Paper # 4014

Designing Client/Server Applications for
Performance

Dr. Mike W. Wang
Subo Ko
Information Systems Services and Technology
Hewlett-Packard Company
3000 Hanover Street, Palo Alto, CA 94304
Phone: (415) 857-4736
(415) 857-2540
Fax: (415) 857-5518

Introduction

In a typical client/server information collection and retrieval application
system, there are client and server machines, networking components,
and oftentimes databases to store data. With these multiple
components, the performance of a client/server application system is
much more difficult to control and measure than a non-client/server
application. These multiple components also give rise to many
challenges and opportunities in designing an application that will
perform optimally in this environment.

In this paper, the authors present many different client/server
application design guidelines and examples to illustrate how to achieve
optimum performance. The authors also discuss how to design
client/server applications to outperform the non-client/server
approaches, how to identify false methods used in measuring
client/server performance, and what are some of the desirable
performance features of the middleware incorporated into the
application.

Designing Client/Server Applications for Performance
1

Information Process Flow in a Client/Server Application

In a typical client/server application, there are four major components:
the client program, the networklng% component, the server program, and
the database component. Out of these four components, the application
end users only see the displays of the client program. The other three
components are "behind the scene" processes. The process flow in this
environment usually begins with the client program asking the user for
input. The user input then turns into information which consists of
command(s) and data to describe the task(s) to be executed. This
information will then travel through the networking component and be
received by the server program. The server program then processes this
information. If the tasks described by the information requires the
access of a database, then the database engine is invoked and the
required database operations are performed. Once the result of the
database operations Is obtained, it is passed to the server program. The
server program then sends the result across network, and to the client
program. The client program processes the result and displays it on the
screen. This completes the information process flow for ‘a typical
client/server application.

In the Diagram 1, this process flow is described as steps 1, 2, 3, 4, 5,
6, and 7. Any tasks performed in a client/server application must go
through these seven steps in the order described.

Now let us further consider the steps in the above mentioned
information process flow. In each step of the process, there are
computers (networking components are also made up of computers
doing the work. All these computer processes take time, with some o
the tasks being completed in milliseconds. However, every component
will contribute to the total time that it will take to processing a user
request and receiving results. We can associate the

time taken to complete the tasks for each step as follows:

1. Client program processing time

~_This includes the time taken by the client program to display
the initial screen, accept user input, and turn it into information
to describe the tasks to be executed.

2. Networking time

~ The time spent in this step includes the time it takes to prepare
the information into a format suitable for network _ _
transmission, as well as the time taken for the information to
be transmitted from the client machine to the server machine.
3. Server program processing time

Designing Client/Server Applications for Performance
2

This includes the time taken by the server program to receive
and process the information for the client.

4. Database processing time

The time spent in this step includes the time taken b)éthe
database engine as it prepares to process the database request
and the actual data retrieval time.

5. Server processing time for returned data

_ ~ This is the time taken by the server program to retrieve the
information from the database engine, possibly post-process
the information, and send it to the network.

6. Networking time

~_The time spent in this step includes the time it takes to prepare
the information suitable for network transmission and the time
it tzra_ll_(es to actually transmit the information to the client
machine.

7. Client program processing and displaying the resulting data

_ _ The time it takes to receive, process and display the
information on the client machine.

These seven steps are the basis for how to control and measure the
performance of a client/server application program. In essence, to
Improve the performance of a client/server application is equivalent to
improving the performance of each of the individual steps, and of the
entire process as a whole.

Misconceptions in Client/Server Performance

The idea of fine tuning the components for each step of the
client/server application data flow is obvious, and a correct approach
towards improving the performance of the application. For instance,
step number 4 listed above, database processing time, can potentially
be the most time consuming task in a client/server data operation.
Therefore, to improve the performance, it is vital to minimize the
database processing time. In this case, the normally performed tasks in
a non-client/server environment, such as designing an efficient
database schema, normalizing the data for the database, creating
indexing, and perhaps, spreading the database and indexes into
different disk drives, using an efficient database engine, etc., must be
taken into consideration In order to obtain an optimally performing
client/server application.

Designing Client/Server Applications for Performance
3

By the same token, writing an efficient client program and an efficient
server program will result in a better performing client/server
application. Of course, increasing the bandwidth of the network
(increasing the speed of the transmission) and selecting an efficient
network product will most likely improve the performance of the
application.

Along with the above described correct concepts and methods for
improving a client/server application's performance, there are also
misconceptions and incorrect methods, as discussed below, that are
sometimes used in obtaining and interpreting the performance of a
client/server application.

First Misconception

With the concept that client/server applications are made up of multiple
components, it is very easy to think that if each component in a
client/server application is tuned to perform optimally, the entire
application will perform optimally. In reality, the fact is that fine tuning
each component is only the first step towards achlevm? an optimally
performing client/server application. This leads to the first
misconception in client/server apfollcatlon performance, namely, that
fine tuning every component will lead to an opt_lmaIIE/ performing
client/server application. While it is true that fine tuning every
component is necessary for obtaining an optimally performing
client/server application, 'we must also consider the relationships
between the individual component and the entire process as a whole.
These relationships are vital in determining the performance of a
client/server application. The%/ are so important that most design
guidelines for achle_/lng:f1 better performance for a client/server
application discussed in the later sections of this paper are all based on
how to appropriately design these relationships.

Second Misconception

When the performance of a client/server application is viewed as
inadequate, it is easy to blame the network as the source of the
problem. This leads to the second misconception in the performance of
a client/server application.

While it is true that network will contribute to some delay of the
information passed back and forth between the client and server
machines, and sometimes network traffic congestion will degrade the
network performance, the slowness of an application response time is
not always the network's fault.

With the TCP/IP network, most of the infrastructure is run at a speed
of 10 megabits per second. In a fine tuned network, i.e., other
applications are running fine, a single application is not likely to cause

Designing Client/Server Applications for Performance
4

a network slow down and result in an inadequate response time for the
application. With a proper application design and reasonable

expectations for the response time, the Perfo_rmance of a client/server
application can usually achieve its optimal design goals.

Third Misconception

In order to obtain the performance statistics for a client/server
application, it is very easy for developers to write a client program to_
repeatedly send the same commands to the server for execution. It is
very convenient for a program to use a FOR or DO types of loop
statement to perform repetitive (_?peratlons. For example, a program
continuously issues 200 INSERT SQL commands to simulate 200
users using the application. After obtaining the total time taken by the
ﬁrogram to complete the 200 SQL commands, the developer claims to
ave estimated the response time for 200 users using the application
simultaneously. This is the third common misconception.

As described in the previous section of this article, there are 7
sequential steps that information (sometimes an SQL database
commandg needs to go through in a client/server applicati@adn of
these 7 steps, the p_rocessmg Is completed by computer hardware and
software, whether it's a PC, a networking switch, a networking
gateway, an operating system, or a server program. Every component
In this chain will need time to process the information and will have to
gueue the information for its turn before it can be processed. For 200
sequentially issued SQL commands to be processed, the total time will
be the sum of the time it takes for each
component to complete its tasks for each of the 200 SQL commands.
BQ, this |25 an additive time phenomenal and can be illustrated by
lagram 2: _ o
As shown in the diagram, the time it takes to process all the commands
Is in a positive direct relationship with the number of commands
grocessed. In other words, if one command takes 1 second to process,
00 commands will take 200 seconds.

Let us now consider the situation where there are 200 users, each
using their own PCs. They are all using the same client/server
application and each one of them issues one SQL command to the
server machine. In this example, step number 1 in their information
rocess flow is done on their own PCs. Thus, theoretically, the time it
akes to complete step number 1 for the 200 users can happen
simultaneously. That is, if step number 1 takes 0.1 second to complete,
it will take exactly the same 0.1 second 200 users to complete step
number 1. This phenomenal is also true for step number 7, and partially
true for steps number 2 and 6.

Since in most of the cases, the server machine in a client/server
environment is fast, it will take little time for the application to

Designing Client/Server Applications for Performance
5

complete steps number 3 and 5. If we are issuing INSERT SQL
commands, the time it takes for a decent database engine to process
this INSERT command is minimal. Also, for INSERT SQL commands,
the length of the command and the result of this SQL command will be
short. Thus, it will take negligible time for network to transmit. Thus
when 200 users issue an INSERT SQL command to the server
simultaneously, the response time for all users will have a relationship
as described in Diagram 3:

Notice that in Diagram 3, the response time is initially flat for a number
of users. Depending on the network and server capacity, this curve
shows that a large number of users can be sustained before
performance is impacted for all users. This phenomenal is observed
due to the fact that each PC is taking different paths to reach the server
machine. If it is assumed that the network has adequate capacity and
the server is powerful enough to process the SQL

commands with minimum time, this flat curve can take a lot of user
requests before it turns upward.

So, the next time you hear people claim that a client/server model is not
suitable for processing your data, be aware of the above
misconception. This is particular true for a(}))‘r_)llcatlons classified as so-
called on-line transaction processing (OLTP). A typical OLTP
application usually involves the processing of short SQL commands
such as INSERT, DELETE, and UPDATE. Thus be aware of the
performance simulation methods used for these applications.

Design Guidelines for Optimal Performance

We have seen that for a client/server application to complete a task,
information must go through 7 steps. Each step involves the processing
of the information and the queuing before being processed. Thus, for a
given task, we can picture that there is a long processing and queuing
ipe in a client/server application. Designing a client/server application

o reduce the total length of the pipe for a given task is a way to
achieve the optimal performance of the application. This processing
and queuing pipe idea leads to the following design guidelines for
optimal performance:

1) Reduce the "ping-pong" effect

The most devastating performance Killer in a client/server application is
the constant sending and receiving of smalinks of information.
Because of the seven steps that evémynk of information must go
through, a "ping-pong" type of application design will add the length of
the processing and queuing pipe, and thus slow down an application
dramatically.

Designing Client/Server Applications for Performance
6

An experiment was performed on an application where a character is
sent to the server machine, and based on this character the server
program returns a particular word to the client program. After a
redesign of this application, the client program sent 30 characters
together in one chunk. When the server program received

these characters, it processes them all and sends the resulting 30 words
together in one chunk to the client program. This redesigned
application's response time was about 30 times faster than the previous
application.

Essentially, in the above experiment, the total length of the processing
and queuing pipe was reduced by 30 times when 30 characters were
batched together and sent all at once. This reduction in the length of the
pipe leads to the 30 times performance improvement.

This astoundin% result is accomplished by only reducing the "ping-

ﬁong" effect of the application. Since the network and server machines
ave adequate capacities in this experiment, there is no difference in

performance between processing 1 character or 30 characters at a time.

2) Pack more information together into one network transmission

Packing as much information as possible together into one operation
essentially reduces the length of the processing and queuing pipe. It
also reduces the overhead, such as the network headers that
networking components must add and strip. Thus, this guideline
!mprlov%s performance, especially in cases where short messages are
involved.

3) Reduce the amount of information to be sent across the network

If possible, design an application with pro%am logic that sends and
receives as little as possible between the client and the server
programs. This practice improves performance by reducing the number
of characters transmitted through the network. For example, do not
send detailed records between the client and server programs, if the
detailed records are not the final form of information needed. Send only
the necessarg information. The information to be sent across the
network can be summary data; or can be processed and condensed
data. This guideline will reduce the traffic between the client and the
server programs.

4) Separate the _apﬂlication logic so that both the client and the server
machines do their share of processing

Assuming that the server machine has a faster processing speed than
the client machine, this design guideline takes advantage of the server
speed and makes the server do the majority of the processing. For
example, if data sorting or other heavy computations are necessary, do

Designing Client/Server Applications for Performance
7

it on the server machine. On the other hand, if the server machine is
loaded down with other _Processmg, make the client machine do the
heavy processing work. Therefore, the design guideline is to separate
the application logic between the use of the client and the server
machines, and achieve a benefit of using both machines' processing
power.

The following two guidelines deal with the processing overhead and
redundancy possibly existing in client/server applications:

5) Maintain the client and the server logical connection

To logically connect a client program and a server program in a TCP/IP

network, a developer usually uses a socket based networking API. In

this case, the server machine must create (fork, for UNIX op_eratln%

system) a process, start the server program, check the security of the
user sign on, etc.. These tasks take a fairly large amount of time when
compared with other tasks performed by the server machine. In this

case, the design guideline Is to logically connect the client and the

server programs only once and use the same logical connection for
subsequent information exchanges between the client and the server
machines. Of course, do not include the connection operations in a
loop if it is not necessary.

6) Keep the database open

Once a database is open, leave it open for subsequent database
operations. Opening a database takes considerable time when
compared with other operations. These tasks involve creatl_n? a process
on the system, checking user security, updating lock information,
opening log files, etc.. Thus, if possible, only open the database once
for all operations.

7) Use a 3GL for input and output operations

When a client program is written using a 4GL, the performance can be
improved if intensive input or output operations are performed by a
3GL routine in the client program. This guideline holds true especially
for AGL programs which require table building tasks. As an example,
we have used a C language routine in a Microsoft Visual Basic
Prl%gram for building a table and saw the response time improved 5
old.

Other application design guidelines which will help the performance of
an application are described in the "Performance Features of
Middleware" section of this paper.

Designing Client/Server Applications for Performance
8

Designing Client/Server Applications to Outperform
Non-client/server Applications

In the preceding sections of this paper, we have shown that the use of
the programming capability and the CPU cycle power of both the client
and the server machines can help us to obtain a better performance for
an application. This added flexibility in designing a client/server
application allows a developer to design applications that perform
significantly better than a non-client/server counterpart.

Another characteristics that exists in a client/server environment is the
distributed nature of the application. With this property, we can use
more than one server machines to complete a given task, and thus to
allow developers to design client/server applications that will
outperform non-client/server approaches. The following two design
examples

are used to illustrate this effect:

1) Use multiple server machines in an application system

When the tasks performed by the server program in a client/server
application can be split over multiple server machines, the overall

performance of the application will be better than using only a single

server. In this case, multiple server machines are used simultaneously,
thus providing a larger CPU cycle capacity than a single server

machine. This design method is called Parallel Processing

Client/Server Design Structure. Refer to reference number 1 for more
details about this design structure.

The multiple server machine design approach can be used in CPU
intensive applications such as large simulations or graphics

applications. In this design, one machine can do a portion of the
simulation or graphics rendering and the other machine can do some
other part of the work. The design structure of this type of application

is illustrated in Diagram 4:

Designing Client/Server Applications for Performance
9

In this example, if the speed of the server machines are identical, it is
possible for two server machines using a parallel processing design
structure to outperform a single machine design (non-client/server
design) by a 2 to 1 ratio. Of course, if more than 2 server machines are
used, the ratio will probably be even higher.

2) Use multiple database engines on the server machines

When an application can split and place its information in multiple
databases on multiple server machines, it is possible that the
performance of a multiple database design can be many times better
than a single machine design (non-client/server design). This design
can be particularly useful in multiple site applications or multiple
timeframe (multiple months and/or years) applications. Diagram 5
shows a multiple database design:

The example in Diagram 5 is a design structure with 1 client machine
and 3 server machines, with each server machine having its own
database. If the entire body of information for the application is evenly
distributed over the three databases, it is possible that the performance
of the database operations could be up to three times faster as
compared with a single database on a single server case (hon-
client/server design).

As an example, this design approach is used in a marketing history
database application in our facility. In this application, the data are
divided by month for a one year time span. Then, there are 12 server
machines with a database on each machine. Each database contains
one month of marketing history data. When a report needs the
information for the whole year, the client program sends requests to all
12 database servers at the same time. The database servers will work
and retrieve the information simultaneously. Thus, in some
experiments, we have seen the data retrieval time was 12 times faster
than in a single server machine single database design
(non-client/server).

Performance Features of Middleware

Designing Client/Server Applications for Performance
10

In a client/server application, middleware refers to a software tool that
facilitates the communication between the client machine and the
server machine. Such a tool can be developed in-house or provided by
a vendor. When it is provided by a vendor, it usually comes as
programmatic callable subroutines. These subroutines are sometimes
called an application program interface (API). The major goal of this
APl is to provide easy to use routines which facilitate the
communication between the client and server machines; and thus
eliminates the needs for programmers to have to code the lower level
communication layer in an application. Therefore, for its simplicity and
fast development time, most client/server developers are using ready-
made API to construct their client/server applications.

Some vendor's middleware provide not only the communication
function between the client and the server machines, but also provide
the function of accessing databases on the server machine. Most
database vendors provide database access APIs for client programs.
The client/server application design structure using middleware is
described in detail in the article "Client/Server Application Design
Structure" referred to as reference #1 by this article.

As examples of using middleware, Diagrams 6 and 7 illustrate a typical
use of middleware in two-tier (Diagram 6) and three-tier (Diagram 7)
client/server applications:

Note that in a two-tier client/server application, developers only

develop the client program. The server program, in this design s
supplied by database vendors. In a three-tier client/server application,
developers must develop a server program in addition to the client
program. As you can see from the above diagrams, middleware is
Intertwined with the client and the server programs, and thus /plays a
vital role in the construction and the performance of client/server

applications. Some of the desirable performance features of
middleware are discussed in the following text:

1) User controllable buffer size

Designing Client/Server Applications for Performance
11

The buffer size in this context refers to the memory size allocated to
store the data being transferred over the network between the client
and server machines. When the buffer size can be changed by the
program, application developers can accumulate more than "one
message before the actual transmission takes place. By buffering more
than one piece of information into one send or receive operation, the
total number of sends and/or receives between the client and server
programs can be reduced. This reduces the length of the processing and
%ueumg pipe for the application. As discussed In the previous section,
this capabllity of the middleware can potentially dramatically improve
the application response time.

2) Bulk send and receive

The bulk send and receive feature refers to the dapabf the
middleware to continuously transmit the data until possibly exhausting
all the data in the operation. For instance, multiple rows of data in a
database can be returned b?/ one operation for an SQL SELECT
operation. A bulk transfer of all the rows of data will reduce the total
number of send/receive operations, which in turn reduces _

the amount of handshaking between the client and the server machines,
and improves the performance of the application.

The bulk send and receive feature is very important for applications
that require a large number of data records to be transmitted between
the client and server machines. This feature is particularly helpful in
information access ty{Jes of aBpllcatlons where a large number of rows
are transmitted from the database to the client machines. By using this
feature in experiments conducted by the authors, some applications
have shown a 10 fold reduction in response time.

3) Bulk INSERT/UPDATE/DELETE database operations

When a logical connection is maintained to the database, the SQL
commands are issued, and the results are sent back, for one command
at a time. In this case, if the results of the SQL commands are short in
length, it will cause a "ping-pong" effect for multiple SQL commands.
This _is particularly true 'in the case where a large number of
INSERT/UPDATE/DELETE SQL commands are issued. These
commands are typically short in length and the results returned will
only be short status messages to indicate the successful or unsuccessful
result of the operations. Therefore, if a middleware can handle a bundle
of multiple SQL commands in one send operation and return the results
back in one send operation, then the "ping-pong" effect is eliminated.
Thus, this feature Is a very desirable performance feature for the
middleware to have, especially in an online transaction processing
(OLTP) environment.

4) Parallel processing capability

Designing Client/Server Applications for Performance
12

As we have indicated earlier, parallel processing is one way for a
client/server application, through proper design of the program and/or
the database, to significantly outperform non-client/server approaches.
Thus, this feature is very desirable in selecting a middleware.

5) Three-tier design structure capability

When the middleware offers the capability of designing three-tier
client/server applications, there are man%/ performance benefits that can
be realized by using this design structure. Three-tier design in this
context means that developers can develop both the client and the
server programs.

We have seen in the previous section of the paper that when client and
server programs works together, we can design an application which
reduces the length of the processing and queumgI pipe; thus improve the
Performance dramatically. The following examples further illustrate,
through O,oroper design, three-tier client/server program can provide
improved performance.

When the application can split the portion of the program which
involves heavy CPU cycles and disk I/O usage to be run on the server
machine, performance of the application is most likely improved. This
Is usually because in a client/server environment, the server machine is
much faster than the client machine. With a faster machine doing more
work for a giving task, the performance of the application will be
improved.

As a second case where the performance of the application is improved
by using a three-tier design structure, consider the situation where the
SQL commands are known by the developer ahead of time and can be
embedded éhard-coded) in the server program. In this case, developers
can take advantage of this knowledge and embed the SQL commands
in the server program. Embedding SQL commands in a program will
allow the data structures for the database to be built during server
program compilation time rather than at execution time. This method
will potentially provide faster databasecess times for applications
which require the retrieval/update of a single record (row) of keyed
database elements (co_Iumnss). When the number of records retrieved by
the database engine increases or the data element retrieved is not a
keyed database element, this o o

Performance advantage may not be significant. This is due to the fact
hat the data structure for the database needs to be built only once for a
given SQL command. The time it takes to build a data structure is
oversga owed by the larger amount of time required to retrieve the
records.

6) Local database manager

Designing Client/Server Applications for Performance
13

The database manager is a server program provided by the middleware
that access the database. It usually resides on the same machine as the
database. In a three-tier client/server application, the database manager
usually resides on the same machine as the user's server program, thus
data transferred between the database manager and the user's server
program will not travel onto the network in a TCP/IP network
environment. This is good for performance. However, some_of the
networklng tasks such as performing socket calls, building TCP/IP
headers, detecting its destination to be its own machine, etc., must still
be performed. Therefore, if the database manager can be linked to the
user's server program, and these networking tasks are eliminated all
together, the performance of the application will be improved.

The middleware feature of allowing the data manager to be linked into
the user's server program without the need of including the networklnrg
Pr_otocol in program execution is called a local database manager. In
his way, the database manager acts as a local routine to the user's
server program.

Conclusions

The goal of obtaining good performance for client/server applications
tends to be more complex than for non-client/server applications. The
added networking layer for the client machine, the actual network
itself, and the server machine make performance tuning more difficult.
However, the authors have

demonstrated that with proper application designs, we can achieve the
goal of obtaining performance improvements by many times, compared
with non-client/server applications. We can also design client/server
applications which minimize the impact of networking components.
Thus, the performance of some of the client/server applications will be
better than the non-client/server applications with the networking layer.
We can obtain superior performance by using not only the server
machine but also the client machine as a part of the computing
components. As the client machine works together with the server
machine, they can give us optimally performing applications.

Readers have also seen the effects of the middleware. The performance
features of the middleware can add to or limit the application's design
and thus performance. In most cases, careful selection of the

Designing Client/Server Applications for Performance
14

middleware is one of the most important factors in determining the
optimum or mediocre performance of a client/server application.

References

1. Client/Server Application Design Structure; Mike Wang, Interex
1995; Interact October 1995; HP Omni October 1995

2. Using PC, HP3000, HP9000, and IBM Machines in Distributed
Client/Server Applications; Mike Wang, Interex 1994; Interact
February 1995

3. HP Intelligent Warehouse Architecture Primer; HP
publication, February 1995

4. Allbase/XL SQL Reference Manual; HP; 1989

5. Microsoft ODBC Programmer Guide; Microsoft; 1993

6. Microsoft Visual Basic; Microsoft; 1993

Acknowledgments

The middleware used in the examples of this article has the code name
SOLID. This middleware was designed and developed by Arthur
Walasek, Christine Hsu, Phil Blocher, Keith Freiberger, Don McKee,
Supin Ko and Subo Ko of Hewlett-Packard. They have devoted much
wisdom and hard work, time and time again, to maximize the
usefulness, performance and simplicity of this middleware. Special
thanks also go to Chuck Sieloff, Jack Domme, and Guy Randazzo for
their support and commitment in making SOLID a middleware used in
HP internal business applications, in the Intelligeatess product, the
Otter product, the HP Information Access product, and the HP
Intelligent Warehouse product.

Designing Client/Server Applications for Performance
15

