in the
QUERY_STRING environment variable which contains the information passed from
the Web browser to the http daemon.

The basic logic is quite simple:

get the input parameters
open the audience information database
open the appropriate template file and html file
get the requested information and 'merge' the information from the database with
the template and return it (to standard list) to the http daemon.

Some actual code segments are shown below:

****************************INPUT PARAMETERS***************************
 /* see if a directory specified in QUERY_STRING environment variable */
 /* set the fully qualified name of the options.html file */

 strcpy(hfname,"/WWW/WWW/ARPA/httpd_1.3/htdocs"); /* document root */

 pc=getenv("QUERY_STRING");
 if (pc != NULL) {
 /* get the directory name DIR=dirname */
 pl=strstr(pc,"DIR=");
 if (pl != NULL) {
 pr=strchr(pl,'&');
 if (pr != NULL)
 *pr=0;
 if (pl[4] != '/')
 strcat(hfname,"/");
 strcat(hfname,pl+4);
 }
 }

 if (hfname[strlen(hfname)-1] != '/')
 strcat(hfname,"/");
 strcat(hfname,"options.html"); /* fully qualified name of options.html
*/
**

Developing for the Intranet

 5

*****************OPEN THE AUDIENCE INFORMATION DATA BASE**************
 /* open the BBM data base */
 strcpy((char *)base," BBM.BBMTV.BBM;");
 mode=5;
 DBOPEN(base,"READONLY;",&mode,&stat);
 if (stat.cc)return 0; /* data base error */

***********************OPEN THE APPROPRIATE TEMPLATE FILE**************
/*************************AND THE HTML FILE****************************
 /* open the OPTIONS template file */
 strcpy(tfname,"/WWW/PUB/OPTIONS");
 tfile=open(tfname,O_RDONLY);
 if (tfile == -1)return 0; /* error opening file */

 /* create and open the options.html file */
 umask(0);
 hfile=open(hfname,O_WRONLY|O_CREAT|O_TRUNC,
 S_IRWXU|S_IRWXG|S_IRWXO);
 if (hfile == -1)return 0; /* error opening file */

*****************GET THE REQUESTED INFORMATION FROM DATABASE***********
***********************AND MERGE IT WITH TEMPLATE**********************
 /* read template file, find keywords */
 /* get data for keywords from data base */
 /* write recs to html file */

 while ((tlen=read(tfile,trec,MAXREC)) != -1) {
 /* read template file */
 if (!tlen)break; /* end of file */
 trec[tlen]=0;

 /* find the keyword enclosed in square brakets */
 pl=strchr(trec,'[');
 if (pl != NULL)
 pr=strchr(pl,']');
 else pr=NULL;

 if (pl != NULL && pr != NULL) {
 /* keyword found */
 /* get data for the keyword */

 if (strstr(pl,"[DEMO]") != NULL) {
 /* get the demo */
 DBGET(base,demo_set,&mode,&stat,demo_list,dvalue,dvalue);
 if (stat.cc)return 0; /*data base error */
 }

 else
 if (strstr(pl,"[SURVEY]") != NULL) {
 /* get the survey */
 DBGET(base,survey_set,&mode,&stat,survey_list,dvalue,dvalue);
 if (stat.cc)return 0; /*data base error */
 }

 else

Developing for the Intranet

 6

 if (strstr(pl,"[MARKET]") != NULL) {
 /* get the market */
 DBGET(base,market_set,&mode,&stat,market_list,dvalue,dvalue);
 if (stat.cc)return 0; /*data base error */
 }

 else
 pr=NULL; /* unrecognized keyword */
 }

 if (pl == NULL || pr == NULL) {
 /* just a rec with no keyword or unrecognized keyword, */
 /* nothing to replace, just write rec to html file */
 if (write(hfile,trec,strlen(trec)) == -1)
 return 0;
 }

 else {
 /* got a keyword, write rec to html file, insert keyword value */
 strcpy(szkey,(char *)dvalue);
 if (write(hfile,trec,pl-1-trec) == -1 ||
 write(hfile,szkey,strlen(szkey)) == -1 ||
 write(hfile,pr+1,strlen(pr)-1) == -1)
 return 0;
 }
 }

******************RETURN INFORMATION TO THE HTTP DAEMON****************
 /* open the BBMMAST template file */
 /* read it and write it to STDLIST */
 strcpy(tfname,"/WWW/PUB/BBMMAST");
 tfile=open(tfname,O_RDONLY);
 if (tfile == -1)return 0; /* error opening file */

 while ((tlen=read(tfile,trec,MAXREC)) != -1) {
 if (!tlen)break;
 trec[tlen]=0;
 printf("%s",trec);
 }

Developing for the Intranet

 7

Where Do We Go From Here

We have found a number of advantages to this approach: the flexibility, the
modularity, platform independence and the enormous popularity of the Web in general
make this a very enticing path to explore for application development.

Underlying this is the assumption that users are or will quickly become used to using
their browser as the normal means for finding and viewing information. By using the
browser as the standard interface, user training requirements are minimized as are
client (PC) software costs. Another bonus is that the client is platform independent:
we don't know or care if the user has a PC or a Mac on their desktop.

But the applications discussed here are all quite simple - what about complex
applications requiring more user interaction? This approach eschews the "fat client"
architecture that is representative of current client/server development and replaces it
with a decidedly anorexic one. It has been referred to as a "3270 terminal on steroids"
because the mode of operation is to fill in the blanks and press the button. The Web is
stateless and, for many business applications, we need to establish more than a
transitory link between the client and the server. The solution we are exploring is to
add a development tool such as Sun's Java to fatten up the client to a healthier looking
state. With this in place, we expect to see a new generation of applications that are
more fun, more functional, more robust and are easier, cheaper and faster to develop.

