
Developing Mail Enabled Applications with OpenMail
4010-1

Developing Mail Enabled Applications with HP OpenMail

Tony Jones
Hewlett-Packard Company
20 New England Avenue

Piscataway, NJ 08854-4107
(908) 562-6248

HP OpenMail provides enterprise wide, client/server based electronic messaging. It
also has the capability of allowing applications to use it as an information transport.
This paper describes how to develop mail enabled applications that access OpenMail
servers. Mail enabled applications can be client based or server based. For example, a
client based application can extract information from a daily report, summarize it, and
then mail it to a selected group of end-users. A server based application can provide a
means for any end-user to request specific information.

The topics discussed in this paper include:

 - Introduction to HP OpenMail architecture
 - Introduction to using mail API calls (MAPI, UAL) within client applications
 - Introduction to the OpenMail Request Server
 - Techniques used to build mail enabled applications.

Upon completion of the session, the participants will have a better understanding of how
to:

 1] Use OpenMail as a foundation element in their current system architecture
 2] Develop applications that interact with end-users via OpenMail
 3] Use either client or server based mail enabled applications to streamline
 information flow

Developing Mail Enabled Applications with OpenMail
4010-2

Introduction to HP OpenMail architecture

OpenMail is a software application that provides electronic mail and other messaging
services. It is compliant with the X.400 Recommendations and provides facilities based
on international standards to exchange and manage information.

OpenMail consists of a user agent Application Programming Interfaces (API) for
communication with the client applications, a message store that holds messages,
messaging-optimized Directories and connection to X.500 Directory systems, interfaces
that connect to transport systems, and gateways that link to other systems.

Cooperative Computing Systems Division

OpenMail
Typical OpenMail Architecture

OpenMail

Servers

X.400 Backbone X.400 Backbone

Variable Lan Topologies

Integrated Message Store, Directories, APIs

and MTAs

Non-Hierarchical Physical Structure

Standards Based

Scalable
Manageable
Secure
Reliable
Standards Based
Flexible

Figure 1. HP OpenMail

OpenMail uses a client-server architecture to provide electronic mail facilities. The
OpenMail architecture consists of three main parts:

1] Interfaces to the clients, the X.400 Message Transfer agent, and to Sendmail
2] Gateways to other messaging systems
3] Remaining services, such as local delivery and message routing.

Developing Mail Enabled Applications with OpenMail
4010-3

Figure 2. HP OpenMail Messaging Services

Every user in OpenMail is addressed in the following manner:

GivenName SurName/OrgUnit1,OrgUnit2,OrgUnit3,OrgUnit4

The user's name is actually made up of up to four items: GivenName (first name),
MiddleInitial, SurName (last name) and generation (Jr, III, etc.). The four
organizational units make up the mailnode. A user can have from one to four
organizational units.

Example:
Tony Jones/hp,piscataway

Users who are on external mail systems such as the Internet can be reached via the Unix
gateway. To address users on external systems, use the Foreign Address field area
which consists of the "name@domain.organization" convention surrounded by
parentheses after the mailnode.

Example:
Jim Smith/hp,unix(jsmith@compusa.com)

Developing Mail Enabled Applications with OpenMail
4010-4

Users on external mail systems such as the Internet can also reach an OpenMail user via
the Unix gateway. To address OpenMail users from external systems (using default
configuration), use the "name/mailnode@domain.organization" convention. The name
field is made up of SurName_GivenName (separated by an underscore), and the
mailnode field is made up of the org units (separated by an underscore).

Example:
Jones_Tony/hp_piscataway@hosta.hp.com

In addition, OpenMail users can have more traditional looking electronic mail addresses
when messages are sent through the Unix gateway. OpenMail can be configured such
that the contents of each user’s “INTERNET-ADDR” field will be used instead of the
default method OpenMail uses to produce an e-mail address. Therefore, an OpenMail
address to the Internet could appear as:

Tony_Jones@om.hp.com

OpenMail supports a command line interface to access various functions including:

Command Description
omsend Send an electronic message
omread Read an electronic message
omnew List new messages
omdelete Delete a message
omsearch Search a directory for user(s)

Programs can use the command line interface to electronically send program output.
For example, to send a report file "report.out" to a user called Tony Jones:

omsend -t "Tony Jones" -s "FYI report" -a "report.out" -u $USER -p $PASS -q

The -s option is the subject, the -u and -p options are for the OpenMail user and
password. The -q option is for quiet mode (no informational messages are generated).

Developing Mail Enabled Applications with OpenMail
4010-5

Introduction to using mail API calls (MAPI, UAL)

Client application communication to OpenMail servers is done via application
programming interfaces (API). The APIs provide access to the various OpenMail
server features including the message store, directory, and system management. The
original API for OpenMail was the User Agent Layer (UAL). This API exposes all of
the features of the OpenMail server.

A popular set of APIs are the MAPI 0 and MAPI 1 from Microsoft. MAPI 1 (Extended
MAPI) is the Microsoft Exchange API. It is used by Microsoft on the Windows family
of operating systems to implement Microsoft Exchange, their client/server e-mail
system. MAPI 1 is also called X-MAPI.

OpenMail supports the MAPI 1 interface to the OpenMail server. MAPI 1 sits alongside
cc:Mail Desktop API, cc:Mail Mobile API, CMC, MAPI 0 (the Microsoft Mail 3.x
API), VIM, and P7 as client APIs currently supported by OpenMail. (This range is in
addition to OpenMail's native UAL API, which is in effect a superset of the other APIs.)
This set of different client APIs enables OpenMail to support a wide range of client,
mail-enabled, and mail-aware applications. Supporting MAPI also enables OpenMail to
work with MAPI 1 clients and provide the same sort of client connections as the
Microsoft Exchange server.

The MAPI 0 functions are:

Command Description
MAPILogon Begins a session with the messaging system
MAPIFindNext Returns ID of the next (or first) mail message of a specified type
MAPIReadMail Reads a mail message
MAPISaveMail Saves a mail message
MAPIDeleteMail Deletes a mail message
MAPISendmail Sends a mail message, allowing greater flexibility than

MAPISendDocuments in message generation
MAPIAddress Addresses a mail message
MAPIResolveName Displays a dialog box to resolve an ambiguous recipient name
MAPIDetails Displays a recipient details dialog box
MAPILogoff Ends a session with the messaging system

An application developer can focus on using MAPI to access a messaging backbone. It
should not matter to the application developer that the MAPI services are provided by
MS-Mail for OpenMail instead of the regular MS-Mail. The code should simply bind to
the MAPI Dynamic link library (DLL) and call the regular MAPI functions. The fact
that MS-Mail for OpenMail is installed will result in the OpenMail version being called.
All MAPI-0 calls will be invoked within the context of the OpenMail driver. The added

Developing Mail Enabled Applications with OpenMail
4010-6

benefit to this approach is other programs that take advantage of MS-Mail via MAPI
now take advantage of OpenMail.

Refer to Appendix A for a sample program that uses MAPI function calls.

Introduction to the OpenMail Request Server

The OpenMail Request server allows a user to mail a request to execute a script and get
the results in an electronic mail message. These scripts can provide functions such as
return the amount of free disc space on the OpenMail server. Access control lists
(ACLs) are also available to control who can access the scripts. To access the request
server, replace the GivenName with the request (name of the script), and use "+req" as
the SurName:

Request +req/ou1, ou2,ou3,ou4(Foreign Address Field)

Note: The scripts are stored in the "/usr/openmail/req" directory on the OpenMail
server.

The Request server provides five items to a script:

- Four environment variables:
Variable Description
LANG Language used by the sender (C, english, etc.)
OMSUBJECT Subject field of the message
OMSENDER Sender's name (Given & SurName) and mailnode
OMRECIPFA Foreign address field of recipient's information

- Last body part of the message

For example, suppose you want to access the Request server to find out the amount of
disc space consumed by a particular user. To execute a script called discusage use the
following format:

From: Tony Jones/hp,piscataway
To: discusage +req/hp,piscataway(sbutler)
Subject: Hi there from the gang
Text:

This is line 1
This is line 2

The items seen by the script would include:

Developing Mail Enabled Applications with OpenMail
4010-7

LANG=C
OMSUBJECT=Hi there from the gang
OMSENDER=Tony Jones/hp, piscataway
OMRECIPFA=sbutler

The Foreign address field typically looks like: name@host.domain.organization. In this
example, we provide a user's name (sbutler).

Reading from "standard in", the script would get "This is line1, This is line 2,..." (on
separate lines).

The output of the script (via "standard out") is returned to the sender in an e-mail
message.

If a copy of the script resides on separate OpenMail servers, the sender could specify a
mailnode on a different server. The script would then execute on the computer that
services that mailnode and the results would be returned to the sender.

Techniques used to build mail enabled applications

An application can extract information from a daily report, summarize it, and then mail
it to a selected group of end-users. The application can invoke a separate program to
mail the information. The distribution list of end-users interested in the information can
be stored in the OpenMail server. The application can send messages to the
distribution list and let the list be managed at a higher level. This allows for further
modularization.

Refer to the Visual Basic program in appendix A to see a sample of how to mail enable
applications. This program can be called by other programs. This program can be
changed to have a hard-coded file name attachment, and a hard-coded distribution list.

References
Technical Reference: Microsoft Mail Electronic Mail for PC Networks Version 3.2
Programmer’s Guide: Microsoft Visual Basic Version 3.0
Microsoft KnowledgeBase Article Q140447

Developing Mail Enabled Applications with OpenMail
4010-8

Appendix A.Visual Basic Program that uses MAPI-0 to send mail

The information in this article applies to:
 - Microsoft Mail for PC Networks, versions 3.0, 3.2, and 3.5

SUMMARY

The Simple Messaging Application Programming Interface (MAPI) includes functions that allow
developers to logon, send, and logoff of Microsoft Mail programmatically. The following Microsoft
Visual Basic code illustrates successful calls to these functions.

MORE INFORMATION

The following Microsoft Visual Basic code uses:

 - MAPILogOn function to initiate a mail session or run with an existing session if one exists.
 - MAPIRecip structure to set up the recipients of the mail message.
 - MAPIMessage structure to set up the content of the mail message.
 - MAPISendMail function to send the message.
 - MAPILogOff function to end the mail session.

IMPORTANT NOTE: Make sure a MAPI declaration module, such as MAPILIB.BAS, is included in
the project.

'Example VB code of sending mail via Simple MAPI using MAPI.DLL:
'*********** Important ******************************
'make sure MAPILIB.BAS or a module that contains
'MAPI functions declaration is already included in the project
' ***
' Simple MAPI Declarations
' ***

' Set up the message structure and recipient structures
Dim M As MAPIMessage ' dimension new message structure
Dim Mo As MapiRecip ' dimension originator structure

M.RecipCount = 1& ' set RecipCount property of new message to be 1
M.FileCount = 0& ' set FileCount property of new message to be 0
MsgId$ = "" ' set MsgID string to ""
MsgType$ = "IPM.Microsoft Mail.Note" 'set MsgType string to default MS Mail type

M.Reserved = 0& ' set Reserved property of new message to be 0&
M.MessageType = MsgType$ ' set MessageType property of new message to be MsgType$
M.DateReceived = "" ' set DateReceived property of new message
M.Flags = 0& ' set Flags property of new message to be 0&

ReDim mr(0 To 0) As MapiRecip ' dimension recipient array structure for 1 recipient only
ReDim MF(0 To 0) As MapiFile ' dimension file attachment array structure
MF(0).Reserved = 0& ' set Reserved property of file structure to be 0&
MF(0).Flags = 0& ' set Flags property of file structure to be 0&
MF(0).Position = -1 ' set Position property of file structure to be -1

Developing Mail Enabled Applications with OpenMail
4010-9

MF(0).FileType = "" ' set FileType property of file structure

'You may not need this if a session already is established 'i.e. Mail or S+ is running.
' **
' Login and start the MAPI Session
' **
rc& = MAPILogon (Form1.hWnd, "", "", MAPI_LOGON_UI, 0&, lhSession&)
If rc& <> SUCCESS_SUCCESS Then
 MsgBox "Error logging in"
 End
End If

' you can replace InputBoxes with strings of text to eliminate the need of user-interface
M.Subject = InputBox("Enter a subject line:")
M.NoteText = InputBox("Enter some body text:")
aPathName$ = InputBox("Enter a file to attach:")
If Trim(aPathName$) <> "" Then
 MF(0).PathName = aPathName$
 MF(0).FileName = InputBox("Enter the file name to include as:")
 M.FileCount = 1
Else
 MF(0).PathName = ""
 MF(0).FileName = ""
 M.FileCount = 0
End If

'You can replace the InputBox with a full name
who = InputBox("Enter a recipient's alias: ")
If Not IsEmpty(who) Then
 mr(0).Name = who
 mr(0).RecipClass = MAPI_TO
 X = MAPIResolveName(lhSession&, 0, mr(0).Name, MAPI_DIALOG, 0, mr(0))
 X = SUCCESS_SUCCESS
 If X <> SUCCESS_SUCCESS Then
 MsgBox ("The address for this message is not valid.")
 Screen.MousePointer = 0
 rc& = MAPILogoff (lhSession&, 0&, 0&, 0&)
 If rc& <> SUCCESS_SUCCESS Then MsgBox "Error logging off """
 Else
 rc& = MAPISendmail(lhSession&, Form1.hWnd, M, mr(0), MF(0),
 MAPI_DIALOG, 0&)
 If rc& <> SUCCESS_SUCCESS Then MsgBox "Error sending message"

 rc& = MAPILogoff (lhSession&, 0&, 0&, 0&)
 If rc& <> SUCCESS_SUCCESS Then MsgBox "Error logging off """
 End If
Else
 rc& = MAPILogoff (lhSession&, 0&, 0&, 0&)
 If rc& <> SUCCESS_SUCCESS Then MsgBox "Error logging off """
End If

Developing Mail Enabled Applications with OpenMail
4010-10

End

