
Implementing Performance Engineering
4015-1

Implementing Performance Engineering
Presentation #4015

Erik Wettersten
Panoptic Solutions Corporation

Box 600 856 Wapiti Drive
Fraser CO, 80442-0600

970-726-5676
pano@ix.netcom.com

Abstract:

Avoiding performance problems is obviously preferable to having to fix them. However, the
complexity of client-server applications combined with the always-present promise of faster hardware,
has created a tendency to wait until code is proven to be of poor performance, then fixing it with
hardware or brutal last-minute changes. This habit, in turn, results in enormous costs, schedule
slippage and even cancellations.

To counter this reactive pattern, Software Performance Engineering (SPE) evolved, attempting to
understand the performance of software earlier in the lifecycle – thereby giving designers the
opportunity to see the effect on performance of design changes while they are able to do something
about it. SPE found a home in situations where the hardware commitment was not flexible (and very
expensive), but has not caught-on in mid-range systems. This is largely because it requires too much
discipline to be implementable and is therefore attempted by only a few dedicated individuals with an
aptitude for number crunching.

Knowing performance information when it is most needed is the ideal situation, but if current
methods are too complicated to be practiced, they are not valuable. In an effort to find a workable
solution, this paper will take SPE principles and make them implementable, balancing these practices
with other performance alternatives and thus creating a methodology to efficiently engineer
performance into an application. This is Performance Engineering. In order to strike an equilibrium
between SPE and hardware alternatives, this paper will first demonstrate the necessity to wean
development efforts off the “fix it later” approach and then move toward an implementable
Performance Engineering methodology. A methodology that does not abandon other choices, but
provides a framework for designers, developers, and architects to understand the performance impact
of decisions while there is an opportunity to act on the information.

1. Introduction
1.1 The Problem
“Make it run, make it pretty, make it fast” – the unwritten, unspoken credo of software development.

In the history of computer software development, developers have learned that functionality comes
first, with usability, reliability, performance, etc. falling at a distant second. The problem is when it
comes time to ‘fix’ these secondary priorities, particularly performance, very little can be done about
it unless a major (costly) redesign is attempted – that or the more traditional approach of tuning to
make it as good as possible and buying more hardware to do the rest.

Implementing Performance Engineering
4015-2

This “fix it later” approach does not make sense, but is still practiced – particularly in the client-
server world where the distributed, complex nature of applications makes it that much more difficult
to anticipate the performance impact of design decisions until it is too late. Performance, once was
achieved by intuition, is now neglected due to complexity. As scientists, the architects and designers
should know better – and probably most do – but without the fundamental practices and incentives of
Performance Engineering, nothing will improve.

1.2 The Cost
Assuming that there will be a performance problem (almost by definition, performance could always
be better), the next issue centers around the cost of not addressing it. In addition to the obvious cost of
user dissatisfaction, the costs of not dealing with performance proactively include:

1. the increased expense of additional hardware and maintenance costs,
2. the lost profit due to a delayed product, and
3. the increased stress of trying to capacity plan without performance information and

pull off last-minute performance miracles.

Summarizing the extent of this cost, one estimate [Infoworld, 95] is that “Eighty percent of all
client/server projects have to be redesigned because of performance issues, not because they didn’t
meet the [functional] needs of the users.” That should be reason enough for anyone.

1.2.1 The Future
In the future, the issue of performance will become even more important. With the advent of code
generators, code is developed more quickly and the produced code is more usable (the “make it run
and make it pretty” factors), the primary differentiator will shift away from functionality and shift
toward performance. This is the same transition that hardware has already gone through.
Componentized modules with known performance characteristics will follow the industry’s move
towards object-oriented development. The movement from custom application development to the
integration of ‘canned’ products will mean that a greater understanding will be necessary in order to
create modules that both perform optimally and can be combined with other modules into an optimal
system. This dictates that the performance of a system must be known before it is put into
production.

It would be hard to imagine a car that is built then driven around to see how fast it will go and what
kind of mileage it will get. When engineers design a car, these characteristics are part of the design
and design decisions are made accordingly. The carburetor matches the engine which matches the
transmission, etc. so that the car as a whole performs optimally – instead of being an sub-optimal
collection of optimized parts. Not designing performance into code makes about as much sense as
allowing each component of a car to be created independent of the final objective.

1.3 Why hasn’t it been Fixed Yet?
If a problem exists and it is going to cost a significant amount of resources, but is still isn’t being
addressed, there must be a reason. Actually, there are several reasons, but fundamentally, there are
really two:
1. Obviousness – It’s very clear to the developer when functionality is wrong but it’s not obvious

when performance is wrong until the application is finally assembled. This is the “in your face”
effect – if it cannot be seen, must not be there. Client server performance issues do not
automatically show up until very late in the product lifecycle – unless they are sought out
intentionally.

2. Complexity – By definition, client-server applications mean that duplicating the final product
requires multiple nodes and multiple transactions. This added complexity of makes it difficult to

Implementing Performance Engineering
4015-3

look for problems and equally difficult to interpret the effects of development decisions on the
final product.

1.4 The Paradox
The problem with performance – especially client server performance – is that the easiest time to find
out when and where performance problems exist also happens to be the time when the least can be
done to combat problems. This effect, call it “applied procrastination”, would normally be
discouraged but in effect is encouraged by the very nature of the problem: problem prevention is a
thankless act, but problem resolution is a hero-maker – even when the prevention is far superior to
the resolution. Consider the following:
1. After discovering that an application will not perform at the desired level, a performance “swat

team” is formed. After a couple months of streamlining, reducing functionality, and increasing
hardware, performance is brought close enough to the specification to ship.

2. The swat team and development teams are celebrated for their Herculean effort and saving the
project from certain fate and embarrassment.

Conversely, suppose a structured approach to performance engineering was taken, whereby the
response time issue surfaced while the code was being developed and the addressed at that time. The
resulting product is one that meets the original specification thanks to slightly more up front work in
the form of definitions. The product ships, there are no heroes, but the end result is on-time, did not
require additional hardware or consulting, and furthermore will not have the maintainability and
reliability issues of the former effort due to all of the ad-hock efforts that went in at the last minute.
Not to discredit the eleventh hour work of red-eyed computer heroes, but it should not be necessary.

In these two cases, clearly the latter was more desirable, but the former was the one that received all
of the positive reinforcement – all for improving something that was not supposed to be a problem.
And even though it was at a significantly higher cost! This is analogous to being unhealthy; dramatic
recoveries and incredible cures are celebrated, but the even greater success of prevention is hardly
acknowledged – regaining health is not, ever, as good as being healthy, it’s just more dramatic.

1.5 Bad Habits and Beliefs
The “applied procrastination” approach to performance has nurtured a collection of nasty habits and
myths which in turn contribute to the self fulfilling prophecy of bad performance. A couple of these
habits and myths include the following:

Belief 1: Performance can be added later – This is like saying a car built without the plan can be
made efficient or fast by adjusting the carburetor and removing the antenna. Tuning is not designing
and performance is the effect of design.

Belief 2: Faster hardware makes performance issues “go away” – Although it is true that faster
hardware can be used to increase performance (at a price) – it has a cruel side-effect because it can
also cause bad performance. This is because of three reasons:
1. The knowledge that fast hardware can be used encourages bad coding practices. This is

unavoidable human nature, just like the promise of an upcoming raise increases current
spending.

2. The increased concurrency enabled by faster hardware makes performance more susceptible to
variations in workload. Faster development environments backfire when resources have to be
shared. As an analogy, faster automobiles help create traffic jams because people know they can
travel 20 miles in 20 minutes. This capability increases the “burstiness” of traffic (i.e., everyone
leaves at 7:40 to be at work at 8:00), which in turn, increases contention for shared resources..

Implementing Performance Engineering
4015-4

3. Faster hardware allows us to create more complex systems which inherently create performance
problems which are more difficult to solve [Smith, 90].

Furthermore, solving a problem with hardware also raises the financial stakes of a project. Consider
the cycle of:

1. create a poor performing application,
2. get by on performance by increasing the hardware investment at the last minute,
3. add functionality without proper attention to performance in the next release,
4. increase hardware to fix performance problems incurred by the added functionality,
5. repeat steps 3 and 4 indefinitely.

This system is analogous to the blackjack theory of “doubling up” whereby the gambler doubles their
bet each time they lose – thus winning all their losses back when they finally do win1. The problem is
that neither gamblers nor businesses have unlimited resources. With either method, the investor
eventually finds themselves faced with a situation where a huge investment has been made, and the
only way out of it is to make another, even larger, investment. Sooner or later, a company will simply
not be able to afford the next investment – thus canceling a project that has exhausted the company’s
research investment for several times the original budget. This windfall for hardware vendors can
completely tap a company’s IT budget – and it does happen!

The underlying consideration is that hardware fixes a symptom, not a problem; fast hardware is
nothing more than a design alternative – it is not a cure-all.

Belief 3: Paying later is better than paying now – This is probably the most subtle and most
dangerous of all. Developers have learned that it’s easier to ask for forgiveness than it is to ask for
permission; this has a negative impact to performance design. It is very difficult to budget for
performance at the onset of a project, so instead, development waits until functionality is done and
then more resources are requested to go back and fix performance issues. Even though the budget is
exhausted, since the project is nearing functional completion, it’s very difficult for management to say
“no” to additional resources – no matter how much – since they have already made such a large
investment. What could have been addressed for a fraction of the cost at the onset is encouraged to
be addressed at several times the cost after the fact.

2. A Different Approach
2.1 Generic Problem Solving
Instead of looking for a silver bullet to solve this problem, consider how most day to day problems get
solved. In its most simplified form, problem solving is a matter of:

1. Set a goal,
2. Take action towards that goal,
3. Obtain feedback as to the effect of the actions towards that goal, and
4. Repeat steps 2 and 3 until the goal is reached.

Although this is embarrassingly basic, the really embarrassing part is that it is forgotten in the quest
for silver bullets. Applying this basic formula to software engineering with the intent of achieving

1 Also called “Martingale”, an example of a double up progression would be: starting with one unit
and doubling up until the player finally wins; after five losses this would yield 32 - (1+2+4+8+16) =
32 - 31 = 1 [Humble 87]. Casinos don’t mind, and in fact like this practice, because they know that
eventually the player won’t be able to place the last bet (due to limited resources or house limits) and
lose their entire bankroll.

Implementing Performance Engineering
4015-5

performance, yields performance engineering. Specifically, performance engineering (PE) means
the application of:

1. setting a quantifiable performance goal,
2. designing and developing code with a performance objective,
3. quantifying the effect of code design(s) relative to the performance goal, and
4. repeating.

The real key here is applying this formula – that is implementing the method and utilizing the
technology.

2.2 The PE Methodology
The fundamentals of the PE methodology take the goal and action steps above and defines two criteria
for each:
GOALS:

1. Know the intended environment.
2. Know the performance criteria.

ACTION:
1. Always know how the system is performing.
2. Always know why the system performs in this way.

The methodology endorsed by performance engineering is constant knowledge with steadily
increasing accuracy. In the early stages of development, there is a known performance expectation
but it is understood that this expectation is subject to a high degree of error. To this end, the
performance estimates are qualified to a number of assumptions and are usually “book-ended” as a
best-case/worst-case possibility. As the stages of development proceed, there is really very little new
information, but rather a lot of refinement to old information – estimations are replaced by
measurements and usage assumptions become more understood.

Balancing PE with last minute hardware adjusting and tuning should handle 80% of the issues before
final release, then the last minute “bag of tricks” can be used to handle the remaining 20% that were
not practical during development. In this way, performance becomes the effect of design, and
hardware is used to scale.

3. Implementing Performance Engineering
The remainder of this paper will illustrate an approach for implementing performance engineering by
describing a methodology that couples the “best available measurements” with the “best available
extrapolations”. This methodology concentrates on:

• Understanding the performance of the system as a whole by focusing on overall capacity
first, knowing that response time cannot be brought under control until the capacity is
under control.

• Focusing on the service time of operations so comparisons and extrapolations can be
made accurately

• Using rules of thumb and modeling to equate service time to capacity and cost.

In other words this approach takes whatever information and tools are available and uses that
information to systematically “shift the timeline” – that is, be able to see the effects of performance
decisions and the cause of performance problems while there is still time to act.

Implementing Performance Engineering
4015-6

3.1 Concepts
Following are the terms and concepts used in performance engineering and in this paper.
• Response Time – Service time plus delay(s). This how the end-user “views” performance
• Response Time Model – The expected response time as the node to server ratio changes. This

provides a means to visualize the performance of a system as a whole.
• Response Time Curve “Knee” – The area on the response time curve where the node to server

ratio is maximized, but contention has not yet made response time unacceptable. A system must
be operating to the left of this “knee” from a capacity standpoint before user perceived response
time issues can be addressed.

10 20

Expected Response Time As Node To Server Ratio Increases

R
e
s
p

.
T

im
e

nodes:

…
…

10:1 17:1

R.T. @ 17:1

R.T. @ 10:1

• Contention – The result of multiple requests requiring the same resource. This is what causes
the “knee” in a response time curve.

• Node to Server Ratio – This is the number of end users that can simultaneously use a shared
computer resource, and is a significant indication of relative system cost (the higher the ratio, the
more cost-effective).

• Service Time – This is the time a resource takes to process a request. This is basically the “area
under the curve” if resource percentages were graphed over time. Contention for service time is
what determines where the “knee” of the response time curve will occur, and is the most
consistent means of comparing relative performance.

serv ice tim e
time

R
e

so
u

r
c
e

 U
s
a

g
e

Begin End

Since the goal of PE is to balance hardware costs with performance – which is largely driven by node
to server ratios – most discussion herein will focus on the effects of service time and use response
time curves to represent the performance of the system as a whole.

3.2 Goal
Goal setting is the most important part of any endeavor. The problem with the goal setting from a
performance standpoint is that it is typical to set goals that are too amorphous to be useful. Consider

Implementing Performance Engineering
4015-7

the following response time goal: “Responses must take less than 4 seconds”. That would seem pretty
strait forward, but in reality is almost meaningless as it does not specify the two ingredients of a
performance goal, namely the conditions and the criteria .

3.2.1 Conditions
Conditions describe the environment and consist of three components:
1. Load – How active and efficient are the users? (How many operations per unit of time will be

processed by the computer?)
2. Mix – How often will the different parts of the application be run? (Or how often will each

application of a multiple application environment be run?)
3. Target Configuration – What is the intended node to server ratio, and how will the machines

likely be configured. This is an important step as it discourages the “fix it with hardware
approach”.

Without these conditions, there is no way to proactively address performance issues.

3.2.2 Criteria
The criteria should specify the following two components:
1. Metrics – The above statement assumes that 100% of the responses should be within four

seconds; in a distributed environment, it is nearly impossible to guarantee all responses within a
time frame because of contention for shared resources. Because contention causes an exponential
response time distribution, guaranteeing 99% response time criteria is ten times as difficult as
guaranteeing 90% response time at the same level (and 99.9% is another ten times more difficult
than 99%!).

2. Circumstances – Is the above metric accumulated over all responses or just at peak? Are the
criteria relaxed under special circumstances such as a failover?

3.3 Specifying the Goal
Ideally, developers could develop to a goal that defines both the response time criteria and conditions
exactly. This is not practical since conditions are typically not that well understood (especially for
new development). To compromise, goal setting (especially early-on) should center on the typical
conditions – that is, the 80%-tile. Find out what the likely conditions are and use that as the basis for
design assumptions. The same is true for response time; find the response times that are important
and define them. It is acceptable to have a catch-all such as “of the slowest responding transaction,
no more than 10% should take more than XXX seconds [under YYY conditions]”. Notice that the
transaction is still defined (the “slowest one”) – if it had said “of all transactions” it would be an easy
target to hit since there is probably a very large percentage of fast transactions (i.e., 90%) which
makes the specification a mute point.

Thus consider the following example:

Conditions
1. Users are assumed to be 90% efficient (i.e., actively working 54 minutes out of 60 on average)

during peak load and all response time criteria are assumed to be under peak working conditions.
This equates to 25 operations per user, per hour.

2. The operation mix is as follows:

Implementing Performance Engineering
4015-8

Operation Spring% Fall%
Operation A 15 17
Operation B 40 68
Operation C 45 15

3. The system is to support a 30:1 user to server ratio under normal conditions, and a 45:1 ratio
under failover conditions.

In keeping with the pattern of increasing granularity over time, it is understood that the above
operation mix may be broken down further be defining each operation more specifically.

Criteria
1. “Over any one-hour period, responses for the slowest transaction shall be within 10 seconds 90%

of the time.”
2. “Under a failover situation, the system must operate with a 50% increase in the number of users

and response time criteria is relaxed to 80% in the above criteria.”

The combination of good conditions and clear criteria create a true goal. By having such a target,
development can proceed with an achievable performance objective – instead of a vague performance
intent.

3.3.1 Goal Refinement – Converting Conditions to Workloads
With a goal defined (one that includes operating conditions), the next step is to convert operating
conditions and assumptions into work loads which will be used to drive (i.e., benchmark) the
application. There should be one workload for each of the above defined transactions with each
workload typifying the normal usage of that operation. These workloads are essentially a “usage
flow” and can be thought of as what the end user does to the computer.

If it is not possible to describe a normal operation with just one workload (e.g., sometimes an
operation accesses a large volume of data, but most times just a small amount), then it should be
broken out further. For example if “Operation B” above accesses a large amount of data some of the
time and a small amount at other times, then it should be broken into two operations, such as
“Operation B-small” and ”Operation B-large” with two representative workflows. This might
produce a mix like the following:

Operation Spring% Fall%
Operation A 15 17
Operation B-small 28 42
Operation B-large 12 26
Operation C 45 15

In general, such a refinement should take place for any operation that has characteristically different
behavior (such as the above example) or represents an inherently large percentage of the workload
mix (since it will have such a great effect, accuracy and therefore refinement, are more important).

3.4 Action
The next step to achieving performance is to obtain resource service time for each workflow. A lot of
extrapolations can be made from service time data (as it ultimately determines the performance of the
system) so it is crucial that this information be very accurate; a small error in data can result in a
large error when the data is extrapolated to the real world. If accuracy can not be assured then

Implementing Performance Engineering
4015-9

multiple measurements representing a best/worst/likely case should be used to “book-end” the range
of probable performance.

Collecting service time data is simply a matter of running a workflow in a controlled environment
with an appropriate measurement tool that collects service time (or estimating the impact in the early
stages). Ideally, the workflows can be scripted using a playback or simulation tool which assure
consistency but this can also be done via written scripts that the tester follows verbatim each time2.
The performance data collected during this procedure would include information about the various
resources, particularly CPU, Disk, memory, and LAN traffic.

Continuing with the above example, a collection of service time performance data (CPU, and disk
only) might look like the following:

CPU-seconds Disk-seconds Elapsed Time
Op A 1.61 1.69 3.9
Op B-small 1.54 1.01 4.2
Op B-large 1.89 1.54 4.9
Op C 1.82 1.02 3.6

This matrix reflects the service times for the CPU and Disk resources of the operations in question.
Weighting this data with the anticipated usage patterns defined in the operating conditions yields the
following:

Spring Fall
Percent Wtd. CPU CPU % Wtd Disk Disk % Percent Wtd. CPU CPU % Wtd Disk Disk %

Op A 15.0% 0.2415 14.1% 0.2535 21.5% 17.0% 0.2737 16.2% 0.2873 22.7%
Op B-small 28.0% 0.4312 25.1% 0.2828 24.0% 42.0% 0.6468 38.4% 0.4242 33.5%
Op B-large 12.0% 0.2268 13.2% 0.1848 15.7% 26.0% 0.4914 29.2% 0.4004 31.7%
Op C 45.0% 0.8190 47.7% 0.4590 38.9% 15.0% 0.2730 16.2% 0.1530 12.1%
Ave Wtd Usage Per Op: 1.7185 1.1801 1.6849 1.2649

This matrix now reflects the anticipated load based on both the usage assumptions and measured data
and will be used to establish the “how” and “why” of the system’s performance.

3.5 Feedback
In order to make the collected performance information useful, it has to be applied to the application.
There are two facets to this:

1. Projected performance – using the data to track the overall performance of the system
(the “how”); this effectively “shifts the timeline” by giving an indication of the future
performance.

2. Performance improvements – using the data to find where the most improvements can
be gained (the “why”).

Both of these involve the combination of the user environment with the collected data. This can be
achieved via spreadsheet calculations, but for practical reasons, can be simplified through the use of
modeling tools. For comparative purposes, this paper will show the results of both methods.

3.5.1 Projected Performance (the “How”)
It is recommended to use available performance modeling software to projected performance – such
tools allow multiple scenarios to be examined quickly and also provide performance anticipation

2 Typically, the testing will be done via user-driven scripts in the early stages, but will utilize
automated tests once the application matures and becomes more stable.

Implementing Performance Engineering
4015-10

capabilities that cannot be achieved by other means. A response time model for operation “Op B-
large” (“OpB_lrg” in the graph) under the Spring usage assumptions is as follows:

90th %
80th %

Average

80% RT @ 45:1

90% RT @ 30:1

As the model indicates, with 30 users on the system, 90% of the responses for operation “OpB_lrg”
would NOT occur within the prescribed 10 seconds. Under the failover situation whereby there are
45 users, it would appear as though 20% of the responses would also require 11 or more seconds.
Thus, the “look into the future” indicates that the performance criteria will not be met.

3.5.2 Projecting Without Analytical Models
In the absence of modeling tools, performance can also be targeted using a “50/40/30” rule of thumb.
This means calculating the aggregate impact on resources and keeping the amount below 50%, 40%,
and 30% of available CPU, disk, and LAN (respectively). As the utilization approaches the 50/40/30
threshold, variability begins to be an issue, so systems that have tight variability constraints (such as
the current example) would be advised to stay somewhat below these limits.

Although this technique will not display the performance deterministically, it does allow feedback
regarding the expected capacity. The above example would be calculated as follows (using CPU and
Disk only):

CPU Utilization: Normal Failover
1.7185 secs/op 750 ops/hr 0.000278 hrs/sec = 35.80% Spring 53.70%
1.6849 secs/op 750 ops/hr 0.000278 hrs/sec = 35.10% Fall 52.65%

Disk Utilization:
1.1801 secs/op 750 ops/hr 0.000278 hrs/sec = 24.59% Spring 36.88%
1.2649 secs/op 750 ops/hr 0.000278 hrs/sec = 26.35% Fall 39.53%

Thus, from this basic information, it is concluded that the desired node to server ratio is probably
obtainable, but variability will be a potential issue, particularly in failover situations. This highlights
both the advantage and disadvantage of the 50/40/30 technique – while it is very simple, it is not
nearly as accurate as modeling and can only provide an indication as to when average response time
begins to noticeably degrade.

Working backwards from the 50/40/30 rule of thumb, the user can estimate the maximum number of
nodes before the threshold is reached. Solving for the desired target in this example yields:

Implementing Performance Engineering
4015-11

Target Spring Fall
Max nodes before CPU reaches 50% 41.9 42.7
Max nodes before Disk reaches 40% 48.8 45.5

Using this data to document the performance of the system as a whole, it would be said that under the
anticipated workload for the spring, the system’s response time will experience noticeable variability
with 42 users, and 43 users in the fall. Again, this would be for a system with only modest variability
constraints – in some cases (including this example) it would be wise to target a more conservative
rule of thumb down to even 40/30/20.

3.5.3 Performance Improvements (the “Why”)
Once the performance picture is established, the next step is to provide insight as to where
improvements need to be made. This is done by inspecting the service time data weighted according
to the expected usage assumptions. Graphically this would be as follows:

Disk Op A

Op B-
small
Op B-
large
Op C

CPU Op A

Op B-
small
Op B-
large
Op C

Disk Op A

Op B-
small
Op B-
large
Op C

CPU Op A

Op B-
small
Op B-
large
Op C

Spring Usage Fall Usage

Knowing that the average weighted value for CPU is greater than that for disk, it is natural to
concentrate on the CPU-intensive resources. Besides the obvious approach of optimizing any
operations that exceed the base response time specification, the above graphs highlight where
improvements can be made to the overall performance. Since the Spring usage was the most
restrictive (at 42 nodes), operation “Op C” would be a likely target for improving the overall
performance situation. Further inspection shows that improving the “Op B” operation (in particular
the “Op B-small”) would have a significant effect in both the spring and the fall. In general,
decreasing the service time of any operation would improve the response time of all operations (since
the contention for the shared CPU is the primary cause of response time degradation). This is
particularly applicable for applications concerned with maximizing node to server ratios or average
response times of all transactions.

3.5.4 Reiteration
Continuing with the above example, assume that based on the analysis, the database was optimized
for operation “Op B” (both large and small). This was not done originally as it was suspected to have
an adverse effect on operation “Op A”. After measuring the modified configuration, the new service
time data is as follows:

CPU-seconds Disk-seconds Elapsed Time
Op A 1.71 1.69 3.9
Op B-small 1.39 1.01 4.2
Op B-large 1.70 1.54 4.9
Op C 1.82 1.02 3.6

This new data reflects an improvement of about 10% for both “Op B-small” and “Op B-large”,
however it was

Implementing Performance Engineering
4015-12

at the cost of a service time degradation to “Op A”. Weighting the service times according to the
usage patterns yields the following:

Spring Fall
Percent Wtd. CPU CPU % Wtd Disk Disk % Percent Wtd. CPU CPU % Wtd Disk Disk %

Op A 15.0% 0.2565 15.4% 0.2535 21.5% 17.0% 0.2907 18.3% 0.2873 22.7%
Op B-small 28.0% 0.3892 23.3% 0.2828 24.0% 42.0% 0.5838 36.7% 0.4242 33.5%
Op B-large 12.0% 0.2040 12.2% 0.1848 15.7% 26.0% 0.4420 27.8% 0.4004 31.7%
Op C 45.0% 0.8190 49.1% 0.4590 38.9% 15.0% 0.2730 17.2% 0.1530 12.1%
Ave Wtd Usage Per Op: 1.6687 1.1801 1.5895 1.2649

This shows an overall improvement in average weighted service time for the CPU in both cases.
Using this data with the 50/40/30 maximum node estimate yields the following:

Target Spring Fall
Max nodes before CPU reaches 50% 43.1 45.3
Max nodes before Disk reaches 40% 48.8 45.5

Thus the net effect of this modification is an increase of at least two nodes in the node to server ratio
– which would equate to as much as a 5% decrease in the total server investment – a sizable
improvement.

Subsequent iterations making similar comparisons will occur any time alternate design architectures
are being evaluated. If the performance impact of architectural decisions is not obvious, then mock-
ups are created, measured, and used to determine which alternative is optimal.

This step also highlights the three most important aspects of this method:
• By always knowing the expected performance, it is now possible to detect and quantify

the effects of any changes made to the system.
• Service time calculations are very powerful, but require very accurate measurements

since the slightest change can have a large effect on extrapolations.
• At all times, a rough indication of the capacity is understood – thus avoiding surprises at

the end of development.

Remodeling with the new data allows the effects of this change to be visualized:

90th %
80th %

Average

80% RT @ 45:1

90% RT @ 30:1

Implementing Performance Engineering
4015-13

This model shows the true effects of the improvements – namely the response time criteria for both
normal and failover conditions are met (90% of the responses at 30 users are within 10 seconds, and
80% of the responses with 45 users are within 10 seconds).

3.6 Tracking
Clearly modeling has a large advantage over the 50/40/30 rule of thumb, but regardless of the means,
it’s the methodology that is important. By establishing the “how” and documenting the “why”, the
only remaining step is to repeat the process and improve on the information. Using the example
herein and in Appendix A, and adding to that the conditions of the test (Software revision, hardware
configuration, date, etc.), a “Performance Report” is created which allows performance to be tracked.
As this process is repeated, the testing should improve on the data collected by:

1. increasing the number and “coverage” of the tests,
2. including more detailed information (LAN, memory, etc.),
3. testing alternate configurations, and
4. breaking out information at increased levels of detail including by process.

3.7 The PE Lifecycle
The process described above is designed to follow the development lifecycle from high-level design
all the way through to implementation. Although the above example relies on detailed service time
measurements, the same methodology can be used with estimates, again relying on “best available
data” to make a qualified performance assessment.

3.7.1 “Book-ending” to Establish a Performance Bound
In the early stages of design – before there is measurable code – a generic statement based on
intuition, historical data, or mock-ups about service time can be used. Such an example might
resemble: “Operations will take at least one second of service time but probably no more than two
seconds”. Using this off-the-cuff estimate, a bound can still be established by “book-ending” the
performance. By using the 50/40/30 technique the following is calculated (based on the 25 operations
per-user per-hour usage data):

Case Service Time Max Nodes
Best 1 Second 72
Worst 2 Seconds 36

Thus, the achievable node to server ratio would be assumed to be between somewhere between 72:1
and 36:1.

This is improved upon by the addition of new data. If, for example, a very simple test was created
which measured 1.25 seconds of service time, then this would replace the best case and the “book-
ends” are brought closer together as follows:

Case Service Time Max Nodes
Best 1.25 Seconds 58
Worst 2 Seconds 36

This sequence is repeated, eventually replacing estimates with measurements and then replacing
general measurements with ones representing a true workflow.

Implementing Performance Engineering
4015-14

3.7.2 Late in the Lifecycle
As development nears completion, results can be obtained from simulations or a beta-test which can
be compared to the predicted results. As an example, if the code was placed at a beta-site, and after a
four-hour period with 12 users running, the total CPU time used by the application was 1,100
seconds. If these 12 users handled 600 calls in this period of time, then the average weighted CPU
usage would be 1.83 seconds per call. This data can be compared against previous test results (thanks
to tracking) to see if the beta-site data coincides with the lab data. Before doing this of course, the
observed transaction mix of the beta-site should be used for weighting the lab data to make a direct
comparison valid. This exercise will highlight any errors in calculation as well as provide an
indication as to how test results compare to a true production system. Further, if the observed
transaction mix approximates the expected production mix, then the measured CPU time can be used
as an input to modeling or the 50/40/30 technique to establish the “likely-case” scenario of expected
performance.

3.8 The Final Step
Once the application nears completion, then any final performance adjustments can be made
matching the hardware to the physical (or other) constraints. By using the historical performance
data – capacity planning can now be done scientifically. As an example, suppose an office was to
have 60 users – the capacity planners could now decide if it would be more practical to use three
downgraded servers and support a 20:1 ratio with 30:1 during failover verses implementing two
upgraded servers which could support a 30:1 ratio, but handle a 60:1 ratio under failover conditions.
Without the scientific data of performance engineering, this could only be done via trial and error –
usually when it’s too late.

Hardware offers the opportunity to tune the system without modifying the design – and it is a great
advantage to have that ability, but it is very important to remember that performance is the result of
design and hardware can only address a symptom of a bad design.

3.9 Methodology Summary
The methodology herein is a means to combat the un-obviousness and complexity issues of client-
server performance. This is accomplished methodically by implementing a system which:

1. Describes the “how” of performance either with modeling or a simplified rule of thumb;
2. Documents the “why” of performance so problems can be addressed;
3. Tracks this data so that changes are detected, documented, and understood; and
4. Continuously improves by increasing the inherent accuracy and coverage.

This is achieved by using the “best available data” to make a qualified judgment about the
performance of a system. This information is understood to not be precise, but accurate enough to be
used – knowing that it will be improved upon as time goes by.3

4. Summary
Performance is just another aspect of quality, and like usability or reliability, it is the effect of design
– not something that can be added later. By establishing a real performance objective and
implementing a methodology to support that objective, performance engineering will enable
development to avoid the significant cost of bad performance. Breaking catch-22 of client-server
performance (“you cannot know until it’s done, but you cannot change anything once it’s done”)
requires a methodology that can “shift the timeline”. This means a means an approach that allows

3 As Aristotle surmised: “[It is the mark of an instructed mind to not demand more accuracy than the
subject emits]”.

Implementing Performance Engineering
4015-15

development to see the effects of decisions while there is still time to act, yet is still basic enough to be
accomplished.

Implementing performance engineering is a doable process but relies on these key components:
• there must be a real goal,
• there must be feedback,
• there must be willingness to accept performance indications as opposed to waiting until

the data is firm, but the alternatives are few.
Using this performance engineering process, it is possible to design performance into software. Thus
what was once accomplished by intuition, but then abandoned for the “fix it later” approach due to
the complexity of client-server can be accomplished with a little planning.

References

[Infoworld, 95] Infoworld, “Stop Network Bottlenecks before They Happen”, April 10, 1995.
(Statement by Shahla Butler, director of Performance and Measurement Laboratory for the Center of
Advanced Technologies at American Management Systems Inc.)

[Smith, 90] Connie U. Smith, Performance Engineering of Software Systems, Addison-Wesley, 1990.

[Humble, 87] Lance Humble and Carl Cooper, The world’s greatest blackjack book, Doubleday &
Company, Inc.

Implementing Performance Engineering
4015-16

Appendix A – Summary of Performance Calculations
Input Data
Usage Estimates: Mix Load

Spring Fall
Op A 15.0% 17.0% Ops Per hour: 750 Ops/hour
Op B-sma l 28.0% 42.0% Ops Per Node: 25 Ops/node-hour
Op B-larg e 12.0% 26.0% Failover Mult. 150% of normal
Op C 45.0% 15.0%

100.0% 100.0%
Measured Data:

CPU-seconds Disk-seconds Elapsed Time
Op A 1.61 1.69 3.9
Op B-small 1.54 1.01 4.2
Op B-large 1.89 1.54 4.9
Op C 1.82 1.02 3.6

Calculations
Spring Fall
Percent Wtd. CPU CPU % Wtd Disk Disk % Percent Wtd. CPU CPU % Wtd Disk Disk %

Op A 15.0% 0.2415 14.1% 0.2535 21.5% 17.0% 0.2737 16.2% 0.2873 22.7%
Op B-small 28.0% 0.4312 25.1% 0.2828 24.0% 42.0% 0.6468 38.4% 0.4242 33.5%
Op B-large 12.0% 0.2268 13.2% 0.1848 15.7% 26.0% 0.4914 29.2% 0.4004 31.7%
Op C 45.0% 0.8190 47.7% 0.4590 38.9% 15.0% 0.2730 16.2% 0.1530 12.1%
Ave Wtd Usage Per Op: 1.7185 1.1801 1.6849 1.2649

Estimated Resource Consumption
Resource utilization (P) = cost per op * ops per time-interval

CPU Utilization: Normal Failover
1.7185 secs/op 750 ops/hr 0.000278 hrs/sec = 35.80% Spring 53.70%
1.6849 secs/op 750 ops/hr 0.000278 hrs/sec = 35.10% Fall 52.65%

Disk Utilization:
1.1801 secs/op 750 ops/hr 0.000278 hrs/sec = 24.59% Spring 36.88%
1.2649 secs/op 750 ops/hr 0.000278 hrs/sec = 26.35% Fall 39.53%

Estimated Max nodes before exceeding utilization (P) = 50/40/30)
nodes = P/((Ops per user-interval) * (cost per op))

Max nodes before CPU exceeds 50% Spring Fall
25 ops/node-hr 25 ops/node-hr

* 1.7185 secs/op * 1.6849 secs/op
* 0.000278 hrs/sec * 0.000278 hrs/sec

50.00% / 0.011934 = 41.9 nodes 0.011701 = 42.7 nodes

Max nodes before Disk exceeds 40%
25 ops/node-hr 25 ops/node-hr

* 1.1801 secs/op * 1.2649 secs/op
* 0.000278 hrs/sec * 0.000278 hrs/sec

40.00% / 0.008195 = 48.8 nodes 0.008784 = 45.5 nodes

Primary Bottleneck
Max nodes, spring: 42 CPU
Max nodes, fall: 43 CPU

Disk Op A

Op B-
small
Op B-
large
Op C

CPU Op A

Op B-
small
Op B-
large
Op C

Disk Op A

Op B-
small
Op B-
large
Op C

CPU Op A

Op B-
small
Op B-
large
Op C

